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Abstract

Recent human activities and rising air temperature have increased the vulnerability of sub-Antarctic islands 
to alien species. At the Kerguelen Islands, the predaceous ground beetle Merizodus soledadinus is the only 
invasive insect originating from the southern cold temperate area (native from Patagonia, Tierra del Fuego 
and Falkland Islands). This austral origin raises the question of the limits of its physiological tolerance and 
capability to withstand (i) global change and (ii) warmer climates of archipelagos where its accidental 
transportation could be facilitated from the Kerguelen Islands (namely Amsterdam & Saint Paul). Using GC-
MS metabolomics, we compared metabotypes of adults exposed to different temperatures (0, 4, 8, 12, 16, 
20° C). All individuals survived after two weeks regardless of the temperature they were exposed to. The 
physiological changes observed were consistent with increased metabolic rate at increased temperatures, 
without extreme metabotypes that are characteristic of acute stress. First cues of sub-lethal stress were 
observed after prolonged exposure to 20° C, a warm regime unrealistic for such duration in sub-Antarctic 
Islands. Overall, M. soledadinus’ thermal tolerance exceeded temperatures currently experienced in nature,
suggesting that climate warming may boost its invasion by eliciting its activity and broadening habitat 
suitability in both invaded and still pristine islands. This thermal tolerance may allow survival aboard ships 
and development in sub-Antarctic islands with conditions warmer than the Kerguelen Islands, such as 
Amsterdam & St Paul. Stringent biosecurity measures are thus needed to prevent transfer from Kerguelen 
to these islands. The native range of this predaceous beetle limited to the Falkland Islands and 
southernmost South America may be partly constrained by factors other than temperature, such as 
desiccation, predation or competition.
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1. Introduction

Globalization and increasing intensity of human activities (i.e., commerce routes connecting distant areas,

human flows, climate change) have lowered geographic and climatic barriers to alien introductions in the

last decades, resulting in a dramatic increase of their number worldwide (Cassey et al. 2005; Hulme et al.

2008). Resulting invasions often have profound detrimental ecological consequences (Vitousek et al. 1997;

Simberloff 2011), and managing the risks requires a better understanding of what hinders aliens' success

and keeps them from turning into invaders. Sub-Antarctic islands are no exception to biological invasions,

even though they have long been protected from aliens due to their late discovery, geographic isolation,

climatic  barrier,  and absence of  permanent inhabitants (Chown et al.  1998; Frenot et  al.  2001; 2005).

However,  even  though  human  activities  still  remain  limited,  these  islands  are  becoming  especially

vulnerable as these barriers to invasions tend to be removed (Lebouvier et al. 2011). To date, six insect

species are invasive in the Kerguelen Islands, five of them being cosmopolitan species with widespread

worldwide  range  or  temperate  origin  (Frenot  et  al.  2005).  So  far,  only  the  ground  beetle

Merizodus soledadinus Guérin-Méneville (Col., Carabidae) originates from a native area restricted to about

the same latitude as the Kerguelen Islands, in the cold southern temperate area (Patagonia,  Tierra del

Fuego and Falkland Islands;  Jeannel 1940; Johns 1974; Chevrier 1996; Roig-Junent and Dominguez 2001;

Convey et al. 2011). In the recipient environment, this flightless predaceous insect has encountered biotic

(prey communities and their distribution) and abiotic conditions (cooler temperatures) that differ from its

native area. Yet, its spread and dominance in most littoral habitats and in some inland areas of the eastern

peninsula of the Kerguelen Islands clearly show its success as an invasive species (Lebouvier et al. 2011).

The  activity  of  physiological  systems  of  ectotherms  is  strongly  dependent  on  external

temperature, and their degree of plasticity sets the performance range of functions such as locomotion,

reproduction, or even growth and survival  (Huey and Kingsolver 1989;  Hazell and Bale 2011), all being

important  to  invasiveness.  Sub-lethal  deviations  from  an  optimal  range  can  constrain  physiological

mechanisms because of enzymatic thermal kinetics (see Huey and Kingsolver 1989), or make metabolic rate

and net energy production drop towards a point where energy requirements for biological functions cannot

be fulfilled anymore. Both the thermal sensitivity and the sequence at which functions are switched off vary

among organisms, and investigating thermal physiology of M. soledadinus is thus a key task for the better

understanding of its current and future invasive success. Lalouette et al. (2012) reported increasing aerobic

metabolism from 0 to 16 °C in this species, and showed that the lower sub-lethal thermal threshold of

activity (indicated by chill coma; see  Hazell and Bale 2011) can be reached during winters on Kerguelen

Islands,  as  it  ranges  from  5.5  to  3  °C  depending  on  acclimation  procedure.  Interestingly,  long-term

monitoring  showed that the invasive range of  M. soledadinus exploded in the 1990s at  the Kerguelen

Islands (Lalouette et al.  2012),  about 80 years after introduction but only 10 to 15 years after a steep

increase in mean air temperature (Lebouvier et al. 2011). 
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Altogether, these observations support the idea that the high-paced climate change in the polar region is

reducing potential barriers to aliens in the Kerguelen Islands, facilitating access to previously unsuitable

habitats, activity, demographic growth, and consequently invasion rate. 

