
HAL Id: hal-01255870
https://univ-rennes.hal.science/hal-01255870

Submitted on 14 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Biodegradability of dissolved organic carbon in
permafrost soils and aquatic systems: a meta-analysis

Jorien E. Vonk, Suzanne E. Tank, Paul J. Mann, Robert G.M. Spencer, Claire
C. Treat, Robert G. Striegl, Benjamin W. Abbott, Kimberly P. Wickland

To cite this version:
Jorien E. Vonk, Suzanne E. Tank, Paul J. Mann, Robert G.M. Spencer, Claire C. Treat, et al..
Biodegradability of dissolved organic carbon in permafrost soils and aquatic systems: a meta-analysis.
Biogeosciences, 2015, 12 (23), pp.6915–6930. �10.5194/bg-12-6915-2015�. �hal-01255870�

https://univ-rennes.hal.science/hal-01255870
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Biogeosciences, 12, 6915–6930, 2015

www.biogeosciences.net/12/6915/2015/

doi:10.5194/bg-12-6915-2015

© Author(s) 2015. CC Attribution 3.0 License.

Biodegradability of dissolved organic carbon in permafrost

soils and aquatic systems: a meta-analysis

J. E. Vonk1,2, S. E. Tank3, P. J. Mann4, R. G. M. Spencer5, C. C. Treat6, R. G. Striegl7, B. W. Abbott8, and

K. P. Wickland7

1Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands
2Arctic Center, University of Groningen, Groningen, the Netherlands
3Department of Biological Sciences, University of Alberta, Edmonton, Canada
4Department of Geography, Northumbria University, Newcastle Upon Tyne, UK
5Department of Earth, Ocean & Atmospheric Science, Florida State University, Tallahassee, USA
6Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire,

Durham, USA
7National Research Program, US Geological Survey, Boulder, Colorado, USA
8OSUR-UMR 6553 ECOBIO, Université de Rennes and Centre National de la Recherche Scientifique, Rennes, France

Correspondence to: J. E. Vonk (j.e.vonk@uu.nl)

Received: 30 April 2015 – Published in Biogeosciences Discuss.: 8 June 2015

Revised: 13 November 2015 – Accepted: 19 November 2015 – Published: 3 December 2015

Abstract. As Arctic regions warm and frozen soils thaw,

the large organic carbon pool stored in permafrost becomes

increasingly vulnerable to decomposition or transport. The

transfer of newly mobilized carbon to the atmosphere and its

potential influence upon climate change will largely depend

on the degradability of carbon delivered to aquatic ecosys-

tems. Dissolved organic carbon (DOC) is a key regulator of

aquatic metabolism, yet knowledge of the mechanistic con-

trols on DOC biodegradability is currently poor due to a

scarcity of long-term data sets, limited spatial coverage of

available data, and methodological diversity. Here, we per-

formed parallel biodegradable DOC (BDOC) experiments at

six Arctic sites (16 experiments) using a standardized incuba-

tion protocol to examine the effect of methodological differ-

ences commonly used in the literature. We also synthesized

results from 14 aquatic and soil leachate BDOC studies from

across the circum-arctic permafrost region to examine pan-

arctic trends in BDOC.

An increasing extent of permafrost across the landscape

resulted in higher DOC losses in both soil and aquatic

systems. We hypothesize that the unique composition of

(yedoma) permafrost-derived DOC combined with limited

prior microbial processing due to low soil temperature and

relatively short flow path lengths and transport times, con-

tributed to a higher overall terrestrial and freshwater DOC

loss. Additionally, we found that the fraction of BDOC de-

creased moving down the fluvial network in continuous per-

mafrost regions, i.e. from streams to large rivers, suggesting

that highly biodegradable DOC is lost in headwater streams.

