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Abbreviations: 

BMI: body mass index; DAP: dialkylphosphate; DE: diethylphosphate metabolites; DEP: 

diethylphosphate; DETP: diethylthiophosphate; DEDTP: diethyldithiophosphate; DM: 

dimethylphosphate; DMP: dimethylphosphate; DMTP: dimethylthiophosphate; DMDTP: 

dimethyldithiophosphate; DDE: dichlorodiphenyl dichloroethylene; DDT: dichlorodiphenyl 

trichloroethane; FC: free cholesterol; HCB: hexachlorobenzene; βHCH: beta-hexachlorocyclohexane; 

LOD: limit of detection; LOQ: limit of quantification; OP: organophosphate pesticides; PCB: 

polychlorinated biphenyls; PL: phospholipid;  PON1: paraoxonase 1; POP: persistent organic 

pollutants; TC: total cholesterol; T2D: type 2 diabetes; TG: triglyceride
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Abstract

Background:  Experimental  evidence  suggests  that  developmental  exposure  to  persistent  organic

pollutants (POP) and to some non persistent pesticides may disrupt metabolic regulation of glucose

metabolism  and  insulin  secretion,  and  thereby  contribute  to  the  current  epidemic  of  obesity  and

metabolic  disorders.  Quasi  experimental  situations  of  undernutrition  in  utero have  provided  some

information. However, the evidence in humans concerning the role of the prenatal environment in these

disorders is contradictory, and little is known about long-term outcomes, such as type 2 diabetes, of

prenatal exposure. 

Objectives: Our aim was to evaluate the effects of prenatal exposure to POP and organophosphate

pesticides on fetal markers of glucose metabolism in a sample of newborns from the Pelagie mother-

child cohort in Brittany (France).  

Methods:  Dialkylphosphate  (DAP)  metabolites  of  organophosphate  pesticides  were  measured  in

maternal urine collected at the beginning of pregnancy. Cord blood was assayed for polychlorinated

biphenyl congener 153 (PCB153), p,p’-dichlorodiphenyl  dichloroethene (DDE) and other POP. Insulin

and adiponectin were determined in cord blood serum (n = 268). 

Results: A decrease in adiponectin and insulin levels was observed with increasing levels of DDE , but

only in girls and not boys. Adiponectin levels were not related to the concentrations of other POP or

DAP metabolites.  Decreasing insulin levels were observed with increasing PCB153 concentrations.

Insulin  levels  increased  with  DAP urinary  levels.  Additional  adjustment  for  BMI  z-score  at  birth

modified some of these relations.

Conclusions:  Our observations bring support for a potential role of organophosphate pesticides and

POP in alterations to glucose metabolism observable at birth. 

Keywords: persistent organic pollutants, organophosphates, adiponectin, insulin, cord blood, glucose 

metabolism markers
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1. Introduction
The prevalence of obesity has increased steadily worldwide, including in France where its prevalence

among adults in 2012 was 15% (Eschwege et al., 2015). The involvement of the perinatal environment

in the pathogenesis of obesity and diabetes has been demonstrated by follow-up of the Dutch Hunger

Winter: individuals who suffered undernutrition in utero and were subsequently born with a low birth

weight were around six times more likely to develop type 2 diabetes (T2D) by age 64 than individuals

with the highest birth weight (Bouret et al., 2015). 
There is  growing experimental  evidence  for a  role  of  so-called  “environmental  obesogens” in this

epidemic, especially when exposure occurs during developmental period. Maternal smoking has been

implicated, and perinatal exposure to persistent organic pollutants (POP), phthalates, metals, pesticides,

or  chemicals  with  estrogenic  or  endocrine-disrupting  properties  may  induce  abnormalities  in  the

metabolic  regulation  of glucose metabolism,  insulin  secretion and lipogenesis;  these environmental

exposures may thereby contribute to the increasing prevalence of metabolic disorders (Heindel et al.,

2009; La Merill et al., 2011; Thayer et al., 2012; de Cock et al., 2014).
Not all these environmental exposures have been the object of studies in humans. In a large meta-

analysis  of  low-level  prenatal  exposure  to  POP  among  12  European  birth  cohorts,  exposure  to

polychlorinated biphenyl congener 153 (PCB153) was found to be linearly associated with lower birth

weight, whereas no association was found with p,p’-dichlorodiphenyl dichloroethene (DDE), the main

metabolite of dichlorodiphenyl trichloroethane (DDT) (Govarts et al., 2012; Casas et al., 2015). Recent

reviews  of  studies  investigating  the  consequences  of  such  exposure  on  child  growth  have  had

difficulties in identifying even the general direction of the associations (de Cock et al., 2014; Tang-

