

Comparative study between laboratory and large pilot scales for VOC's removal from gas streams in continuous flow surface discharge plasma

Aymen Amine Assadi, Abdelkrim Bouzaza, Dominique Wolbert

▶ To cite this version:

Aymen Amine Assadi, Abdelkrim Bouzaza, Dominique Wolbert. Comparative study between laboratory and large pilot scales for VOC's removal from gas streams in continuous flow surface discharge plasma. Chemical Engineering Research and Design, 2016, 106, pp.308-314. 10.1016/j.cherd.2015.12.025. hal-01256845

HAL Id: hal-01256845 https://univ-rennes.hal.science/hal-01256845

Submitted on 24 Mar 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Hi	σh	lig	hts
_		5.11		1113

2

- 3 The removal of isovaleraldehyde by surface plasma discharge was studied
- 4 Operating parameters are tested at pilot scale with high flow rate
- 5 The scale-up of plasma reactors were discussed
- 6 Plasma process was successfully extrapolated at larger scale.

7

8	Comparative study between laboratory and large pilot scales for
9	VOC's removal from gas streams in continuous flow surface
10	discharge plasma
11	
12	ASSADI Aymen Amine a.b, BOUZAZA Abdelkrim a.b*, WOLBERT Dominique a.b,
13 14	^a Laboratoire Sciences Chimiques de Rennes - équipe Chimie et Ingénierie des Procédés, UMR 6226 CNRS, ENSCR-11, allée de Beaulieu, CS 508307-35708 Rennes, France.
15	b Université Européenne de Bretagne, Rennes-France
16	* Corresponding author. Tel.: +33 2 23238056; fax: +33 2 23238120.
17	E-mail address: <u>Abdelkrim.bouzaza@ensc-rennes.fr</u> (A. BOUZAZA).
18	Abstract
19	This work investigated the performance of Isovaleraldehyde (3-methylbutanal) removal
20	from gas streams using continuous flow surface discharge plasma at room temperature. The
21	feasibility of pollutant removal using up-scaled reactor was systematically assessed by
22	monitoring removal efficiency and mineralization at different operational parameters, such as
23	specific energy, air flow rate and inlet concentration. Results show that increasing flow rate
24	lead to improve the removal capacity. For example, when flow rate extends two times, the
25	removal capacity varies from 0.6 to 1.1 g.h ⁻¹ . Moreover, when specific energy increased,
26	both removal capacity and mineralization were enhanced. Additionally, a comparison
27	between laboratory and pilot scales using surface discharge plasma system was carried out.
28	A methodology of scaling up the surface discharge plasma system was proposed. In this
29	context, removal capacities were compared for different continuous reactors: two reactors
30	at laboratory scale (planar and cylindrical reactor), and pilot unit. The results suggest that the
31	plasma reactor scale-up for pollutant removal can be feasible.
32 33	Keywords
34	Scaling-up, Continuous reactor, surface discharge plasma, VOCs treatment, byproducts
35	
36	Introduction
37	
38	Volatile organic compounds (VOCs) had adverse effects on environment and human
39	health. They are emitted from different outdoor sources (motor vehicles, incomplete
40	combustion in industrial processes) (Le Cloirec, 1998) as well as from indoor sources
41	(ADEME, 2005). Various methods have been developed for indoor air cleaning and VOCs

removal such as thermal and catalytic incineration (Li and Gong, 2010), absorption (Hsu 42 and Lin, 2011), adsorption (Kim and Ahn, 2012), condensation (Tan et al., 2005), 43 biofiltration (Zehraoui et al., 2012), ozonation (Ogata et al., 2010) and photocatalysis 44 (Hussain et al., 2011; Assadi et al., 2012). Although several chemical methods were used 45 or studied for the effective treatment of VOCs, the environmental applications of non-thermal 46 plasma (NTP) started at the **beginning of the XXth century** with the use of plasma-generated 47 ozone for water depollution. Later on, this type of treatment process was successfully 48 49 developed for air treatment (Khacef et al., 2006). The most significant advantage of NTP generated in ambient air was the production of 50 highly reactive oxidizing radicals such as Oo and HOo, and also O3. Such species were 51 produced at room temperature and at low energy cost compared to any alternative methods 52 (Malik et al., 2011; Nunez et al., 1993). As a result, non-thermal plasma could easily break 53 most chemical bonds of molecular pollutants at low temperatures and convert gas pollutants 54 into end-products including CO, CO₂, H₂O (Cho et al., 2012). On the other hand, many 55 researches on NTP technologies for processing gases show that NTP is very effective for 56 gas treatment at low VOCs concentrations (Kim, 2004; Hammer, 2014). In fact, our 57 previous research proved that some VOCs in gas streams can be degraded efficiently by 58 surface discharge plasma at laboratory scale pilots with two different geometries (Assadi et 59 al., 2014a). 60 This present paper was to extend previous research at lab scale (Assadi at al., 2014a; Assadi 61 et al., 2014b) by adding a new investigation about pilot scale of surface plasma application. 62 Moreover, a special attention was given to high flow rate parameter (from 250 to 500 m³.h⁻¹) 63 64 and its effect on the reactor performance, which is innovative in comparison to the latter studies. Here, isovaleraldehyde (isoval) was chosen since this pollutant was the main 65 molecule detected in the exhaust gases from animal quartering centers (ADEME, 2005). 66 Another goal of the present work is to investigate different reactors scales (laboratory and 67 pilot) in order to see the possibility of the scale-up of the process. 68 69 70 2. Experimental setup 71 The used experimental setup was structured as follows: (i) continuous reactors, (ii) plasma 72 73 system and (iii) analysis set-up.