We also observed a seasonal (January–December) decrease

in BDOC in large streams and rivers, but saw no apparent

change in smaller streams or soil leachates. We attribute this

seasonal change to a combination of factors including shifts

in carbon source, changing DOC residence time related to

increasing thaw-depth, increasing water temperatures later

in the summer, as well as decreasing hydrologic connec-

tivity between soils and surface water as the thaw season

progresses. Our results suggest that future climate warming-

induced shifts of continuous permafrost into discontinuous

permafrost regions could affect the degradation potential of

thaw-released DOC, the amount of BDOC, as well as its vari-

ability throughout the Arctic summer. We lastly recommend

a standardized BDOC protocol to facilitate the comparison

of future work and improve our knowledge of processing and

transport of DOC in a changing Arctic.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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1 Introduction

Boreal and Arctic ecosystems contain more than half of

global terrestrial organic carbon (Tarnocai et al., 2009;

Hugelius et al., 2014), part of which will be vulnerable to

microbial processing and release to the atmosphere by the

end of the century (Slater et al., 2013; Schaefer et al., 2014;

IPCC, 2013). At high latitudes, ecosystem carbon balance

depends largely on aquatic processes (Kling et al., 1992;

Striegl et al., 2012; Vonk and Gustafsson, 2013) with lakes,

wetlands, rivers, and streams covering more than half of the

land surface in many regions (McGuire et al., 2009; Loveland

et al., 2000; Lammers et al., 2001; Aufdenkampe et al., 2011;

Avis et al., 2011). However, little is known about mechanistic

controls on persistence or processing of organic carbon cur-

rently flowing through Arctic watersheds (Mann et al., 2012;

Wickland et al., 2012), and even less is known about the be-

haviour of permafrost-derived organic carbon that is deliv-

ered to arctic freshwater and marine ecosystems (Cory et al.,

2013; Vonk and Gustafsson, 2013).

Arctic watersheds transport an average of 34 Tg C yr−1

of dissolved organic carbon (DOC) and 6 Tg C yr−1 of par-

ticulate organic carbon (POC) to the Arctic Ocean (Holmes

et al., 2012; McGuire et al., 2009), not including fluxes

from coastal erosion. Though no model projections of future

circum-arctic hydrologic carbon flux exist, a few recent stud-

ies predict that organic carbon loading to the circum-arctic

watershed may increase in the future (Abbott et al., 2015;

Laudon et al., 2012; Kicklighter et al., 2013). However, ob-

served patterns of changes in hydrological carbon loading in

permafrost regions are inconsistent, with increases in DOC

export from areas with extensive peat deposits (Frey and

McClelland, 2009), but decreases in discharge-normalized

DOC export in other regions, due to increasing flow path

lengths and increased mineralization in soils (McClelland et

al., 2007; Petrone et al., 2006; Striegl et al., 2005; Tank et al.,

2012). Furthermore, conflicting patterns of DOC biodegrad-

ability exist with respect to seasonality and permafrost ex-

tent (Kawahigashi et al., 2004; Striegl et al., 2005; Holmes

et al., 2008; Balcarczyk et al., 2009; Frey and McClelland

2009; Vonk et al., 2013b; Abbott et al., 2014; Larouche et

al., 2015). The scarcity of long-term data as well as a lack of

conceptualization of the processes controlling DOC transport

and processing represent an important source of uncertainty

in the permafrost-regional carbon balance.

In both terrestrial and aquatic ecosystems, much of the

overall carbon mineralization takes place in the dissolved

form, since part of the DOC is composed of lower molecu-

lar weight compounds that can be directly transported across

microbial cell membranes (Battin et al., 2008), though partic-

ulate matter provides surface area for bacterial attachment in

aquatic ecosystems (del Giorgio and Pace, 2008). Biodegrad-

able DOC (BDOC), therefore, is a key regulator of ecosys-

tem metabolism in general and the rate of permafrost carbon

release to the atmosphere specifically (Holmes et al., 2008;

Mann et al., 2012; Wickland et al., 2012; Abbott et al., 2014).