Péronard 2011). The recent pooled analysis of infant growth in seven European cohorts concluded that

prenatal  exposure  to  DDE  was  associated  with  increased  infant  growth  (weight-for-age  z-score)

whereas postnatal PCB153 was associated with decreased growth (Iszatt et al., 2015). 
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A US National Toxicology Program Workshop convened in January 2011 evaluated that the evidence

was sufficient to conclude that there is an association between the risk of T2D and certain POP, more

specifically  trans-nonachlor,  DDT/DDE,  dioxins/dioxin-like  chemicals,  some  polychlorinated

biphenyls (PCB) and Agent Orange, but not sufficient to establish causality (Thayer et al., 2012; Taylor

et  al.,  2013;  Lee  et  al.,  2014).  Possible  associations  were observed for  other  POP but  with  fewer

relevant studies; no formal meta-analysis has been conducted and most of the studies reviewed were

cross-sectional or prospective studies starting at adult ages. 
A small number of epidemiological studies have suggested an association between prenatal exposure to

organophosphate pesticides (OP) and poor fetal growth outcomes in interaction with maternal or fetal

genetic susceptibility (low activity of the paraoxonase PON1 enzyme) (Berkowitz et al., 2004; Wolff et

al.,  2007; Harley et al.,  2011). However, there is still  no consensus about the consequences of OP

exposure for fetal growth (Mink et al., 2012). No human data is available for child growth, obesity or

the risk of T2D following prenatal exposure to OP, although evidence from animal studies suggests that

there may be effects (Thayer et al., 2012; Slotkin et al., 2011). 
Longitudinal  epidemiological  studies of potential  links between prenatal  exposure to environmental

agents and long-term body weight and type 2 diabetes outcomes are logistically difficult. The analysis

of the concentration of fetal  markers  at  birth is  an alternative approach to assessing the impact  of

environmental  agents  on  glucose  metabolism.  High  cord  insulin  levels,  related  at  birth  with  low

gestational age, are associated with the persistence of hyperinsulinemia in early childhood, which is a

reliable marker of insulin resistance (Wang G et al., 2014).

Adiponectin is produced by adipose tissue and modulates insulin sensitivity and inflammation in adults

(Kadowaki et al., 2005). In adults (Li et al., 2009), children and adolescents (Cruz et al. 2004; Gilardini

et al. 2006; Shaibi et al. 2007), adiponectin concentrations are low in subjects with high body mass

index (BMI), metabolic syndrome or type 2 diabetes. 
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A number of studies of healthy newborns have reported positive relationships between cord levels of

adiponectin and birth weight or birth length (Sivan et al., 2003; Chan et al., 2004; Kotani et al., 2004;

Tsai et al., 2004; Mantzoros et al., 2004), or have found low levels of adiponectin in low birth weight,

preterm or small-for-gestational age newborns (Martos-Moreno et al., 2009; Mazaki-Tovi et al., 2011);

however,  others  found no association  between adiponectin  and birth  weight  (Lindsay et  al.,  2003;

Bozzola et al., 2010). Adiponectin levels at birth are moderately correlated with values at older ages

(Hibino et  al.,  2009; Volberg et  al.,  2013).  However,  little  is known about  the predictive value of

adiponectin levels at birth for obesity-related outcomes at later ages. A positive association has been

found between the adiponectin level at birth and central adiposity at age 3 (Mantzoros et al., 2009) or

BMI gain from birth to 3 years (Nakano et al., 2012); by contrast, adiponectin at birth has also been

found to be inversely associated with weight gain in the first 6 months (Mantzoros et al., 2009), or with

BMI and weight gain at one year (Mazaki-Tovi et al., 2011). 

Our  aim  was  to  determine  prenatal  exposure  to  organophosphateorganophosphate  pesticides,

organochlorine pesticides and PCB by assaying maternal and fetal fluids, and assess the associations

with two markers of glucose metabolism at birth. In the absence of a measure of glucose at birth, we

selected adiponectin, in addition to insulin, despite the fact that its predictive value at birth for obesity-

related outcomes at later ages is not well established. Its concentration is positively correlated with

insulin sensitivity (Finucane et al., 2009) and it is considered as a reliable marker of insulin resistance

in humans. 
This study was based on the mother-child PELAGIE cohort set up in the general population of the

Brittany region.

2. Methods
2.1 Population and data collection

The PELAGIE cohort included 3,421 pregnant women from Brittany from 2002 to February 2006.

Gynecologists,  obstetricians,  and  ultrasonographers  recruited  women  during  consultations  in  early

pregnancy  (before  the  19th  week  of  gestation),  and  obtained  written  informed  consent.  Women

completed a questionnaire at home concerning family, social and demographic characteristics, diet, and

lifestyle. 
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Women were asked to return the questionnaire by mail, along with a first-morning-void urine sample

that  they  collected  and  transferred  into  two  vials  containing  nitric  acid  (to  inhibit  bacterial

proliferation). Samples were mailed to the study laboratory (INSERM U1085, Rennes, France) in a

prestamped package at  ambient  temperature,  with routine delivery taking 1 to  3 days.  On receipt,

samples were frozen and stored at –20°C. At the time of delivery, cord blood samples were collected

from 2,138 (62%) women of the cohort.  Cord blood samples  were centrifuged immediately at  the

maternity unit and samples (clot and serum) were stored at -80°C in our lab. The main reasons for

missing samples of umbilical cord blood may have been oversight or emergency delivery. Midwives

and  pediatricians  at  the  maternity  units  provided  study  staff  with  medical  information  about  the

pregnancy, delivery, and neonatal health for 3,399 women.