74	
75	2.1. Plasma reactors
76	
77	2.1.1. Laboratory reactors
78	
79	The experiments were carried out in ambient conditions, i.e. room temperature and pressure.
80	Two lab scale reactors were tested. The first one, planar reactor, consisted of a
81	rectangular cross section (135 mm \times 135 mm) and is 1 m length. It contained two plates, 4
82	mm thickness, which were arranged parallel to the length of the reactor and permit to hold
83	up the two electrodes (Fig.1b). The second one, cylindrical reactor, was composed
84	principally of a glass tube (58 mm id and 100 cm length). It was covered by a copper grid
85	forming the outer electrode. The glass tube, 4 mm thickness, acts as the dielectric media. The
86	High Voltage (HV) electrode was a helicoidally wire shaped as a coil spring in close contact
87	with the inner wall of the reactor (Fig. 1a). A detailed description of the geometry of the
88	plasma reactor and electrical measurements was published elsewhere (Guillerm et al.,
89	2014).
90	
91	Fig1: Scheme and sectional drawing of the cylindrical (a) and planar (b) reactors
92	
02	2.1.2. Pilot unit
93	2.1.2. Fliot unit
94	
95	This reactor was an air handling unit produced by CIAT (Compagnie Industrielle
96	d'Applications Thermiques- France) with a flow rate capacity up to 5000 m ³ .h ⁻¹ (Figure2).
97	The unit comprised a pre-filtration box, a cooling bank, an electric heater (box no. 1), a vapor
98	humidifier (box no. 2), a pollutant injection area (box no. 3), an upstream pollution
99	measurement box, a surface plasma treatment system, a downstream concentration
100	measurement box (box no. 4); a fan (box no. 5) and finally an activated carbon filtration (box
101	no. 6). The ventilation box consisted of a medium-pressure centrifugal fan. The used pilot
102	was described in detail in our previous work (Assadi et al., 2014c).
102	
103	

104	Figure 2: A functional diagram of pilot unit supplied by CIAT
105	
106	2.2. Plasma system
107	
108	The experimental set-up for surface discharge production was similar to the planar
109	reactor. In fact, one side of the partition was provided with metallic grid forming the
110	HV electrode. The total surface area of each lab reactor was 0.18m². As seen in figure 3,
111	the other side was formed of a copper sheet that served as a ground electrode. The two
112	electrodes were separated by a dielectric sheet of glass (thickness 4 mm). These elements
113	were tied together and this configuration was reproduced six times forming six parallel
114	channels. The polluted gas flowed through these channels. The details concerning the
115	surface discharge plasma system of the pilot unit were shown in figure 3.
116	
117	Figure 3: Photography of Plasma system used in pilot unit
118	
119	The surface discharge was obtained by submitting the electrodes to a sinusoidal high voltage
120	ranging from 0 to 30 kV (peak to peak) at 50 Hz frequency. The outer electrode was
121	connected to the ground through a 50 nF of capacity in order to collect the charges
122	transferred through the reactor. The applied voltage (U_{a}) and high capacitance voltage (U_{m})
123	were measured by LeCroy high voltage probes and recorded by digital oscilloscope (Lecroy
124	Wave Surfer 24 Xs, 200 MHz).
125	The air-isovaleraldehyde gas mixture was prepared by passing synthetic air (Air Liquide)
126	through liquid isovaleraldehyde (Sigma-Aldrich, 97%). In fact, the pollutant (liquid) was
127	firstly pressurized with air in a stainless steel tank (500 mL). Then, it was heated, vaporized
128	and mixed with a zero-air flow in an especially designed Bronkhorst vaporization/mixing
129	chamber (CEM). In these conditions, the inlet concentrations ranged from 2 to 10 mg.m ⁻³ .
130	
131	2.3. Analysis set-up
132	The experiment was carried out at room temperature and atmospheric processes. The
133	The experiment was carried out at room temperature and atmospheric pressure. The
134	temperature and relative humidity were measured by a TESTO sensor. The gases (direct
135	sampling or after concentration) were analysed by means of gas chromatography with a flame