While promising proxies of BDOC have been identified, in-

cluding optical signatures, molecular characteristics and nu-

trient concentrations (Balcarczyk et al., 2009; Wickland et

al., 2012; Abbott et al., 2014), BDOC is typically assessed

through incubation experiments, representing a simple met-

ric of microbial uptake and mineralization. Throughout this

study we will use BDOC as a measure of DOC biodegrad-

ability. While incubation experiments carried out in the labo-

ratory do not necessarily reflect in situ DOC biodegradability

due to many differences including temperature, light, and mi-

crobial community, they provide a useful relative measure of

the reactivity of different types of DOC. Most studies mea-

sure BDOC through: (i) production of dissolved inorganic

carbon (DIC), (ii) consumption of DOC, or (iii) consump-

tion of O2 (McDowell et al., 2006). While these methods can

give comparable results, differences in experimental factors

can directly influence the quantification of BDOC, includ-

ing duration of incubation, temperature, light exposure, type

of filtration, and the addition of bacterial inoculum. While

this methodological diversity complicates direct comparison

of BDOC measurements from across the Arctic permafrost-

region, it also represents an opportunity to identify funda-

mental controls on DOC processing.

We synthesized results from 14 BDOC studies within

the Arctic Ocean watershed representing a total of 551 in-

dividual incubations to identify controls and patterns of

DOC biodegradability across spatial and temporal scales

(Sect. 2.1). Based on findings from these studies we de-

veloped a standard incubation method, which we tested on

water from soils, streams, and rivers from throughout the

permafrost region and across seasons (Sect. 2.2). We ex-

amined the role of seasonality, permafrost extent, and incu-

bation design (effect of inoculation) on metrics of BDOC

and recommend a protocol for future BDOC incubations.

A meta-analysis of the combined results of our standard-

ized circum-arctic incubations and literature synthesis al-

lowed us to identify temporal and landscape-scale patterns

in BDOC across Arctic regions. This study represents the

first to include both soils (soil leachates) and aquatic systems

(streams, lakes, rivers) to explore geographical and seasonal

patterns of BDOC in the Arctic.

2 Methods

2.1 Literature synthesis

We gathered and analysed data from permafrost-region

BDOC studies that met the following criteria: (1) located in

the Arctic Ocean watershed (including the Yukon River wa-

tershed); (2) used DIC production (CO2 evasion) or DOC

loss over time to assess biodegradability (we excluded stud-

ies based on O2 loss due to complicating factors such as res-
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piratory coefficients); and (3) incubation was performed in

the dark to avoid autotrophic effects or photodegradation.

A total of 14 studies with experimental data on BDOC

were found (Michaelson et al., 1998; Kawahigashi et al.,

2004; Wickland et al., 2007, 2012; Holmes et al., 2008; Bal-

carczyk et al., 2009; Roehm et al., 2009; Kiikkilä et al., 2011;

Mann et al., 2012; Olefeldt et al., 2013a, b; Vonk et al.,

2013a, b; Abbott et al., 2014). All time steps from the in-

cubations were treated as single data points, thus not just the

final DOC loss (e.g. if DOC concentration was measured at

days 2, 7, and 14, we included the three points individually).

We categorized the data (Table 1 and Fig. 2) by permafrost

zone (no permafrost, discontinuous, or continuous), season-

ality (day of year), filter pore size (0.22, 0.45, or 0.7 µm),

BDOC method (DIC production or DOC loss), incubation

time/duration (days), incubation temperature, use of inor-

ganic nutrient additions (yes or no), sample agitation during

the incubation (yes or no), incubation bottle size (ranging

from 40 to 3000 mL), inoculum addition at start of experi-

ment (yes or no), and oxygen availability (for soil incuba-

tions: oxic or anoxic; all aquatic incubations were performed

oxic). When an incubation was performed at “room tempera-

ture” we assumed 20 ◦C. For watersheds crossing permafrost

boundaries we chose the spatially dominant permafrost type.