A random sample of 601 births (18%) was selected from the  cohort of liveborn singletons (n=3,322).

Urine and cord blood samples  were available  for 579 (96%) and 394 (66%) women,  respectively.

Correlations with hormone levels in cord blood could be assessed for 283 newborns for whom a cord

blood serum sample was still  available  after chemical  analysis  of persistent organic pollutants.  We

restricted our analysis to the 268 of these 283 cases with mothers with no diabetes.

2.2 Exposure assessment

2.2.1 Prenatal exposure to organophosphate pesticides 

One urine sample from each mother  collected at  the beginning of pregnancy was analyzed for six

nonspecific  dialkylphosphate  (DAP)  metabolites  of  numerous  OP  insecticides  (diethylphosphate

(DEP),  diethylthiophosphate  (DETP),  diethyldithiophosphate  (DEDTP),  dimethylphosphate  (DMP),

dimethylthiophosphate (DMTP) and dimethyldithiophosphate (DMDTP)). Chemical analysis of 10-mL

urine samples was carried out by the LABOCEA Institute (Plouzané, France) by solid-phase extraction

(Symbiosis Prospekt II type, HySphere C18 HD cartridge; Spark Holland, The Netherlands) and liquid

chromatography  (Alliance  Waters,  Separations  Module  2690;  Waters,  Saint-Quentin-en-Yvelines,

France)  with  a  Synergi  Fusion RP C18 column (250 × 2 mm,  4  μm)  and triple  quadrupole  mass

spectrometry (LC-MS/MS, Quattro Ultima, Micromass/Waters, Saint-Quentin-en-Yvelines, France).  
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The limits of quantification (LOQ) for the chemical analyses of maternal urine samples were 1.25, 1.7,

0.02, 0.2, 1, and 0.45 μg/L forDEP, DETP, DEDTP, DMP, DMTP, and DMDTP, respectively, and the

coefficients  of  variation  at  LOQ  were  19,  19,  20,  17,  19  and  20%,  respectively.  Metabolite

concentrations were converted from micrograms per liter to the corresponding molar concentrations

(nanomoles  per  liter).  Concentrations  were  summed  to  obtain  overall  concentrations  of

diethylphosphate metabolites (DE; sum of DEP, DETP, and DEDTP), dimethylphosphate metabolites

(DM; sum of DMP, DMTP, and DMDTP), and dialkylphosphate metabolites (DAP; sum of DM and

DE). To calculate these sums, censored values (i.e., those <LOQ) were replaced by 0 because of the

large  variations  in  LOQ  values  between  metabolites.

2.2.2 Prenatal exposure to organochlorine pesticides and PCBs 

The concentrations in cord blood of nine PCBs (congeners 118, 138, 153, 170, 180, 183, 187,

194 and 203)  and three  frequently  detected  organochlorine  pesticides  (beta-hexachlorocyclohexane

[βHCH], DDE, hexachlorobenzene [HCB]) were determined by the Centre de Toxicologie de Québec

of the National Institute of Public Health of Québec  by GC-MS with limit of detection (LOD) of 0.01

to 0.02 µg/L (more details are provided in Supplemental File 1).

Concentrations  are  reported  as  wet  weight  (micrograms  per  liter).  Total  cholesterol  (TC),  free

cholesterol (FC), triglyceride (TG), and phospholipid (PL) concentrations were also measured in these

samples by an enzymatic method (in g/L); the total lipid concentration could therefore be calculated as

1.677*(TC-FC)+FC+TG+PL (Patterson et al., 1991). 

PCB concentrations are highly correlated, so we studied the congener 153 as a marker of the

total exposure to PCB, the congener 187 for its estrogenic activity, and the sum of congeners 118, 138

and 170, for their anti-estrogenic activity  (Wolff et al., 1997). We summed the concentrations of the

PCB 118, 138, and 170 expressed on a molar  basis  with censored value (i.e.,  <LOD) replaced by

LOD/2 (because all PCB had the same LOD). 
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2.3 Hormone levels determination in cord blood serum 

Hormone levels were determined at the Laboratory of Hormonology of Rennes University Hospital in

cord blood serum for 268 newborns for whom cord serum was still available after chemical analyses of

persistent organic pollutants. 

 Adiponectin was determined by the ELISA assay from R&D Systems (Abingdon, UK). Insulin was 

determined using the bi-Insulin IRMA from CisBio International (Gif sur Yvette, France). The intra- 

and inter-assay coefficients of variation were < 4.7 and <3.8% or <7.9 and <7.5% for adiponectin and 

insulin, respectively.

2.4 Statistical analysis

The  concentration  of  adiponectin  was  normally  distributed  and  was  used  untransformed;  the

distribution  of  insulin  was  log-transformed  to  approximate  normality.  Outliers,  defined  as

concentrations  greater/lower  than 3 standard errors of the hormone’s  normalized distribution,  were

excluded.