- ionisation detector (FID) or mass spectrometry (MS). CO and CO₂ analysers were used to monitor the carbon monoxide and dioxide. Ozone formed in the plasma reactor was measured by bubbling it through a suitable liquid phase of KI. The analysis system was largely described in previous studies (Assadi et al., 2012, 2013 and 2014a).
- 140 3. Results and discussion

141

Experimental parameters were defined as follows: (C_{in}) and (C_{out}) represented inlet and outlet concentration of pollutant (mg/m^3) respectively.

144

The specific energy (SE) was defined as the energy deposited per unit volume of the gas flow:

146 SE
$$(J.L^{-1}) = P/(Q*1000)$$
 (1)

- where P was the input power (W) and Q denoted the total gas flow rate (m³.s⁻¹).
- To evaluate the plasma process, the following parameters are employed:
- The removal capacity (R) which was calculated from:

150
$$R = Q.\frac{C_{in}}{100}.IRE(\%)$$
 (2)

where IRE(%) isovaleraldehyde removal was defined as

152
$$IRE\left(\%\right) = \frac{C_{in} - C_{out}}{C_{in}} \times 100\% \tag{3}$$

- The energy yield η_E(eV/molecule) =3.21. 10³ *P/[Q* (C_{in}- C_{out})] (4)
 where 3.21. 10³ was constant taking account Avogadro's number, molecular
 weight of Isoval and joule to electron-volt Conversion.
- The selectivities of CO and CO₂ which were defined as:

$$S_{co}(\%) = \frac{[co]}{(5 \times [soval]_{conv})} \times 100$$
 (5)

$$S_{co_2}(\%) = \frac{[co_2]}{(5 \times [Isoval]_{conv})} \times 100$$
 (6)

- where [CO] and [CO₂] were respectively the concentrations of carbon monoxide and carbon dioxide detected in the effluent gas as a result of Isoval removal, and [Isoval]_{conv}
- was the concentration of Isovaleraldehyde converted by plasma surface discharge.

Ozone concentration: Ozone was well known to be an inevitable byproduct in a 163 plasma process. It could be formed by the following reaction: 164 165 $O^{\circ} + O_2 + M \rightarrow O_3 + M$ (1) 166 where O° was atomic oxygen and was generated by O2 dissociation due to its impact 167 with high energy electrons, and M could be either molecular oxygen or molecular nitrogen 168 (Atkinson et al., 2003). Moreover, several mechanisms occurred when non-thermal 169 plasma was present since plasma produces various species such as high energy electrons, 170 excited molecules or radicals (O°, N*, °OH, O2, O3, NO2, NOx, etc.). These molecules 171 could interact directly with VOC molecules (Atkinson et al., 2003). 172 173 3.1. Pilot unit efficiency 174 175 176 The reactor was already being flushed under surface discharge for 1hour when we started sampling for analysis. Indeed, the inlet and outlet gas were then sampled manually. 177 The experiments which were repeated two times; showed a good reproducibility with 178 5% standard deviation. This standard deviation was represented by vertical bars in the 179 experimental results in all figures. 180 Moreover, the performance of pollutant removal using the pilot unit (500 m³.h⁻¹) was 181 182 systematically assessed by monitoring the removal efficiency, the mineralization and ozone formation at different operational parameters, such as specific energy, air flow rate and inlet 183 184 concentration. 3.1.1. Removal capacity of Isoval 185 186 187 The removal capacity of isovaleraldehyde was investigated by studying the effect of specific energy, flowrate and inlet concentration of pollutant (Figure 4.a). Firstly, figure 4.a showed 188 that the increase of flowrate improved the removal capacity. In fact, at flowrate equal to 250 189 m³.h⁻¹ and 3 mg.m⁻³ of inlet concentration, when SE extended six times, the removal 190 capacity increased from 0.2 to 0.45 g.h⁻¹. This result was similar to those reported for 191 192 trimethylamine and isovaleric acid at laboratory scale (Assadi et al., 2014a), for toluene 193 (Vandenbroucke et al., 2011), H₂S (Chen and Xie, 2013) and for NO_x (Khacef et al., 2013).. On the other hand, for a selected flow rate, it was interesting to report that 194