While it has been hypothesized that sensitivity to climate warming decreases at increased latitudes

(Deutsch et al. 2008), the restricted subpolar origin of  M. soledadinus suggests a narrower performance

range  than  cosmopolitan  and  temperate  insects  currently  invading  the  Kerguelen  Islands.  As  ongoing

warming may relax lower thermal limits of its biological functions during winter, this species may more

readily get close to its higher thermal limits during summer than temperate species. Therein, the questions

are raised of how broad is the thermal tolerance of  M. soledadinus, and to what extent its invasion may

benefit from warming. The thermal sensitivity of its metabolism may be crucial in predicting (i)  this species’

responses to long-term climate change, and (ii) potential success in warmer islands to which accidental

transportation from the Kerguelen Islands may be assisted by ships moving in the region (military, scientific

or fisheries) – namely Amsterdam & St Paul archipelago.  Lalouette et al.  (2012) have reported that  M.

soledadinus has little thermal plasticity, but enough scope to deal with the current climate of the Kerguelen

Islands. Untangling the physiological mechanisms underlying its responses to thermal variations (and the

magnitude of the responses) is now critical in clarifying the beneficial effects of warming, yet it remains

unsolved so far.

In the present study, we aim to fill this knowledge gap by examining physiological responses of

M. soledadinus to thermal variations using modern metabolomics (GC-MS), assuming signs of increased

activity  at  moderately  warm  temperatures  up  to  a  threshold  resulting  in  mortality  or  physiological

damages.  Changes in  environmental  variables  are  associated  with  metabolic  reconfiguration  in  insects

(Overgaard  et  al.  2007; Laparie  et  al.  2012; Mamai  et  al.  2014),  and  the  accumulation  of  specific

metabolites  thus  represents  a  good marker  of  physiological  thermal  thresholds  in  ectothermic  species

(Colinet  et  al.  2012).  We  hypothesized  contrasted  metabolic  phenotypes  depending  on  thermal

acclimation,  based on (i)  increased amounts  of  amino acids  and polyamines at  stressful  temperatures

resulting  from  the  degradation  of  misfolded  proteins,  (ii) accumulation  of  compatible  solutes  at  low

temperatures,  and  (iii)  decreased  amounts  of  circulating  sugars  and  tricarboxylic  intermediates  with

increasing temperatures due to higher use and turnover (elicited activity). The experiment was performed

on adults  exposed to  a  range of  temperatures  from 0  to  20°C,  with  or  without  food  because  energy

shortage may alter the extent of physiological stress observed. The range of temperature investigated was

intentionally broader than the range that can actually be encountered in nature for the durations we used

(two weeks), so that limits of  M. soledadinus' thermal plasticity could be pinpointed by tracking possible

physiological damages. The findings on M. soledadinus’ thermal responses are ultimately discussed in the

light of risks of invasive bridgehead effect (Lombaert et al. 2010) from the Kerguelen Islands to other sub-

Antarctic  islands,  as  survival  to  thermal  conditions  aboard  ships  may  trigger  the  success  or  failure  of

accidental transfers of this invasive beetle.
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2. Material and methods
2.1. Sample collection and experimental conditions

Adult  Merizodus soledadinus were hand-collected in December 2010 under stones at Port-aux-Français,

Kerguelen Islands (49° 21' S, 70° 13' E). Sets of 10 individuals were directly placed onto paper discs in Petri

dishes  (⌀ 10  cm)  and  supplied  with  water  in  microtubes  capped  with  cotton.  The  Petri  dishes  were

immediately placed for two weeks in climatic chambers (Panasonic MIR 154) at either 0, 4, 8, 12, 16 or 20

°C (± 0.5 °C). A total of twenty Petri dishes were exposed to each temperature.

Enchytraeid worms (that adult  M. soledadinus can eat  in natura;  Laparie et al. 2012a) were

supplied ad libitum every three days in ten Petri dishes, except for the last three days of exposure to allow

the purge of the digestive tractus before metabolic measurements. Insects in the ten remaining Petri dishes

were food-deprived for the whole experiment. Microtubes with water and paper discs were renewed every

three days in all Petri dishes.