We focused on the  pollutants  detected  in  at  least  75% of  the samples,  and also PCB187 and DE

metabolites (to obtain a more complete picture of DAP metabolites) (Table 2). Associations between

each fetal hormone and biomarker concentration, considered as a categorical variable (according to

quartiles for most compounds except PCB187 and DE metabolites which were classified into three

categories), were estimated using multivariate linear regression. Adjustment factors were all variables

possibly  related  to  variations  of  hormonal  concentrations  or  to  the  measurement  of  pesticides

concentrations  (based  on  a  priori  knowledge),  including  maternal  age  (continuous),  maternal  pre-

pregnancy body mass index (BMI: <25, ≥ 25 kg/m2  ), maternal educational level (primary/secondary,

graduated from secondary,  post-secondary), maternal smoking (non smoker, stopped smoking at the

beginning of the pregnancy, still  smoker at inclusion), parity (0, 1, at least 2), maternal high blood

pressure (yes, no), newborn sex (boy, girl) and concentration of maternal urinary creatinine (µg/l) for

non  persistent  pollutants  (continuous)  or  total  lipids  (µg/l)  in  cord  blood  for  persistent  pollutants

(continuous). 
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For analyses  of adiponectin,  we also adjusted for level of hemolysis  in the cord blood sample (no

hemolysis,  moderate  hemolysis,  substantial  hemolysis)  because  hormonal  concentrations  vary

according  to  extent  of  hemolysis.  For  insulin  analysis,  we  adjusted  for  hemolysis  (no  hemolysis,

moderate hemolysis) and samples with substantial hemolysis (n=16) were excluded because most of

the insulin concentrations in the corresponding samples were below the LOD. 

Interactions with newborn sex were tested, and stratified results are presented when p <10%. The p-

values  for  trend  were  calculated  with  the  categorical  exposure  variables  expressed  as  continuous

variables in the regression model (i.e., 0, 1, 2, 3). 

Weight and adiposity at birth may lie on the causal pathway between prenatal exposure and hormone

concentrations in cord blood. We chose BMI z-score as a marker of adiposity at birth (de Cunto et al.,

2014).   The regression models,  additionally  adjusted for  gestational  age  and BMI z-score  at  birth

determined  according  to  WHO reference  data  (http://www.who.int/childgrowth/en/;  de  Onis  et  al.,

2007) were rerun as a sensitivity analysis.

To take into account  the correlations  between POP for the results  reported  with a single-pollutant

approach, we also ran a multipollutant model. We chose not to include highly correlated pollutants

(rho[Spearman]>0.70), because linear models may perform poorly with highly correlated data. 

Second, we conducted restricted cubic spline regressions adjusted for the same covariates as described

above. We used the SAS macro %RCS_Reg which produced graphical representations and statistical

tests for both the overall association and the non-linear components of the association (Desquilbet et

al., 2010). Levels of exposures were log-transformed and censored values were imputed using a simple

distribution-based imputation method (proc Lifereg SAS; Jin et al., 2011). Statistical analyses were

performed with SAS software (SAS/STAT version 9.3; SAS Institute Inc., Cary, NC).

11



3. Results 

Sociodemographic and medical characteristics of mothers and newborns are presented in Table 1. A

large percentage of the mothers had had university education (65%). Fourteen percent were overweight

at  the  beginning  of  pregnancy.  Only  15% declared  smoking  during  pregnancy  and  less  than  2%

reported regular alcohol consumption. Only 3% of the newborns were preterm. 
DAP  metabolites  were  quantified  in  nearly  all  maternal  urine  samples  (92%),  with  a  median

concentration  of  38.8  nmol/L,  mainly  constituted  of  DM  metabolites  (Table  2).  Organochlorine

pesticides (β-HCH, DDE, HCB) and selected PCBs were detected in 74% (for PCB187) to 100 % (for

PCB153) of the cord blood samples; DDE had the highest median concentration for a single compound

(0.19 µg/L), followed by PCB153 (0.11 µg/L ) and β-HCH (0.04 µg/L ). As expected, DAP and DM

concentrations  were  strongly  correlated  with  each  other  (r=0.94),  and  less  strongly  with  DE

metabolites. The three classes of PCBs (PCB153, PCB187, sum of PCB118, 138, 170) were correlated

(r>0.84), each also being strongly correlated (r>0.90) with the sum of the nine PCB congeners. The

three  organochlorine  pesticides  were  moderately  correlated  with  each  other  (r=0.47  to  0.67),  and

slightly more with PCB153 (r=0.55 to 0.70).
The sociodemographic and medical characteristics, and the DAP metabolite and POP concentrations of

the 268 mother-child pairs included in this analysis were similar to those in the total random subcohort

of 601 pairs for which urinary and cord blood biomarkers were available (Suppl Table 1).
Two outliers were excluded from the analysis of adiponectin concentrations. Mean concentrations of

adiponectin were higher among girls (Suppl Table 2). Insulin was positively correlated with z-score of

BMI at birth in both sexes and higher among girls of overweight mothers.  Adiponectin was lower

among babies born preterm in both sexes and negatively correlated with maternal pre-pregnancy BMI

among girls (Suppl Table 3), 

A  non  linear  increase  in  insulin  levels  was  observed  in  association  with  concentrations  of  DAP

metabolites, stronger with DM metabolites (Table 3 and Figure 1). These associations were reinforced

by additional  adjustment for BMI z-score at  birth (Suppl Table 4). No association was found with

adiponectin levels.
We observed a decrease in insulin levels with increasing concentrations of each class of PCBs and with

β-HCH at low concentration (0.029-0.040 μg/l); there were no such associations for adiponectin (Table

4 and Figure 2). 
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There was a significant interaction with sex in the pattern of associations with β-HCH (not apparent on

the spline model) and with DDE. The trends for lower insulin and adiponectin levels associated with

higher DDE concentration were observed exclusively among girls (Suppl Table 5 and Suppl Figure 1).