experimental results showed an enhanced removal capacity when increasing inlet

concentration. Similar results were found in previous studies (Assadi et al., 2014a). For
diluted effluent, the oxidation rate was directly proportional to the inlet concentration. The
degradation occurred to fit a pseudo first-order kinetic. At this specific concentration
range, many reactive species remained available for the reaction. On the other hand, the
experimental results about the effect of air flow rate (Q) on isovaleraldehyde removal were
illustrated in Fig. 4.a. In our case, despite the decrease of residence time, an improvement in
the removal capacity was noticed. Indeed, at SE= 4.5 J.L ⁻¹ and when Q increased from 250 to
500 m ³ /h, removal capacity increased two times. The gas-phase mass transfer rate
influenced the treatment capacity by producing a concentration gradient between the
bulk and the discharge zone. For instance under transitional conditions, the removal
capacity depended on gas-phase mass transfer rate and plasma reaction rate (Assadi et
al., 2014d). At higher flow rate, the process become a chemically step controlled. Thus, it
could be suggested that the increase of air flow was helpful to the transfer of
isovaleraldehyde molecules from bulk to discharge zone (Vandenbroucke et al., 2011).
Figure 4.a: Removal capacity of Isoval and energy yield vs. specific energy at different
flow rates and different inlet concentrations using pilot unit.
now rates and different fillet concentrations using prior unit.
However, in practice, energy cost η_E (eV/molecule) is an important parameter; the
variation of this parameter with different operating parameters was shown in figure 4.b.
In fact, the energy cost for conversion was higher for lower isoval initial concentrations,
exceeding 2.9 keV/molecule for the lowest concentration investigated (3 mg/m³). On the
other hand, we noted that energy cost was flow rate independent because when we
increased the flow rate we must increase also the power in order to keep SE constant.

219220

221

222

211212213214215216217218

Figure 4.b: Energy yield vs specific energy at different flow rates and different inlet concentrations using pilot unit

223224

3.1.2. By-products formation

225

At pilot scale, the detected by-products were acetone (CH₃COCH₃), acetic acid (CH₃COOH), CO and CO₂. We note that these by-products were similar to those seen at

228	lab scale. A possible pathway of Isoval removal was proposed in our previous
229	investigation with cylindrical reactor at lab scale (Assadi et al., 2014e).
230	
231	3.1.2.1. CO and CO ₂ formation
232 233	When increasing the specific energy, the discharges snatched more electrons from the gas-
234	phase inducing a higher concentration of reactive species in the plasma (Fig.5). So, more
235	reactive species were available to induce by-product mineralization. Same results were
236	reported in other studies at laboratory scale (Lee et al., 2014; Zhang et al., 2014; Xiao et
237	al., 2014). It was well known that at laboratory scale, the decrease of flow rate and inlet
238	concentration lead to an increase of mineralization.
239	
240	Figure 5: Variation of the mineralization vs. specific energy at different inlet
241	concentrations and different flow rates
242	
243	Fig.6 depicted the effect of specific energy, flow rate and inlet concentration of CO
244	selectivity. It was interesting to note that whatever the experimental conditions used,
245	experimental results showed that CO selectivity was globally not dependent upon the inlet
246	concentration and flow rate and it didn't exceed 15 %. This effect could be due to tested
247	concentrations interval which was very low. So, the effect of these two parameters was not
248	significant. Previous studies were shown that with surface plasma discharge, the
249	selectivity of CO was widely specific energy dependent (Thevenet et al., 2014; Assadi et
250	al., 2014e).
251	
252	Figure 6: Variation of the CO selectivity (%) vs. specific energy at different inlet
253	concentrations and different flow rates.
254	
255	3.1.2.2. Ozone formation
256	
257	Fig. 7 showed the variation of O ₃ concentration with specific energy at different inlet
258	concentration and different flow rates. First of all, it was well known that at laboratory scale,
259	the increase of specific energy leaded to an increase of ozone concentration. The behavior
260	with pilot scale was similar to that was seeing at lab scale. In fact, increasing two times the