2.2. Sample preparation

All samples consisted of pools of three living individuals randomly picked up from replicates of the Petri

dishes exposed to the same experimental condition for two weeks (same temperature and same trophic

condition).  Microtubes were pre-filled with 1000 µL of  70 % ethanol,  then weighed,  and sets  of  three

randomly  selected  insects  were  directly  killed  when  plunged  in  ethanol  in  these  microtubes.  The

microtubes were weighed again to deduce the fresh mass of each sample. Two microtubes were discarded

because of aberrant (almost null) fresh mass. Eight samples were prepared for each of the 12 experimental

conditions  (six  temperatures,  two  trophic  conditions),  with  the  exception  of  the  two  aforementioned

outliers, resulting in a total of 94 samples (i.e., 282 individuals). All samples were stored at -20 °C prior to

metabolic assays. 

2.3. Metabolite Assays

▪ Separation and derivatization

Gas Chromatography/Mass Spectrometry  (GC-MS) was used to measure the circulating metabolites from

the  whole  insect  bodies  in  each  sample.  The  samples  in  ethanol  were  vacuum-dried  (Speed  Vac

Concentrator, MiVac, Genevac Ltd., Ipswich, England), and we used the experimental procedure described

in  Laparie et al. (2012b) with the following minor modifications. The metabolites were homogenized in

1000 µL of methanol-chloroform-water (2:1:2, M:C:W) solution and 300 µL aliquots of the upper aqueous

phase, which contained polar metabolites, were transferred to microtubes and vacuum-dried. The polar

phase aliquots were resuspended in 30 µL methoxyaminehydrochloride (Sigma-Aldrich, St. Louis, MO, USA)

in pyridine at 20 mg.mL-1 and, following incubation at 40 °C for 90 min, 30 μl of N-methyl-N-(trimethylsilyl)

trifluoroacetamide (MSTFA; Sigma, #394866) was added. The derivatization was conducted at 40 °C for 45

min under agitation. 
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▪ Metabolite analysis

The GC-MS system was comprised of a CTC CombiPal autosampler (GERSTEL GmbH & Co.KG, Mülheim an

der Ruhr, Germany), a Trace GC Ultra chromatograph, and a Trace DSQII quadrupole mass spectrometer

(Thermo Fischer Scientific Inc, Waltham, MA, USA) (see  Khodayari et al. 2013  for a full description and

picture of the equipment). We used the same GC-MS settings as those described in Laparie et al. (2012b).

All  samples  were  run  under  the  SIM  mode  (electron  energy:  -70  eV), which  ensures  increased

sensitivity relative to full scan analysis by focusing on target metabolites (Waller et al. 2007). Therefore, we

only screened for the 60 pure reference compounds included in our spectral database. GC-MS peaks were

accurately annotated using both mass spectra (two specific  ions),  and retention index specific  to each

compound.  A quality control containing the 60 pure compounds at 200µM was run every 15 samples to

verify  instrument  performance, set  intervention  limits, and  basic  instrument  validation  for  metabolite

profiling (Fiehn et al. 2008). Randomized sample sequences were established for sample injection, and each

sequence was initiated with a quality control. In addition, our CTC CombiPal autosampler (GERSTEL GmbH

&  Co.KG, Mülheim  an  der  Ruhr, Germany) enabled  online  derivatization  and  standardization  of  the

preparation process. Calibration curve samples for 60 pure reference compounds at 10, 20, 50, 100, 200,

500, 700, 1000 and 1500 µM concentrations were run. Chromatograms were deconvoluted using XCalibur

2.0.7, and metabolite  levels  were quantified using  the quadratic  calibration curves  for  each reference

compound and concentration. Arabinose was used as the internal standard. 

2.4. Statistical analyses

Effects of acclimation, trophic status and their interaction on the different metabolic families ( i.e., total

amounts of  free amino acids (FAA),  intermediate acidic  metabolites (IAM), sugars,  polyols  and amines)

were studied using two-way Anovas. Amounts of individual circulating molecules were then considered to

investigate  metabolic  differences  among  the  groups  of  individuals.  Given  the  number  of  metabolites

measured, we used multivariate procedures after removal of strongly correlated metabolites.  First,  the

effects  of  acclimation,  trophic  status  and their  interaction  on  metabolic  profiles  were studied  using  a

Manova.  Second,  metabolic  differences among thermal  conditions were detailed separately in fed and

food-deprived  individuals  using  two Linear  Discriminant  Analyses  (LDA).  Statistical  significance  of  both

discriminations  was  confirmed  using  Monte-Carlo  permutation  tests  at  α  threshold  =  0.001  (10’000

permutations).  Multivariate  homogeneity  of  class  variances  was checked using  Within-Group Analyses.

Results of individual Anovas are also reported in electronic supplementary materials to provide univariate

information  on  the  variations  of  each  molecule  used  to  differentiate  groups.  The  false  discovery  rate

resulting from multiple comparisons was corrected using the Two-Stage Benjamini-Hochberg algorithm (α

threshold = 0.05) on p-values for acclimation, trophic status, and their interaction.
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Statistical  analyses  were  performed  on  log-transformed  data  to  improve  adequacy  of  models’

residuals to normal distribution, which was checked using QQ plots and Shapiro-Wilk tests for multivariate

normality.  All  analyses were conducted with  R™ 2.11.0 statistical  software  (R Development Core Team

2008). 