We sorted the data into soil leachate and aquatic incubations,

with subclasses (for our categorical purposes) for the aquatic

data: “lakes”, “streams” (< 250 km2), “large streams” (250

to 25 000 km2), “rivers” (25 000 to 500 000 km2) and “large

rivers” (> 500 000 km2).

2.2 Circum-arctic standardized incubation experiment

In June to September of 2013 we performed BDOC experi-

ments with leachates from three soil cores (from near Toolik

Field Station, Alaska), water from two streams (Richardson

Creek, Alaska; Y3, Siberia), and water from three major Arc-

tic rivers (Yukon, Mackenzie and Kolyma Rivers; Fig. 1).

Soil leachates were performed by adding 500 mL DI water

to soil volumes of ca. 2 L, letting this stand for 24 h, and ex-

tracting using a pore water sampler measuring total leachate

volume extracted. Water samples were collected from the

surface in pre-cleaned, pre-rinsed containers and transported

(dark and cool) to filtration facilities within 12 h. We devel-

oped an incubation methodology adapted for implementation

at remote field sites to assure applicability to future work.

We measured DOC loss over time rather than O2 loss

or DIC production, as it did not require specialized sup-

plies or instrumentation in the field. All samples were fil-

tered through pre-combusted Whatman GF/F filters (nomi-

nal pore size 0.7 µm), which are commonly used through-

out the literature and can be pre-cleaned through combustion

(450 ◦C > 4 h). We set up triplicate incubations with three dif-

ferent treatments to test the effects of bacterial inoculation:

(1) no inoculum, (2) 1 % inoculum by volume, (3) 10 % in-

oculum by volume. Inocula consisted of 1.2 µm filtered water

(using pre-combusted (450 ◦C > 4 h) Whatman GF/C filters,

1.2 µm nominal pore size) that was added to sample waters

(filtered at 0.7 µm) to the specified ratio.

We added 30 mL aliquots of sample into pre-combusted

(550 ◦C > 4 h) 40 mL glass incubation vials and stored them

at 20 ◦C in the dark, with no nutrient amendment. To ensure

oxic conditions we left vial caps loose and shook samples

once a day. The incubated samples were re-filtered through

0.7 µm filters (using pre-combusted glass filter tower units

with 25 mm GF/F filters or a cleaned syringe filter assembly)

to remove flocculation after 0, 2, 7, 14 and 28 days (using

separate vials, in triplicate, for each time step). Re-filtration

removes the majority of the microbial biomass, resulting in

a measured DOC loss including both DOC mineralization

and assimilation. Samples were immediately acidified with

30 µL of concentrated HCl (high quality grade; to pH≤ 2).

Acidified sample vials were capped and stored refrigerated

in the dark until analysis within 3 months. At the time of

analysis, acidified samples were sparged with CO2 free air

for 8 min at 75 mL min−1 and run as non-purgable organic

carbon (NPOC) on either a Shimadzu TOC-V or TOC-L an-

alyzer. DOC was calculated as the mean of between three

and seven injections and the coefficient of variance was al-

ways < 2 %. BDOC is reported in percent loss at time point

x (2, 7, 14 or 28 days) according to:

BDOC(%)T=x =((DOCT=0−DOCT=x)/DOCT=0)

× 100% (1)

2.3 Statistical analyses

We combined the literature meta-analysis of 14 papers (n=

551) with data from our circum-arctic incubation experiment

(n= 192). Each of the studies identified used different meth-

ods for assessing BDOC, complicating and limiting possible

analyses. To examine trends across the total data set (n=

743) we performed categorical principle component analy-

sis (CATPCA) via optimal scaling. This approach allowed

us to compare the effect of multiple variables with mixed

measurement levels (scalar, nominal, ordinal). We then per-

formed a standard principle component analysis (PCA) us-

ing the optimally scaled results to aid in data interpretation.