261	specific energy leaded to an increase of the concentration of formed ozone by 5 ppm.
262	Additionally, at Q= 250 m ³ .h ⁻¹ , the highest ozone concentrations were obtained at low inlet
263	concentration. This suggests, when compared with previous studies, especially with the planar
264	reactor, that the reactive species such as active atomic oxygen and O ₃ would also be
265	consumed to react with isovaleraldehyde or by-products (Thevenet et al., 2014). Thus, the
266	consumption of active species such as O could explain the decreasing ozone concentration in
267	the presence of high inlet concentration of Isoval (Reaction 1).
268	Moreover, ozone increased with the increase of flow rate. In fact, active species usually
269	reacted with VOC present in gas. The decrease of the residence time reduced the active
270	species/VOC contact probability, allowing an important recombination reaction
271	(Reaction1.)
272	
273	Figure 7: Variation of the ozone vs. specific energy at different inlet concentrations and
274	different flow rates
275	
276	3.2. Comparison of reactors
277	
278	In the next step of this investigation, we compared results obtained at lab scale with the
279	removal capacity of pilot unit. A methodology was proposed to scale-up surface discharge
280	reactors, employing purely laboratory information, avoiding the need of using adjustable
281	parameters for each different application of the same process. For this purpose,
282	isovaleraldehyde removal was studied previously in a laboratory scale reactor.
283	As explained above, under our experimental conditions, many parameters were kept the
284	same for the two reactors studied: residence time, feed of Isoval (flow rate × inlet
285	concentration), relative humidity and temperature. Indeed, feed of Isoval and residence times
286	for lab and pilot scale were kept constant and equal to 1.2 g.h ⁻¹ and 0.6s respectively (4 m ³ .h ⁻¹
287	for the cylindrical reactor, 10 m ³ .h ⁻¹ for the planar reactor and 250 m ³ .h ⁻¹ for pilot unit).
288	Figure 8 showed the removal capacities of Isoval using different scale reactors. The results
289	showed that the removal capacities with Pilot scale were about six times higher than that
290	of the laboratory reactors, regarding to flow rate and plasma surface involved.
291	Moreover, at high value of flow rate, the mass transfer was not a limited step. Thus,
292	previous results and present study confirmed that the scale-up of the surface discharge plasma

293	could have been possible from the laboratory reactor study. This study showed that data
294	obtained for surface plasma process at laboratory scale can be used for industrial design.
295	
296	Figure 8: Different reactors and scales comparison vs. specific energy: Feed of Isoval =
297	1.2 g.h ⁻¹ , residence time=0.6s
298	
299	4. Conclusion
300	
301	The removal of isovaleraldehyde was carried out on surface discharge at pilot scale with
302	high flow rates.
303 304 305	The results showed that the increment's effect of specific energy seemed to be significant on the average removal capacity and on the overall selectivity to CO ₂ . Additionally, the increase of flow rate leaded to improve the removal of pollutant due to enhancement of mass transfer
306	step.
300	step.
307 308 309 310 311	The removal capacities of isovaleraldehyde with three different scale reactors were compared and the feasibility of the scale-up process was demonstrated due to continuity of the experimental results obtained. Thus, the present study confirmed that the scale-up of the surface discharge plasma could have been possible from the laboratory reactor study. Thus, an industrial design of plasma reactor could be possible by using only data lab.
312	
313 314	Acknowledgment
315	The authors gratefully acknowledged the financial support provided by the French National
316	Research Agency (ANR) for this research work.
317	
318	
319	
320	
321	
322	

323	
324	References
325	
326 327	ADEME, Pollutions olfactives : origine, législation, analyse, traitement. Ademe, Dunod, Angers, 2005.
328 329 330	Aerts R., Tu X., Van Gaens W., Whitehead J. C., Bogaerts A., Gas Purification by Nonthermal Plasma: A Case Study of Ethylene, Environmental Science & Technology . 47 (2013) 6478–6485
331 332 333 334	Atkinson R., BaulchD. L., Cox R. A., Crowley J. N., HampsonR. F., Hynes R. G., JenkinM. E., Rossi M. J., TroeJ., Evaluated kinetic and photochemical data for atmospheric chemistry: Part 1 - gas phase reactions of Ox, HOx, NOx and SOx species. Atmospheric chemistry and Physics Discussions 3 (2003) 6179–6699.
335 336 337	Assadi A.A., Bouzaza A., Lemasle M., Wolbert D., Removal of trimethylamine and isovaleric acid from gas streams in a continuous flow surface discharge plasma reactor, Chemical Engineering Research And Design 93 (2015) 640–651.
338 339 340 341	Assadi A. A., Palau J., Bouzaza A., Penya-Roja J., Martinez-Soria V., Wolbert D., Abatement of 3-methylbutanal and trimethylamine with combined plasma and photocatalysis in a continuous planar reactor, Journal of Photochemistry and Photobiology A: Chemistry 282 (2014 b) 1–8.
342 343 344	Assadi A.A., Bouzaza A., Wolbert D., Petit P., Isovaleraldehyde elimination by UV/TiO ₂ photocatalysis: comparative study of the process at different reactors configurations and scales, Environmental Science and Pollution Research 21 (2014 c) 11178-11188
345 346 347	Assadi A. A., Bouzaza A., Merabet S., Wolbert D., Modeling and simulation of VOCs removal by nonthermal plasma discharge with photocatalysis in a continuous reactor: Synergetic effect and mass transfer, Chemical Engineering Journal 258 (2014 d) 119–127.
348 349 350 351 352	Assadi A. A, Bouzaza A., Vallet C., Wolbert D., Use of DBD plasma, photocatalysis, and combined DBD plasma/photocatalysis in a continuous annular reactor for isovaleraldehyde elimination – Synergetic effect and byproducts identification, Chemical Engineering Journal 254 (2014 e) 124–132.
353 354	Bahri M., Haghighat F., Plasma-Based Indoor Air Cleaning Technologies: The State of the Art-Review, Clean – Soil, Air, Water 42 (2014), 1667–1680
355 356 357 358	Brandenburg R., Kovacevic V. V., Schmidt M., Basner R., Kettlitz M., Sretenovic G.B., Obradovic B.M., Kuraica M.M., Weltmann KD., Plasma-Based Pollutant Degradation in Gas Streams: Status, Examples and Outlook, Contributions to Plasma Physics, 54 (2014) 202 – 214