3. Results
3.1. Survival to experimental conditions and accuracy of metabolic measurements

All insects survived after two weeks of exposure to the six thermal regimes, in both trophic conditions.

Among the 60 compounds included in our library, 37 were detected in the samples, including 11 FAA, 8

polyols, 6 IAM, 6 sugars,  4 amines and 2 diverse metabolites (see detail  in ESM1). Compounds beyond

quantification limits  (<10 µM) or  insufficiently  reliable due to a signal/noise  ratio  lower than 10 were

discarded to ensure accuracy of the data, resulting in 27 molecules conserved for further analyses.

3.2. Total amounts by molecular class

Before investigating the variations of individual compounds among the 12 experimental treatments, we

compared the variations of the total amounts by metabolic family, namely FAA, IAM, sugars, polyols and

amines (Fig. 1; Table 2). The total amount of the diverse compounds measured was not analyzed because it

does not correspond to a family, and only gluconolactone and glycerate fell into this group; concentration

in  gluconolactone  being  about  200  times  higher  (ESM2),  the  results  would  have  provided  the  same

information  as  the  test  on  this  individual  molecule  in  ESM3.  Total  concentrations  in  FAA  and  sugars

significantly  decreased  when  the  acclimation  temperature  increased,  regardless  of  the  trophic  status.

Overall, concentrations tended to be the highest in individuals exposed to 0 °C, and significantly dropped

after exposure to any of the warmer temperatures. A similar trend appeared in food-deprived individuals

for IAMs and polyols despite non-significance of the variations in total concentrations (however, several

individual IAM and polyols varied significantly among acclimation treatments; see ESM3). Variations of the

total concentration in amines mainly resulted from the trophic status of individuals exposed to 20 °C: the

total concentration was on average higher in fed individuals,  up to a two-fold difference in individuals

acclimated to 20 °C.
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Table 1 Results of the five two-way Anovas computed on mean total concentration by metabolic family. All numeric
data are rounded to one decimal digit

Response variable Effect Fdf SS MS p 
Total free amino acids Acclimation 18.05 8.0 1.6 ***

Trophic status 0.21 0.0 0.0 n. s.
Acclimation:Trophic status 1.45 0.6 0.1 n. s.

Total intermediate acidic metabolites Acclimation 2.25 2.0 0.4 n. s. *
Trophic status 0.71 0.1 0.1 n. s.
Acclimation:Trophic status 0.65 0.7 0.1 n. s.

Total sugars Acclimation 8.95 6.2 1.2 ***
Trophic status 1.31 0.2 0.2 n. s.
Acclimation:Trophic status 1.45 0.9 0.2 n. s.

Total polyols Acclimation 1.75 0.8 0.2 n. s.
Trophic status 0.01 0.0 0.0 n. s.
Acclimation:Trophic status 1.45 0.7 0.1 n. s.

Total amines Acclimation 4.95 4.0 0.8 ***
Trophic status 9.61 1.6 1.6 **
Acclimation:Trophic status 1.85 1.4 0.3 n. s.

Significance codes: < 0.001 "***"; < 0.01 “**”; not significant with trend (< 0.1) "n. s. *"; not significant “n. s.”

Fig.  1 Total  concentration  (nmol.mg-1 of  dry  mass)  by  molecular  class,  averaged  from  adults  of  M. soledadinus
acclimated to either 0, 4, 8,  12, 16 or 20 °C for two weeks.  Light grey:  food-deprived individuals;  dark grey: fed
individuals. Error bars: standard error. See ESM1 for the list of molecules measured in each class

3.3. Changes in the metabolic profiles over the thermal gradient

To avoid overestimation of differences among experimental treatments and redundancy in the multivariate

analyses  based  on  individual  metabolites,  molecules  exceeding  a  90%  correlation  with  others  were

dropped,  resulting  in  22  molecules  considered  for  further  statistical  procedures.  The  choice  of  the

correlated molecules to retain or discard was based on two criteria: (i) the number of pairwise correlations

it was involved in (discarding molecules being the most often correlated allowed keeping more variables

and thus more information in the dataset); and (ii) the available literature and overall knowledge of the

biological role of these molecules. The metabolic phenotypes (metabotypes) of the ground beetles were

significantly altered by acclimation temperature, trophic status, and their interaction (Table 2). 
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All 22 compounds varied significantly among acclimation temperatures: five metabolites varied significantly

between fed and food-deprived individuals (alanine, cadaverine, fumarate, leucine and maltose; ESM3),

and five varied significantly among acclimation temperatures depending on the trophic status of individuals

(alanine, erythritol, maltose, trehalose and valine; see Acclimation:Status interaction in ESM3).