Additional adjustment for BMI z-score at birth led to the attenuation of the associations detected for

insulin, and in the case of PCBs, they were no longer statistically significant. The associations observed

for adiponectin remained virtually unchanged (Suppl Table 6). 
When PCB153, β-HCH and DDE were entered simultaneously into the model (the correlation between

HCB and PCB153 was 0.70 and we decided not to include HCB), the association detected between

higher PCB153 and lower insulin concentrations was still present; also, there was a significant decrease

in adiponectin concentration with low exposure. The association between DDE and low insulin and

adiponectin levels was still observed among girls (Suppl Table 7

4. Discussion

Our study shows associations  between prenatal  exposure  to  POP and to  OP compounds  and both

adiponectin and insulin concentrations at birth suggesting a potential influence of exposure to these

compounds at exposure levels currently observed in the general population,  on glucose metabolism

during the fetal life. 

We  observe  a  decrease  in  adiponectin  levels  with  increasing  levels  of  DDE in  cord  blood.  Low

adipokine levels at birth have been reported among preterm and small-for-gestational age newborns

(Martos-Moreno et al., 2009). However, the strength of the association we observed between DDE and

adiponectin concentrations was not modified by adjustment for birth weight z-score, suggesting the

DDE has a direct effect on glucose metabolism during gestation independent of fetal growth. This is in

agreement with epidemiological observations of an absence of association between prenatal exposure

to DDE and birth weight (Casas et al., 2015), and an association with increased infant growth (Iszatt et

al.,  2015).  We observed this  association  only among  girls.  Sex-specific  associations  with  prenatal

exposure to DDE have previously been reported for child growth, in studies that presented separate

results by sex. In a Spanish birth cohort, prenatal DDE exposure was associated with overweight at age

6.5 especially among girls (Valvi et al., 2012). 
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Similarly,  in  the  Faroe  Islands,  obesity  development  at  age  7  was  associated  with  prenatal  DDE

exposure only among girls born to overweight mothers (Tang-Péronard et al., 2014). In adult women in

Michigan, BMI was positively associated with prenatal exposure to DDE (Karmaus et al., 2009).   

We observe a decrease in insulin levels with increasing levels of PCB153; however, this association

however did not hold after adjustment for birth weight z-score, which can be interpreted as resulting

from  PCB153 reducing fetal  growth. This is consistent with epidemiological observations of birth

weight and infant growth both decreasing with increasing levels of prenatal  PCB153 (Casas et al.,

2015; Iszatt et al., 2015). On the other hand, the decrease in insulin levels with increasing levels of

DDE among girls, and among newborns with low concentrations of beta-HCH in cord blood, were not

modified  by  adjustment  for  birth  weight  z-score;  this  suggests  that  the  association  between

environmental exposure and insulin concentration is independent of changes in fetal growth (Holness et

al., 2000). In experiments with mice, perinatal DDT exposure led to an impairment of thermogenesis, a

decrease in energy expenditure, and an impairment of glucose and lipid metabolism (La Merrill et al.,

2014).

In  our  study,  insulin  levels  at  birth  increased  with  the  DAP  concentration  in  maternal  urine  (a

relationship not modified by adjustment for birth weight z-score). This is in agreement with clinical

observations  and  animal  experiments  showing  that  OPs  cause  hyperglycemia,  which  induces  a

concomitant  increase  of  insulin  secretion  (Lasram  et  al.,  2014).  Early-life  exposure  of  rats  to

chlorpyrifos leads to hyperinsulinemia but with normal glucose levels, suggestive of insulin resistance

(Slotkin et al., 2011). Several recent reviews have considered mitochondria as pesticide, particularly

OP,  targets  (Lee  et  al.,  2014):  the  toxicity  of  OP  may  be  the  consequence  of  dysfunction  of

mitochondrial oxidative phosphorylation, leading to impairment of cellular energy metabolism, anti-

oxidant  defense  and  calcium  uptake.  The  resulting  release  of  inflammatory  cytokines  may  be

responsible for compensatory hyper-insulinism and the impairment of glucose homeostasis (Karami-

Mohajeri et al., 2013; Baltazar et al. 2014) 
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Our study is based on a modest-sized sample, and uses a limited number of fetal markers. Children

included in the survey were a subsample of the whole cohort and did not show characteristics different

from those the initial cohort. Adiponectin and insulin concentrations were determined using standard

methods available in clinical practice and expected factors of variation were present. Hemolysis had to

be taken into account because it appears to influence circulating levels of both adiponectin and insulin.