Data normality was assessed using the Shapiro-Wilk test

(p > 0.05). The data were normal and did not require trans-

formation. Separate CATPCA and PCA analyses were per-

formed on the aquatic and soil leachate data sets, as well as

for methodological and environmental parameters (Table 1).

Validity of each PCA was tested using the Barlett tests of

sphericity (p < 0.001) and Kaiser-Meyer-Olkin measures of

sampling adequacy. Direct oblimin rotation was applied and

rotated scores used throughout, allowing for correlation be-

tween scores (Manisera et al., 2010). CATPCA runs assigned

measures from scalar data (initial DOC, BDOC (%), latitude,

longitude, Julian day, bottle size, incubation time, and incu-

bation temperature), nominal data (method of C loss, shak-

www.biogeosciences.net/12/6915/2015/ Biogeosciences, 12, 6915–6930, 2015
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Table 1. List of methodological and environmental parameters we included in our meta-analysis. Variables are classified as scalar (no

symbol), nominal (*) and ordinal (**). For scalar parameters we have listed the data range, for categorical (nominal and ordinal) data we

have listed the number of categories along with their definition.

Parameter Unit Type of data and range or categories

Scalar Categorical

Data range Number of Definition of categories Comments

categories categories (PCA value assigned)

BDOC % 0–67

Methodological

Nutrients∗ – 2 No nutrients (1) – nutri-

ents added (2)

Filter pore size∗∗ µm 3 0.7 (1) – 0.45 (2) – 0.2

(3)

Inoculation∗ – 2 Not inoculated (1) – in-

oculated (2)

For experimental data, we identified not inoculated –

1 % inoculated – 10 % inoculated

Shaking∗ – 2 No shaking (1) – shak-

ing (2)

Oxygen∗ – 2 Anoxic (1) – oxic (2) All aquatic incubations were assumed to be performed

under oxic conditions

Bottle size mL 40–3000

Method of analysis∗ – 2 DIC production (1) –

DOC loss (2)

Incubation temperature ◦C 3.5 – 25 In the literature synthesis, we assumed “room

temperature” was 20 ◦C.

Incubation time days 1–97

Environmental

Permafrost∗∗ – 3 No permafrost (1) dis-

continuous (2) – contin-

uous (3)

Dominant permafrost type in each catchment was used.

Location in aquatic network∗ – 6 Soil leachate (1) – lake

(2) – stream (3) – large

stream (4) – river (5) –

large river (6)

Based on watershed size: streams < 250km2; large

streams 250–25 000 km2; rivers 25 000–500 000 km2;

large rivers > 500 000 km2

Soil or aquatic∗ – 2 Aquatic (1) – soil (2)

Latitude ◦N 55.82–70.33

Longitude ◦E −162.88–161.45 ◦W is given as negative ◦E degrees

Julian day – 12–288

Initial DOC mg L−1 1.9–155

ing, nutrient addition, inoculum, oxygen availability, loca-

tion in fluvial network) and ordinal data (filter pore size, and

permafrost extent). We considered final rotated PCA correla-

tions of > 0.7 as strong, between 0.5 and 0.7 as moderate, and

< 0.5 as weak or absent (Quinn and Keough, 2002). Although

this approach has drawbacks, in our opinion it proved the

most representative methodology given the diverse data set

which included repeated measures (i.e. multiple time points)

of BDOC (Bradlow et al., 2002). Additionally, we combined

data from all studies carried out with incubation tempera-

tures between 15–25 ◦C and with incubation durations be-

tween 28–34 days, which represented the most common tem-

perature and duration in the meta-analysis, to test for envi-

ronmental trends (Figs. 3, 4, 5). Here we tested for differ-

ences among means using analysis of variance (ANOVA).

All ANOVA, CATPCA, and PCA analyses were conducted

in SPSS 22.