Table 2 Results of the Manova computed on the 22 compounds considered for statistical analyses, testing variations
upon Acclimation (0,  4,  8,  12,  16 and 20 °C),  Status (fed  vs. food-deprived individuals),  and their  interaction. All
numeric data are rounded to one decimal digit

Effect Fdf Pillai p
Acclimation 6.25 3.4 ***
Trophic status 16.61 0.9 ***
Acclimation:Trophic status 2.45 2.3 ***

Significance code: < 0.001 "***"

Linear Discriminant Analyses (LDAs) were used to draw the multivariate metabolic differences

from acclimation  regimes  in  fed  (Fig.  2)  and  food-deprived  individuals  (Fig.  3).  In  fed  individuals,  the

between-class inertia along the first axis was 18.25 times higher than the within-class inertia.  This  axis

depicted the gradual differences from cold-acclimated individuals to warm-acclimated individuals. Of note,

insects acclimated to 0 °C slightly fell apart from the general trend on LD1, as they projected between those

acclimated to 4 °C and those acclimated to 8 °C.  According to the correlations circle,  the warmer the

acclimation temperature, the lower the concentrations in fumarate, gluconolactone, trehalose, inositol,

and FAA such as leucine, glycine, ornithine and alanine (cited in order of decreasing contribution). The LD1

axis  also  corresponded  to  increased  concentrations  in  erythritol  and  cadaverine  from  cold-  to  warm-

acclimated  individuals,  being  especially  high  in  individuals  acclimated  to  20  °C  (see  also  ESM2).  The

between-class  inertia  was  8.79  times  higher  than  the  within-class  inertia  along  LD2.  This  axis  mainly

separated individuals acclimated to 0 °C from other acclimation groups, because of higher concentrations

of  valine,  inositol,  succinate,  ribose and glucose,  and lower concentrations of  maltose, cadaverine and

citrate.
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Fig.  2 Projection of samples of  fed individuals onto the first  LDA discriminant plane. Grouping factor considered:
acclimation treatment (6 classes). The lines link the samples to the centroid of their group; some sample points may
be hidden by group labels when close to the centroid. Black: 0 °C; blue 4 °C; light blue: 8 °C; yellow: 12 °C; orange: 16
°C; red: 20 °C. The correlations circle depicts the normed relation (from -1 to 1) between each compound and the
linear discriminant axes. The singular values are the ratio of between-class and within-class inertias.

Fig.  3 Projection  of  samples  of  food-deprived  individuals  onto  the  first  LDA discriminant  plane.  Grouping  factor
considered: acclimation treatment (6 classes). The lines link the samples to the centroid of their group; some sample
points may be hidden by group labels when close to the centroid. Black: 0 °C; blue 4 °C; light blue: 8 °C; yellow: 12 °C;
orange: 16 °C; red: 20 °C. The correlations circle depicts the normed relation (from -1 to 1) between each compound
and the linear discriminant axes. The singular values are the ratio of between-class and within-class inertias

In food-deprived individuals (Fig. 3), the between-class inertia along the first axis was 19.87

times higher  than the within-class  inertia.  As  in  fed individuals,  LD1 mainly  sorted groups in  order  of

acclimation temperature. Overall,  warmer acclimation temperatures resulted in lower concentrations in

trehalose, fumarate, gluconolactone, inositol, glycine and leucine. By contrast, erythritol and cadaverine

concentrations  increased  with  temperatures,  with  manifold  accumulation  of  erythritol  in  individuals

exposed to 20 °C. Finally, between-class inertia was 16.50 times higher than within-class inertia along LD2,

notably depicting comparatively higher concentrations in alanine and valine in individuals exposed to 0 and

20 °C. The 20 °C group was characterized by a clear-cut contrasting metabotype with low concentration in

maltose,  high concentration in valine,  and especially  high concentration in  erythritol,  consistently  with

previous results in fed individuals (see also ESM2). The 0 °C group showed high concentrations in most

sugars, IAM, and FAA. The 4 and 16 °C groups fell in the lower part of LD2 axis because of comparatively

low concentrations in alanine and valine, but high concentrations in maltose. Finally, the 8 and 12 °C groups

were  intermediate  in  the  discriminant  space  and  exhibited  average  concentrations  for  the  most

discriminant compounds. Of note, cadaverine concentration was not as high as in fed individuals exposed

to 20 °C. Its concentration remained low across treatments, but consistently increased with temperature

(see ESM2). 
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Overall,  several  molecules  showed  rather  linear  variations  across  the  thermal  range,  such  as

gluconolactone, threhalose and fumarate, while other compounds primarily varied in extreme groups only,

such as cadaverine, erythritol and ribose (ESM2). 