- 359 Chen J., XieZh., Removal of H₂S in a novel dielectric barrier discharge reactor with
- 360 photocatalytic electrode and activated carbon fiber. Journal of Hazardous Materials 261
- 361 (2013) 38–43
- 362 Guillerm M., Assadi A. A., Bouzaza A., Wolbert D., Removal of gas-phase ammonia and
- 363 hydrogen sulfide using photocatalysis, nonthermal plasma, and combined plasma and
- photocatalysis at pilot scale, Environmental Science and Pollution Research, 21 (2014)
- 365 13127-13137
- Gumuchiana D., Cavadias S., Dutenc X., Tatouliana M., Da Costa P., Ognier S., Organic
- pollutants oxidation by needle/plate plasma discharge: On the influence of the gas nature,
- 368 Chemical Engineering and Processing 82 (2014) 185–192.
- Gupta V.K., Verma N., Removal of volatile organic compounds by cryogenic condensation
- followed by adsorption. **Chemical Engineering Science** 57(2002) 2679–2696.
- 371 Hammer Th., Atmospheric Pressure Plasma Application for Pollution Control in Industrial
- Processes, Contributions to Plasma Physics. 54 (2014) 187 201.
- Hussain M., Russo N., Saracco G., Photocatalytic abatement of VOCs by novel optimized
- 374 TiO₂ nanoparticles. Chemical Engineering Journal 166(2011)138–149
- Hsu L.J., Lin C.C. Removal of methanol and 1-butanol from binary mixtures by absorption
- inrotating packed beds with blade packings, Chemical Engineering Journal, 168 (2011)190-
- 377 200
- 378 Khacef A.; Cormier J.- M., Pulsed sub-microsecond dielectric barrier discharge treatment of
- 379 flue gas simulated glass manufacturing industry: Removal of SO₂ and NOx, Journal of
- 380 Physics D: Applied Physics, 39 (2006) 1078-1083
- 381 Khacef A., Da Costa P.,Djéga-Mariadassou G., Plasma Assisted Catalyst for NOx
- 382 Remediation from Lean Gas Exhaust, journal of Engineering and Technology research, 1
- 383 (2013) 112-122.
- 384 Kim H., Nonthermal Plasma Processing for Air-PollutionControl: A Historical Review,
- Current Issues, and Future Prospects, **Plasma Processes and Polymers. 1** (2004) 91–110.
- 386 Kim K.J., Ahn H.G., The effect of pore structure of zeolite on the adsorption of VOCs and
- theirdesorption properties by microwave heating. Microporous and Mesoporous Materials
- 388 152 (2012)78–83
- Le Cloirec P., 1998. Les composés organiques volatils dans l'environnement, Lavoisier, Paris.
- Lee H., Lee D.-H., Song Y.-H., Choi W. Ch., Park Y.-K., Kim D. H., Synergistic effect of
- 391 non-thermal plasma-catalysis hybrid system on methane complete oxidation over Pd-based
- catalysts, Chemical Engineering Journal 259 (2015) 761–770
- 393 Li W.B., Gong H., Recent progress in the removal of volatile organic compounds by
- catalyticcombustion. **ActaPhysico-Chimica Sinica** 26(2010) 885–894