3 Results

3.1 Literature synthesis

The 14 literature studies comprised a total of 551 data points

of which 418 were aquatic. Most studies were located in

North America (242 data points in Alaska, USA and 227 in

Canada; Fig. 2a), and from regions either without permafrost

(234), or with continuous permafrost (230; Fig. 2c). The most

common incubation temperatures were 17.5 or 20 ◦C (41 and

36 % of the data, respectively; Fig. 2d). The majority of stud-

ies (60 % of data) used 0.7 µm glass fiber filters to determine

DOC (Fig. 2f). Half of the BDOC assays were incubated for

between 14 and 40 days (Fig. 2e). Furthermore, most incuba-

tions in our synthesis were started after addition of an inocu-

lum as described in the individual studies (80 % of aquatic

incubations, 97 % of soil leachate incubations).

Biogeosciences, 12, 6915–6930, 2015 www.biogeosciences.net/12/6915/2015/
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Soil experiment

Soil literature

Aquatic experiment

Aquatic literature

Figure 1. Map of the hydrological network (blue) in the Arctic Ocean watershed (boundary in red) with points showing literature data (blue

for aquatic, red for soil) and experimental data (green for aquatic, orange for soil).

3.2 Methodological factors affecting BDOC

To examine the effects of inoculum addition and inocu-

lum concentration on BDOC, we compared mean BDOC

across our circum-arctic standardized incubation experiment

(no inoculum, 1 and 10 % inoculum; n= 40 per treatment).

Amount of inoculum (1 % or 10 %) had no effect on the pro-

portion of BDOC (ANOVA, p > 0.9). As the degree of in-

oculation had no clear systematic effect on BDOC loss (see

also methodological PCA results; Sect. 3.2.1) we grouped

all inoculated data (independent of concentration), and all

non-inoculated data during our ANOVA and environmental

PCA analyses. In the sections below we examine the patterns

present in the combined analysis of aquatic and soil literature

results, including our circum-arctic incubation experiments.

3.2.1 Aquatic BDOC

Three principle components together explained 81 % of the

variance among all aquatic incubation samples (PC1= 46,

PC2= 23, PC3= 12 %; Table 2). The first component did

not correlate with BDOC but correlated positively with shak-

ing during incubation (r = 0.97), the method used to measure

DOC loss (r = 0.91), incubation temperature (r = 0.84), and

correlated negatively with bottle size (r =−0.77) and pres-

ence of inoculum (r =−0.51). Component 2 also did not

explain much variation in BDOC, but correlated with filter

pore size (r = 0.90), nutrient addition (r = 0.90), and the use

of inoculum (r = 0.64). Component 3 explained the great-

est proportion of BDOC variance (r =−0.83). Component 3

also closely correlated with incubation time (r =−0.85) and

displayed a negative correlation with bottle size (r = 0.54).

Effect of oxygen availability was not examined in aquatic in-

cubations, as all previously published experiments were con-

ducted under oxic conditions.

3.2.2 Soil leachate BDOC

Three principle components explained 72 % of the variance

across all soil incubation samples (PC1= 34 %, PC2= 21 %,

PC3= 16 %; Table 2). Component 1 was strongly correlated

with BDOC loss (r = 0.75), as well as the availability of

oxygen in incubations (r = 0.94), the method used to mea-

sure carbon loss (r = 0.87) and whether samples were shaken

during incubation (r = 0.73). Neither component 2 nor 3

closely correlated with BDOC, but component 2 correlated

positively with incubation time (r = 0.88), filter pore size

(r = 0.74) and temperature (r = 0.54), and component 3 was

www.biogeosciences.net/12/6915/2015/ Biogeosciences, 12, 6915–6930, 2015
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Figure 2. Histograms of environmental and methodological variety reported in the synthesized literature (n= 426, see Sect. 2.3), with (a)

region/country, (b) soil leachate and type of aquatic study (categorized as streams (< 250 km2), large streams (> 250 and < 25 000 km2), rivers

(> 25 000 and < 500 000 km2) and large rivers (> 500 000 km2)), (c) permafrost zonation, (d) incubation temperature in ◦C, (e) incubation

time (categorized in < 7 days, 7–14 days, 14–40 days, and > 40 days, and (f) filtration pore size (µm). Green represents soil leachate data,

blue represents aquatic data. The y axis shows number of data points.

positively correlated to bottle size (r = 0.74) and inoculum

(r = 0.57) and negatively related to temperature (r =−0.66)

and shaking (r =−0.57).