4. Discussion

4.1. Thermal tolerance appears broad enough to withstand warming at the Kerguelen Islands

Predicting the effects of climate change on species’ range has drawn a lot of attention over the past years.

However, understanding physiological capacities of species – a critical step for forecasting their responses

to climate change – has been underappreciated until recently (Chown et al. 2010). Likewise, little is known

about  the  thermal  physiology  of  M. soledadinus and  how  associated  plasticity  may  assist  its  invasive

success,  despite the major threat it  represents to endemic invertebrates at the Kerguelen Islands. The

thermal plasticity of this predaceous beetle is a prime parameter of its capability to respond to the rapid

climate change being recorded in the region (Chown and Smith 1993; Lebouvier et al. 2011), and/or to

succeed in  other  sub-Antarctic  archipelagos if  accidentally  transported.  Previous work on  survival  and

respiration  of  M.  soledadinus has  suggested  comparatively  limited  thermal  plasticity  to  varying

temperatures (Lalouette et al. 2012). Meanwhile, all individuals survived the thermal experiments we used,

even  after  two weeks  of  constant  exposure  to  20  °C  that  we  expected  as  being  more  stressing  ( i.e.,

prolonged exposure to a temperature 10 to 12 °C warmer than the summer monthly means in the native

and invaded areas). Together with the findings from Lalouette et al. (2012), our data suggest that adult M.

soledadinus can withstand ongoing warming at the Kerguelen Islands, and may even benefit from it. The

present work aims at further delineating the thermal tolerance of this invader by investigating plasticity

from the lower phenotypic scale, i.e., the physiological scale. 

4.2. The metabolic components that suggest limits of thermal tolerance

Consistent with our hypotheses, we observed temperature-specific metabolic phenotypes. However, we

observed  limited  physiological  signs  of  thermal  stress  over  the  gradient  used,  and  only  in  individuals

exposed to the warmest regime of 20 °C. A typical  consequence of thermal stress in insects is  protein

breakdown, which suggests progressive failure of the mechanisms dedicated to protecting protein integrity

(Colinet  et  al.  2012).  Concentrations  in  two  essential  amino  acids  (valine  and  the  highly  correlated

isoleucine) increased in food-deprived individuals exposed at 20 °C, which tends to indicate the occurrence

of this phenomenon. However, we observed no consistent increase of the total concentration of FAA nor

individual FAA at 20 °C, as it would be expected in case of protein breakdown (Colinet et al. 2007; Colinet et

al. 2012; Koštál et al. 2011; Lalouette et al. 2007; Malmendal et al. 2006). 
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In  contrast,  total  FAA  concentration  was  the  highest  at  low  temperatures.  Finally,  it  should  be

acknowledged  that  we  could  not  measure  the  whole  spectrum  of  FAA  in  this  study  due  to  the

chromatographic  procedure  used  (see  ESM1).  Large  variations  in  the  amounts  of  proline  cannot  be

excluded,  and  changes  in  this  abundant  FAA  could  significantly  alter  the  total  FAA  concentration.

Nonetheless, protein breakdown remains unlikely at 20 °C given the uneven variations of other FAA. This

contrasts with the hypothesis of FAA accumulation under stressful temperatures but, together with the

100% survival, it may alternatively suggest that 20 °C represented only limited thermal stress.

Thermal tolerant invertebrates usually accumulate polyols in response to cold exposure, as these

compatible  solutes  have  a  cryoprotective  function  and  protect  cell  membranes  and  protein  stability

(Salvucci 2000; Yoder et al. 2006; Michaud et al. 2008). This likely explains the accumulated inositol and

glycerol in 0 °C-exposed individuals, which supports our second hypothesis of accumulation of compatible

solutes at low temperatures. Although the natures of the cellular damages resulting from heat and cold

may differ, there are similar physiological symptoms between the two types of thermal stress. Insects may

have evolved similar responses, and there are for instance numerous reports of increased concentrations of

polyols resulting from heat stress (Rujiter et al. 2003; Michaud et al. 2008; Rangel et al. 2008; Burke et al.

2009).  The  manifold  accumulation  of  erythritol  in  M. soledadinus exposed  to  20  °C  did  not  result  in

significance of the test on total polyols, likely due to very low concentration relative to other polyols. The

change in its concentration in warm-exposed individuals is still worth note given that all other groups of

individuals clustered together, and this peculiar physiological response after prolonged exposure at 20 °C

may indicate thermal stress. Accumulation of this polyol has already been observed in heat-treated insects

(Burke  et  al.  2009),  but  contrasts  with  the  report  by  Michaud  et  al.  (2008)  that  erythritol  was  not

accumulated  following  heat  stress  in  a  polar  midge  (Belgica  antarctica Jacobs;  Dip.,  Chironomidae).