- Malik M. A., Kolb J. F., Sun Y., Schoenbach K.H., Comparative study of NO removal in
- 396 surface-plasma and volume-plasma reactorsbased on pulsed corona discharges, Journal of
- 397 Hazardous Materials 197 (2011) 220–228.
- Nunez C.M., Ramsey G.H., Ponder W.H., Abbott J.H., Hamel L.E., Kariher P.H. (1993)
- 399 Corona destruction:an innovative control technology for VOCs and air toxics. Journal of Air
- 400 & Waste Management 43(1993) 242–247.
- 401 Ogata A., Saito K., Kim H-H, Sugasawa M., Aritani H., Einaga H., Performance of an
- 402 Ozone Decomposition Catalyst in Hybrid Plasma Reactors for Volatile Organic Compound
- 403 Removal, Plasma Chemistry and Plasma Processing 30(2010) 33–42.
- 404 Tan S.J., Li L., Xiao Z.Y., Wu Y.T., Zhang Z.B., Pervaporation of alcoholic beverages: the
- 405 couplingeffects between ethanol and aroma compounds. Journal of Membrane Science
- 406 **264(2005) 129–136.**
- 407 ThevenetF., SivachandiranL., GuaitellaO., BarakatC., Rousseau A.: Plasma-catalyst coupling
- 408 for volatileorganic compound removal and indoor airtreatment: a review, Journal of Physics
- 409 D: Applied Physics 47 (2014) 224011-224022
- Vandenbroucke A.M., Morent R., De Geyter N., Leys C., Non-thermal plasmas for non-
- catalytic and catalytic VOC abatement, Journal of Hazardous Materials 195 (2011)30-
- 412 **54.**
- Xiao G., XuW., Wu R., Ni M., Du Ch., GaoX., LuoZh., Cen K., Non-Thermal Plasmas for
- 414 VOCs Abatement, Plasma Chemistry and Plasma Processing 34 (2014) 1033–1065.
- 415 Zehraoui A., Hassan A.A., Sorial G.A.Effect of methanol on the biofiltration of n-hexane.
- 416 **Journal of Hazardous Materials 219** (2012) 176–182
- Zhang H., Li K., Shu Ch., Lou Z., Sun T., Jia J., Enhancement of styrene removal using a
- 418 novel double-tube dielectricbarrier discharge (DDBD) reactor, Chemical Engineering Journal
- 419 256 (2014) 107–118.

420

421

422

423

424

425

426

428	
429	Figures
430	
431	Fig1: Scheme and sectional drawing of the cylindrical (a) and planar (b) reactors
432	
433	Figure 2: A functional diagram of pilot unit supplied by CIAT
434	
435	Figure 3: Photography of Plasma system used in pilot unit
436	
437 438	Figure 4.a: Removal capacity of Isoval vs specific energy at different flow rates and different inlet concentrations using pilot unit
439	
440 441	Figure 4.b: Energy yield vs specific energy at different flow rates and different inlet concentrations using pilot unit
442	
443 444	Figure 5: Variation of the mineralization vs. specific energy at different inlet concentrations and different flow rates
445	
446 447	Figure 6: Variation of the CO selectivity (%) vs. specific energy at different inlet concentrations and different flow rates.
448	
449 450	Figure 7: Variation of the ozone vs. specific energy at different inlet concentrations and different flow rates
451	
452 453	Figure 8: Different reactors and scales comparison vs. power consumption specific energy: Feed of Isoval = 1.2 g.h-1, residence time=0.6s
454	
455	
456	

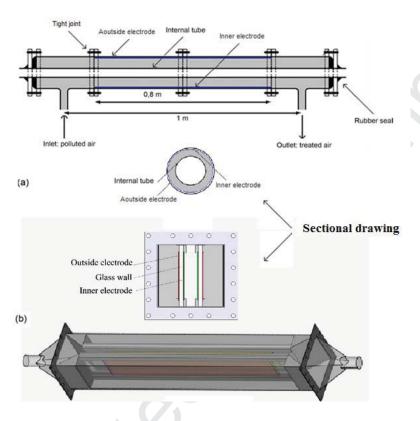


Fig1: Scheme and sectional drawing of the cylindrical (a) and planar (b) reactors

Page 16/16

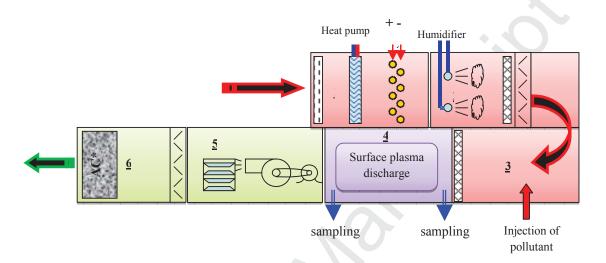
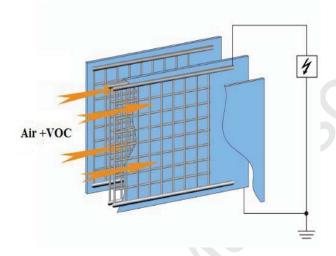