3.3 Environmental factors affecting BDOC

Similar to Sect. 3.2, here we present the statistical results of

the fully grouped data set (i.e. inoculated and non-inoculated

literature synthesis data, combined with the circum-arctic in-

cubation experiment data), concentrating on how environ-

mental variables co-vary with BDOC losses.

3.3.1 Aquatic BDOC

Three components explained 82 % of the total variance

among environmental parameters from all aquatic incu-

bations (PC1= 52 %, PC2= 18 %, PC3= 13 %; Table 3).

The first component was moderately correlated with BDOC

(r = 0.51) and strongly correlated with location within

Biogeosciences, 12, 6915–6930, 2015 www.biogeosciences.net/12/6915/2015/



J. E. Vonk et al.: Biodegradability of dissolved organic carbon in permafrost soils 6921

Table 2. Correlations between methodological variables and BDOC

for each principle component axis (1, 2, 3) in a structure matrix for

aquatic incubations (530 data points) and soil incubations (202 data

points). Correlations above 0.7 (in bold) are considered strong, and

correlations above 0.5 (italic) as moderate. All aquatic samples were

incubated under oxic conditions and so this was excluded from the

PCA. Similarly, none of the soil incubations were nutrient-amended

so this was excluded from PCA. The parameters are ordered based

upon their importance to explaining axis 1. Variables are classified

as scalar (no symbol), nominal (*) and ordinal (**).

Aquatic

1 2 3

Shaking∗ 0.97 0.07 −0.46

Method C loss∗ 0.91 0.09 −0.30

Temperature 0.84 0.11 −0.18

Bottle size −0.77 0.08 0.54

Filter pore size∗∗ 0.34 0.90 −0.44

Nutrient addition∗ 0.37 0.90 −0.45

Inoculum∗∗ -0.51 0.64 0.32

Incubation time 0.34 0.12 −0.85

BDOC 0.23 0.26 −0.83

% variance explained 46 23 12

Soil

1 2 3

O2 availability∗ 0.94 −0.16 −0.06

Method C loss∗ 0.87 −0.30 0.02

BDOC 0.75 0.37 −0.02

Shaking∗ 0.73 −0.05 -0.57

Incubation time 0.06 0.88 −0.13

Filter pore size∗∗ −0.25 0.74 0.25

Bottle size 0.06 0.10 0.74

Temperature −0.05 0.54 −0.66

Inoculum∗ −0.44 0.08 0.57

variance explained 34 21 16

the fluvial network (r = 0.95), dominant permafrost type

(r = 0.94; greater BDOC in continuous permafrost regions,

see also Fig. 3a), sample latitude (r = 0.93), and initial DOC

(r =−0.70). The second component was strongly negatively

correlated with BDOC (r =−0.71), and was explained by

sample longitude (r = 0.78). The third component did not

correlate to BDOC but showed a strong correlation with sam-

pling period (Julian day; r = 0.95).

3.3.2 Soil leachate BDOC

Two components explained 77 % of the variance in en-

vironmental parameters across soil leachate incubations

(PC1= 55 %, PC2= 22 %; Table 3). BDOC was most

closely correlated to component 1 (r = 0.81), which was as-

sociated with latitude (r = 0.97) and dominant permafrost

type (r = 0.96; greater BDOC in continuous permafrost re-

Figure 3. (a) Aquatic and (b) soil leachate BDOC data (15–25 ◦C,

n= 205) after 28–34 days incubation across dominant permafrost

type from literature-synthesis and our circum-arctic experiment.