Interestingly though, these authors found higher amounts of erythritol  associated with desiccation and

suggested a protective function against this stressor. Desiccation may be closely related to heat exposure

due to decreasing relative humidity when temperature increases, and M. soledadinus is known as sensitive

to desiccation (Todd and Block 1997). The very low erythritol concentration measured in the present study

is  unlikely  to  yield  effective  protection  against  body  water  loss.  However,  its  manifold  variation  may

indicate first signs of desiccation at 20 °C, rather than detrimental consequences of temperature per se. 

When  fed,  warm-exposed  beetles  also  differed  from  all  others  by  their  increased  amounts  of

cadaverine, consistent with our first hypothesis of polyamine accumulation at stressful temperatures. Such

accumulation has already been shown in insects under thermal tress (Michaud et al. 2008) and has been

reported as a signal  inducing expression of Heat Shock Proteins (HSP) in plants ( Gill  and Tuteja 2010).

Supportive of this idea, the expression of stress genes associated with HSP depends on thermal acclimation

in fruit flies (Colinet and Hoffmann 2012). Meanwhile, a two-week exposure to 20 °C did not significantly

alter  the  expression  of  mRNA HSC70  in  M. soledadinus compared  to cooler  treatments,  regardless  of

trophic status (Siaussat et al. 2013). 

11



This suggested that such conditions were not at a level that caused thermal stress for this species.

The association  between HSP  and food deprivation  has  been reported in  a  number  of  organisms but

remains unclear in insects due to contrasting results (see Siaussat et al. 2013). Cadaverine has also been

demonstrated as an efficient stabilizer of the DNA structure in stressed organisms by binding onto the DNA

double  helix  (Petraccone  et  al.  2004).  Alternatively,  while  food-deprived  individuals  may  have  spared

reserves, the metabolic rate of fed beetles may have been elicited at 20 °C as a result of the non-linear

temperature-performance relationship in insects, ultimately increasing the production of reactive oxygen

species (ROS) against which cadaverine has been proven as an efficient metabolite (Rhee et al. 2007). 

Finally, gluconolactone was comparatively abundant in all individuals but consistently decreased

with warming. This compound may originate from gluconolactone-6-phosphate produced by the pentose

phosphate pathway (Hidalgo et al. 2013), which is usually stimulated under adverse conditions as it yields

compatible solutes (Storey and Storey 1991; Koštál et al. 2004) and NADPH, a reductant source (Kruger and

von  Schaewen  2003).  The  continuous  decrease  in  gluconolactone  might  thus  highlight  the  adaptive

component of the physiological plasticity of  M. soledadinus to thermal variations. Nonetheless, caution

must be taken with this hypothesis because gluconolactone can also act as an energy source through its

conversion into glucose, which can in turn fuel  the TCA cycle with pyruvate production resulting from

glycolysis.

4.3. The observed metabolic response to increasing temperature suggests increasing activity

As hypothesized, gradual adjustments pertaining to increasing metabolic rate have been observed with

increasing temperature. This effect is expected in ectotherms as a passive result of enzymatic kinetics being

altered by temperature (Huey and Kingsolver 1989). Energy production is also expected to be modulated by

changes in mitochondrial number depending on thermal acclimation (Lefebvre and Fourche 1985; Joanisse

and Storey 1995; McMullen and Storey 2008). Consistent with these expectations, energy reserves such as

carbohydrates (glucose, and most of all trehalose) decreased with increasing temperature. Trehalose is also

known as a multifunctional molecule being accumulated under a range of adverse conditions such as heat,

cold,  oxidation or desiccation to protect  proteins and cellular membranes (Elbein et al.  2003),  but the

gradual  decrease over a range of temperatures covering the preferendum rather suggests its use as a

source of energy.

The continuously decreasing fumarate with increasing temperature plus the decreased levels of

succinate  at  temperatures  above  0  °C  support  changes  in  the  kinetics  of  the  TCA  cycle.  Interpreting

concentrations of individual IAM is particularly challenging because of their temporary nature in metabolic

cycles: the apparent accumulation of any IAM in a metabolomics snapshot may indicate either acceleration

or slowdown of the TCA cycle. However, increasing temperature within the thermal range considered here

is  known  to  increase  both  locomotor  activity  (Ottesen  1990)  and  oxygen  consumption  (Todd  1997;

Lalouette et al. 2012) in M. soledadinus, thereby supporting elicited TCA cycle. 
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The resulting increased energetic metabolism is likely partly responsible for the aforementioned

diminution of some carbohydrates.