Figure 2: A functional diagram of pilot unit supplied by CIAT

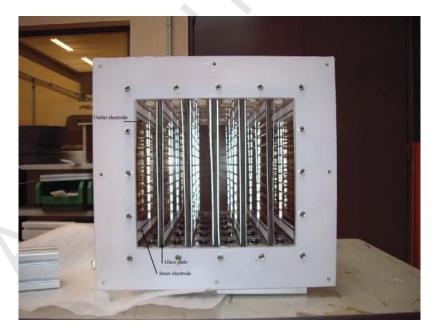


Figure 3: Photography of Plasma system used in pilot unit

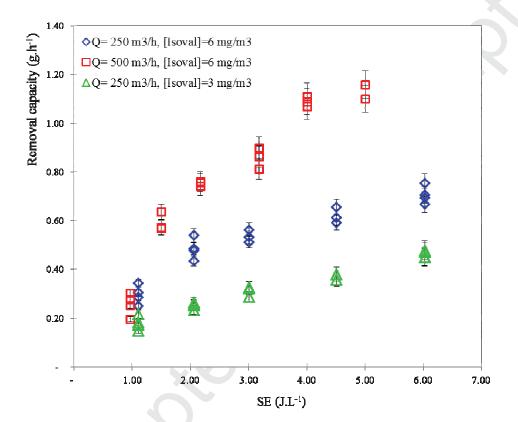


Figure 4.a: Removal capacity of Isoval vs specific energy at different flow rates and different inlet concentrations using pilot unit

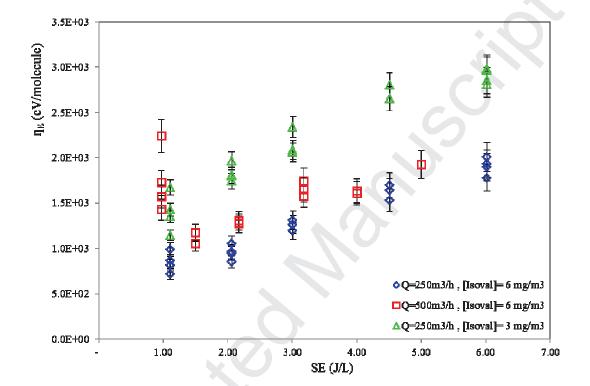


Figure 4.b: Energy yield vs specific energy at different flow rates and different inlet concentrations using pilot unit

Figure 5: Variation of the mineralization vs. specific energy at different inlet concentrations and different flow rates

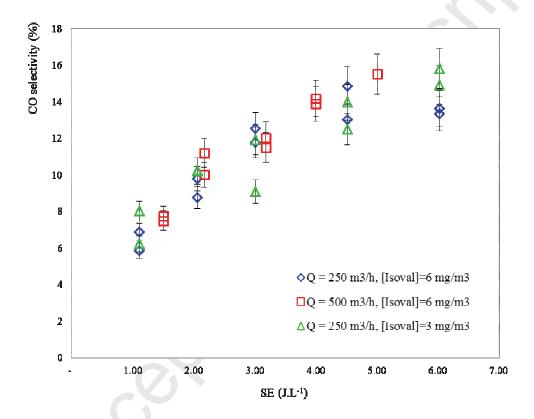


Figure 6: Variation of the CO selectivity (%) vs. specific energy at different inlet concentrations and different flow rates.

Figure 7: Variation of the ozone vs. specific energy at different inlet concentrations and different flow rates

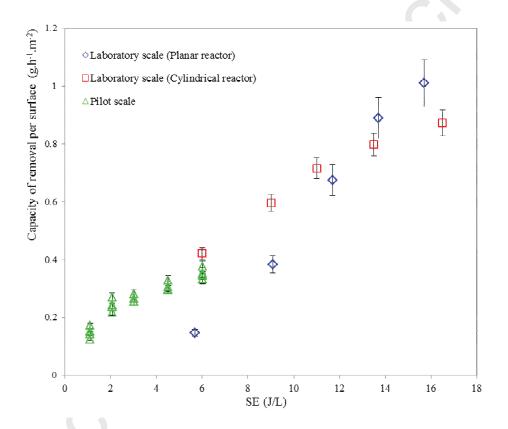


Figure 8: Different reactors and scales comparison vs. specific energy: Feed of Isoval = 1.2 g.h⁻¹, residence time=0.6s