The main strength of this study is the biological measures of several contaminants, sometimes early in

pregnancy, in parallel with measures of hormone levels at birth. Transplacental transfer of POP is well

documented and determination of POP concentration in cord blood is a reliable method for evaluating

fetal exposure to these contaminants (Viczaino et al., 2014). OP are characterized by a short biological

half-life: once absorbed they are rapidly metabolized and excreted from the body. Their presence in

amniotic fluid (Bradman et al., 2003) suggests that fetuses too are exposed to these chemicals. Urinary

DAP are non specific metabolites of most organophosphate pesticides: assaying DAP is thus a simple,

integrated,  sensitive  and  noninvasive  method  for  assessing  OP  exposure  (Needham  et  al.,  2005).

However,  large  intraindividual  variability  in  metabolite  levels  in  spot  urine  samples  taken  during

pregnancy has been demonstrated (Bradman et al., 2005). Consequently,  repeated urine assays may

provide a more accurate characterization of OP prenatal exposure. However despite the limitations, the

efficacy of this  method for detecting developmental  neurotoxicity of OP has been demonstrated in

several birth cohorts, including one study where similar relations between cognitive scores at age 7 and

DAP measured earlier or later during pregnancy were found (Bouchard et al., 2011).  

We took into account a number of known determinants of hormone levels and tried to accommodate for

mixtures of POP. Nevertheless, our approach may not have completely excluded the joint action of co-

exposures in our effect estimates. 
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5. Conclusions

Our findings suggest that prenatal exposure to persistent pesticides and PCB may have consequences

for  adiponectin  and insulin  levels  at  birth,  and therefore,  possibly,  long-lasting  effects  on glucose

metabolism.  Our  observations  are  coherent  with  experimental,  clinical  and  epidemiological

observations of hormonal modifications induced by altered fetal and infant growth. Observed changes

are small but our study suggests early metabolic consequences of prenatal exposure to OP pesticides.

As similar results have not been previously reported, these findings need to be confirmed by further

analyses in other populations.
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Figure  1.  Restricted  cubic  splines  between  prenatal  exposure  to  organophosphate

pesticides and levels of insulin and adiponectin

Log(Insulin) a, b Adiponectin a

Log(DAP

)

p-overall=0.005 

p nonlinear component=0.03

p-overall=0.84

 p nonlinear component=0.97
Log(DM)  

p-overall=0.002

 p nonlinear component=0.004

p-overall=0.99

p nonlinear component=0.93
Log(DE)  

p-overall=0.24

p nonlinear component=0.09

p-overall=0.80

p nonlinear component=0.51



CI,  confidence  interval;  DAP,  dialkylphosphate;  DE,  diethylphosphate;  DM,

dimethylphosphate.

Adjusted dose-response association between organophosphate pesticides (log-scale, nmol/l)

and insulin  (log-scale,  µU/ml)  and adiponectin  (µg/ml).  Organophosphate  pesticides  were

coded using restricted cubic spline functions with three knots located at the 25th, 50th, and

75th  percentiles  of  the  distribution.  Y-axis  represents  the  difference  in  hormone  levels

between individuals with any value of organophosphate pesticides with individuals with low

exposure (ie, minimal value of the distribution).. 

a Adjusted for creatinine (continuous), hemolysis (3 categories), maternal age (continuous),

body  mass  index  (2  categories),  educational  level  (3  categories),  smoking  status  (3

categories), parity (3 categories), high blood pressure (2 categories), and sex (2 categories)  

b Excluding serum with substantial hemolysis (n=16)



Figure 2. Restricted cubic splines between prenatal exposure to persistent organic pollutants

and levels of insulin and adiponectin 

Log(Insulin) a, b Adiponectin a
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HCB,  hexachlorobenzene;  HCH,  hexachlorocyclohexane;  PCB,  PCB,  polychlorinated

biphenyl; p-p′-DDE, p-p′-dichlorodiphenyldichloroethylene.

Adjusted dose-response association between persistent organic pollutants (log-scale, µg/l) and

insulin (log-scale, µU/ml) and adiponectin (µg/ml). 



Persistent organic pollutants were coded using restricted cubic spline functions  with three

knots located at the 25th, 50th, and 75th percentiles of the distribution. Y-axis represents the

difference in hormone levels between individuals with any value of the persistent organic

pollutant with individuals with low exposure (ie, minimal value of the distribution). 

a  Adjusted for total lipid (continuous), hemolysis (2 categories), maternal age (continuous),

body mass index (2 categories), education (3 categories), smoking status (3 categories), parity

(3 categories), high blood pressure (2 categories), and sex (2 categories) 

b Excluding serum with substantial hemolysis (n=16)



Table 1. Maternal and newborn characteristics (N=268)

 
N (%) or  median  (Q1 ;

Q3)

Maternal characteristics  

Maternal age (years)
< 25 31 (11.6)
25-30 108 (40.3)
30-35 99 (36.9)
≥ 35 30 (11.2)
Continuous 29.9 (27.2 ; 32.5)
Education level
Primary/secondary 45 (16.8)