Finally, several FAA were found to decrease over the thermal range we studied. Glutamate, glycine,

leucine,  phenylalanine,  serine  and  threonine  showed  the  clearest  decreasing  patterns  (not  all  were

statistically analyzed due to strong correlations). Of note, glutamate, glycine and serine directly or indirectly

contribute to the TCA cycle as precursors of αketoglutarate, choline, and acetate, respectively. Altogether,

the  results  from  the  physiological  scale  are  consistent  with  previous  findings  suggesting  that  such

temperature  gradient  lies  in  the  physiological  range  of  this  species  (Lalouette  et  al.  2012).  We  also

confirmed that 0 °C is  suboptimal in this  species due to the resulting inhibition of  metabolic  rate and

expected stand-by of some biological functions; the metabolic rate kinetics increased starting from 4 °C

onwards.

In  accordance  with  the  assumption  of  lowered  sensitivity  to  global  warming  at  high  latitudes

(Deutsch  et  al.  2008),  this  invader  from austral  origin  appears  to  have  significant  scope  to  withstand

ongoing warming at the sub-Antarctic islands, as it thermal limits are unlikely to be reached in this region.

Moreover, rising air temperature may assist its altitudinal progression and invasion dynamics by increasing

habitat suitability (harsh climate is assumed as the main factor currently limiting the colonization of high

elevation habitats), growth rate, and temporal window of activity, rather than inhibit them. Nonetheless,

climate change at the Kerguelen Islands also induces a dramatic reduction of rainfalls (approximately a two-

fold reduction since the 1960s;  Lebouvier et al. 2011), which might increasingly impact  M. soledadinus’

range in the future in case of desiccation stress in its habitats.

4.4. Invasion risks: the relevance of M. soledadinus’ thermal tolerance

The expected increased biological activity of  M. soledadinus triggers a warning for South Georgia, where

the species has also been accidentally introduced (first record in 1963; Darlington 1970). The extent of its

invasion  in  South  Georgia  remains  limited  compared  to  the  Kerguelen  Islands,  with  much  smaller

populations (Convey et al. 2011; Lebouvier et al. 2011). Most likely reasons for this lower invasive success

are (i) the presence of Trechisibus antarcticus Dejean (Col., Carabidae), another invasive predaceous ground

beetle whereas  M. soledadinus suffers no competition in the Kerguelen Islands, and (ii)  harsher climate

(Convey et al. 2011; Lebouvier et al. 2011). It has been hypothesized that greater invasive success of  T.

antarcticus is due to its higher metabolic rate and better cold adaptation (Todd 1997). Consequently, if

harsh  thermal  conditions  of  South  Georgia  tend  to  warm  up  in  the  future,  beneficial  effects  on  M.

soledadinus’ invasive success may be twofold: its capability to colonize a wider range of terrestrial habitats

may increase, while the competitive advantage of T. antarcticus may progressively fade.
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Overall, the physiological tolerance of  M. soledadinus to warm temperatures and limited signs of

stress even without food, as well as its survival to prolonged starvation (Laparie et al. 2012a), emphasize

the importance of reevaluating contamination risk within the sub-Antarctic region. In addition, thermal

tolerance to constant regimes tend to underestimate survival and plasticity under fluctuating regimes that

are the most likely in nature, as they allow periodic  returns to optimal or sub-optimal conditions.  The

present results show that adults may withstand transportation inside ship cabins (provided that humidity is

high enough),  while the dense populations of this  insect at the Port-aux-Français research station may

increase the likeliness of unintentional sampling. Gravid females may passively travel towards other sub-

Antarctic regions if picked up in invaded areas with supplies, clothing, mountain backpacks, or any gear

being transported inside ship cabins and rooms where biosecurity policies are the least stringent.

Frenot  et  al.  (2005)  reemphasized  importance  of  adequate  biosecurity  measures  to  limit  the

transportation of aliens to and among French sub-Antarctic islands. Current policies focus on (i) preventing

transportation of  outdoor materials  among all  visited archipelagos (containers  and huts are specific  to

archipelagos), and (ii) protecting the Crozet archipelago from aliens from the Kerguelen Islands because of

similar  temperatures  (the scientific  ship  in  the area avoids  moving back to  Crozet  after  a  stop at  the

Kerguelen Islands). Our results suggest that archipelagos warmer than Crozet, like Amsterdam & St Paul,

might also be suitable for this beetle, temperature-wise. These stringent measures apply to ships used to

resupply the sub-Antarctic stations but are difficult to extend to military and fisheries ships that commonly

refuel at the stations; emergencies or oceanographic campaigns may also occasionally enable moves of

supply ships from the Kerguelen Islands to Crozet. The volumes of traded outdoor materials (likely the main

vector of invertebrates) remain low in the above exceptions. However, people and the equipment they

store in cabins are potential vectors of M. soledadinus that have mostly been overlooked. While Chown et

al. (2012) recently demonstrated the importance of such vector pathways for resistance form propagules,

awareness of visitors of the Kerguelen Islands should now be improved as active hitchhikers of the most

problematic invasive insect locally might just share their cabin and sit in their backpack. 
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