Graduated from secondary school 48 (17.9)

Post-secondary 175 (65.3)
Body mass index (kg/m²)
< 18.5 23 (8.6)
18.5-25 208 (77.6)
≥ 25 37 (13.8)
Continuous 21.4 (19.9 ; 23.4)
Smoking status
No smoker 194 (72.5)

Stop smoking at the beginning of the pregnancy 30 (11.4)

Smoker at inclusion 40 (15.2)
Missing 4



Alcohol consumption
Never 225 (85.9)
Occasionally 33 (12.6)
Regularly (once a day) 4 (1.5)
Missing 6
Parity
0 114 (42.5)
1 101 (37.7)
≥ 2 53 (19.8)
High blood pressure
No 257 (95.9)
Yes 11 (4.1)

Newborn characteristics  
Sex
Boy 132 (49.2)
Girl 136 (50.8)
Gestational age (weeks) 40 (39 ; 40)
Preterm birth (<37 weeks) 8 (3.0)
Birth weight (g) 3370 (3100 ; 3670)
Z-score of birth weight 0.15 (-0.55 ; 0.75)
Z-score of birth bmi 0.25 (-0.42 ; 0.82)



Table 2. Exposure biomarkers levels measured in maternal urine (N=254) and in cord blood samples (N=267).

Urine/Cord blood concentration Creatinine/Lipid-Adjusted concentration 
LOQ N (%) > LOQ p25 Median p75 Max p25 Median p75 Max

Urinary biomarkers nmol/L nmol/g creatinine
Dialkyl phosphates 0.30 234 (92.1) 14.669 38.835 85.649 895.653 12.619 38.236 88.438 1573.380
Dimethyl phosphates 1.50 229 (90.2) 10.024 30.664 70.861 895.653 10.145 30.605 70.970 1456.233
Diethyl phosphates 0.10 127 (50.0) <LOQ 0.107 11.588 216.34 <LOQ 0.112 10.940 194.129
Cord blood biomarkers µg/L µg/g lipidsa

PCB 153 0.01 267 (100.0) 0.077 0.110 0.150 0.730 0.019 0.028 0.046 0.332
PCB 187 0.01 197 (73.8) <LOD 0.013 0.019 0.200 <LOD 0.003 0.005 0.091
Sum of PCBsb 0.01 267 (100.0) 0.229 0.331 0.460 2.253 0.056 0.087 0.139 1.024
Beta HCH 0.01 264 (98.9) 0.030 0.041 0.062 0.260 0.007 0.011 0.018 0.108
pp’DDE 0.02 220 (82.4) 0.100 0.190 0.300 12.000 0.001 0.046 0.084 1.042
Hexachlorobenzene 0.02 211 (79.0) 0.022 0.033 0.051 0.200 0.004 0.008 0.015 0.083

HCH,  hexachlorocyclohexane;  LOD,  limit  of  detection;  LOQ,  limit  of  quantification;  PCB,  polychlorinated  biphenyl;  p-p′-DDE,  p-p′-

dichlorodiphenyldichloroethylene.

a 6 missing values of total lipid level

b Sum of congeners 118, 138, and 170. Concentrations below the LOD were replaced by LOD/2 (n=5, n=0, and n=14 respectively); expressed in

nmol



Table 3. Prenatal exposure to organophosphate pesticides, and insulin and adiponectin concentrations

Log(Insulin) b Adiponectin

 N
LSmeans

(µU/ml)
Beta (95% CI) a N

LSmeans

(µg/ml)
Beta (95% CI) a

DAP (nmol/l)  P-trend=0.12  P-trend=0.73
≤ 14.67 60 3.67 Ref. 64 35.79 Ref.
14.67 – 38.84 59 4.59 0.22 (-0.04 ; 0.50) 62 34.87 -0.92 (-5.14 ; 5.11)
38.84 – 85.65 59 4.56 0.22 (-0.05 ; 0.48) 62 37.64 1.84 (-3.23 ; 6.92)
> 85.65 61 4.62 0.23 (-0.04 ; 0.50) 64 35.78 -0.01 (-6.00 ; 4.15)
Interaction with sex P=0.69 P=0.34
DM (nmol/l)  P-trend=0.13  P-trend=0.50
≤ 10.024 60 3.53 Ref. 64 35.60 Ref.
10.024 – 30.66 59 5.02 0.35 (0.09 ; 0.62) 63 34.78 -0.82 (-5.87 ; 4.22)
30.66 – 70.86 61 4.53 0.25 (-0.01 ; 0.51) 62 37.70 2.10 (-2.94 ; 7.15)
> 70.86 59 4.55 0.25 (-0.01 ; 0.52) 63 36.38 0.78 (-4.34 ; 5.91)
Interaction with sex P=0.14 P=0.87
DE (nmol/l)  P-trend=0.19  P-trend=0.89
≤0.10 121 4.04 Ref. 126 35.81 Ref.
0.10 – 11.59 60 4.29 0.06 (-0.17 ; 0.29) 63 37.67 1.86 (-2.48 ; 6.20)
> 11.59 58 4.74 0.16 (-0.08 ; 0.39) 63 35.09 -0.72 (-5.16 ; 3.72)
Interaction with sex P=0.62 P=0.11

CI, confidence interval; DAP, dialkylphosphate; DE, diethylphosphate; DM, dimethylphosphate; LSmeans, least-squares means

a Adjusted for creatinine (continuous), hemolysis (3 categories), maternal age (continuous), body mass index (2 categories), educational level (3

categories), smoking status (3 categories), parity (3 categories), high blood pressure (2 categories), and sex (2 categories)  

b Excluding serum with substantial hemolysis (n=16)



Table 4. Prenatal exposure to persistent organic pollutants and insulin and adiponectin concentrations

Log(Insulin) b Adiponectin

 N
LSmeans

(µU/ml)
Beta (95% CI) a N

LSmeans

(µg/ml)
Beta (95% CI) a

PCB153 (ug/l) P-trend=0.05 P-trend=0.29
≤0.077 63 4.48 Ref. 67 38.29 Ref.
0.077 – 0.111 74 4.76 0.05 (-0.19 ; 0.30) 75 34.65 -3.64 (-8.41 ; 1.13)
0.111 – 0.150 57 4.10 -0.09 (-0.37 ; 0.18) 60 35.41 -2.88 (-8.14 ; 2.38)
>0.150 57 3.42 -0.27 (-0.56 ; 0.02) 63 35.03 -3.25 (-8.74 ; 2.24)
Interaction with sex P=0.74 P=0.59
PCB187 (ug/l) P-trend=0.06 P-trend=0.17
≤ 0.010 122 4.66 Ref. 126 37.67 Ref.
0.010 – 0.018 67 4.22 -0.10 (-0.32 ; 0.13) 70 35.71 -1.97 (-6.37 ; 2.44)
> 0.018 62 3.67 -0.24 (-0.48 ; 0.01) 69 34.48 -3.19 (-7.89 ; 1.51)
Interaction with sex P=0.77 P=0.35
Sum of PCBs 118, 138, 170 (ug/l) P-trend=0.31 P-trend=0.52
≤0.223 63 4.36 Ref. 67 38.24 Ref.
0.223 – 0.331 66 4.65 0.06 (-0.19 ; 0.32) 66 33.96 -3.26 (-8.18 ; 1.67)
0.331 – 0.461 62 4.49 0.01 (-0.26; 0.27) 66 35.36 -1.99 (-7.03 ; 3.05)
>0.461 60 3.78 -0.14 (-0.42 ; 0.14) 66 36.18 -2.20 (-7.62 ; 3.22)
Interaction with sex P=0.96 P=0.32
BetaHCH (ug/l) P-trend=0.59 P-trend=0.81
≤0.029 60 5.21 Ref. 64 35.77 Ref.
0.029 – 0.040 65 4.22 -0.38 (-0.64 ; -0.12) 67 36.88 1.11 (-3.94 ; 6.17)
0.040 – 0.061 64 3.56 -0.21 (-0.47 ; 0.05) 66 36.03 0.27 (-4.84 ; 5.37)
>0.061 62 5.21 -0.16 (-0.44 ; 0.12) 68 36.79 1.02 (-4.27 ; 6.31)
Interaction with sex P=0.98 P=0.03
pp’DDE (ug/l) P-trend=0.34 P-trend=0.27



≤ 0.100 62 4.53 Ref. 67 36.26 Ref.
0.100 – 0.180 63 4.35 -0.04 (-0.30 ; 0.22) 64 39.55 3.30 (-1.64 ; 8.24)
0.180 – 0.290 60 4.35 -0.04 (-0.30 ; 0.23) 66 38.10 1.84 (-3.12 ; 6.80)
> 0.290 66 4.53 -0.13 (-0.39 ; 0.13) 68 33.78 -2.48 (-7.44 ; 2.49)
Interaction with sex P=0.74 P=0.04
Hexachlorobenzene (ug/l) P-trend=0.71 P-trend=0.73
≤ 0.022 65 4.35 Ref. 69 37.33 Ref.
0.022 – 0.033 61 3.71 -0.16 (-0.42 ; 0.09) 65 35.40 -1.93 (-6.78 ; 2.91)
0.033 – 0.051 63 4.71 0.08 (-0.18 ; 0.33) 64 35.94 -1.40 (-6.35 ; 3.55)
> 0.051 62 4.26 -0.03 (-0.29 ; 0.24) 67 36.30 -1.03 (-6.01 ; 3.95)
Interaction with sex P=0.97 P=0.45

CI, confidence interval; HCH, hexachlorocyclohexane; LSmeans, least-squares means; PCB, PCB, polychlorinated biphenyl; p-p′-DDE, p-p′-

dichlorodiphenyldichloroethylene.

a  Adjusted  for  total  lipid  (continuous),  hemolysis  (2 categories),  maternal  age  (continuous),  body mass  index (2 categories),  education  (3

categories), smoking status (3 categories), parity (3 categories), high blood pressure (2 categories), and sex (2 categories) 

b Excluding serum with substantial hemolysis (n=16)