The data are shown as 5th to 95th percentiles (points), 25th, 50th,

and 75th percentiles (lines), median value (bold line) and mean

value (dashed line). The number of data points used are listed below

the box plots.

gions; see also Fig. 3b), and initial DOC (r =−0.83). The

second component did not correlate with BDOC but was pos-

itively correlated to longitude (r = 0.79) and sampling period

(Julian day; r = 0.78).

4 Discussion

4.1 Methodological factors influencing BDOC

Aquatic BDOC losses only showed a strong correlation with

incubation time, with higher total BDOC observed in longer

experiments (Table 2). This is not surprising yet does point

out that the length of the incubation set-up will ultimately

be a primary factor determining the BDOC (%), and thus the

importance of this consideration for comparison among stud-
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Table 3. Correlations between environmental variables and BDOC

for each principle component axis in a structural matrix for aquatic

incubations (505 data points) and soil incubations (165 data points).

Correlations above 0.7 (in bold) are considered strong, and corre-

lations above 0.5 (italic) as moderate. The parameters are ordered

based upon their importance to explaining factor 1. Variables are

classified as scalar (no symbol), nominal (*) and ordinal (**). Lo-

cation in stream network, i.e. streams, large streams, rivers and large

rivers, is indicated as “network”.

Aquatic

1 2 3

Network∗ 0.95 −0.05 −0.21

Permafrost∗∗ 0.94 0.05 −0.06

Latitude 0.93 0.06 −0.07

DOC initial −0.70 −0.11 0.47

Longitude 0.41 0.78 0.12

BDOC 0.51 −0.71 −0.05

Julian day −0.14 0.11 0.95

% variance explained 52 18 13

Soil

1 2

Latitude 0.97 −0.08

Permafrost∗∗ 0.96 −0.13

DOC initial −0.83 0.30

BDOC 0.81 0.15

Longitude −0.22 0.79

Julian day 0.06 0.78

% variance explained 55 22

ies. Despite total DOC loss increasing with longer incubation

time, the rate of DOC loss decreases over time.

Soil leachate BDOC was not clearly affected by incubation

time across experiments (Table 2). We suggest that the effects

of incubation time may have been masked by multiple ad-

ditional methodological factors significantly influencing the

soil BDOC experiments in particular. For example, the pres-

ence of O2 within incubations or regular bottle shaking ap-

peared to play a crucial role in soil BDOC losses (Table 2).

As soil extractions typically have higher initial DOC concen-

trations (despite some degree of dilution applied in the exper-

iment), they may be more susceptible to oxygen drawdown,

increasing the importance of regular bottle shaking. Also, the

method of assessing carbon loss appeared to play a critical

role in the amount of BDOC measured during soil incuba-

tions, but not so clearly in aquatic experiments. This finding

contradicts with the finding of McDowell et al. (2006) that

found largely comparable results between available methods.

We compared different methods conducted on different sam-

ples, which may explain our contrasting findings.

(b)	

(a)	

Figure 4. Aquatic BDOC data for 15–25 ◦C after 28–34 days

incubation for streams (< 250 km2), large streams (> 250 km2,

< 25 000 km2), rivers (> 25 000 km2, < 500 000 km2), and large

rivers (> 500 000 km2) clustered for (a) discontinuous and (b) con-

tinuous permafrost zones. Symbology as in Fig. 3. A plot for “no

permafrost regions” is not shown as here only BDOC data for rivers

were available (median BDOC= 0.44 %, mean BDOC= 0.69 %;

n= 25). The number of data points used are listed below the box

plots.
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4.2 Environmental factors influencing BDOC

4.2.1 Permafrost extent and longitude

Aquatic and soil BDOC losses were significantly lower in re-

gions without permafrost than in discontinuous or continuous

permafrost regions (Fig. 3). This could be explained by shal-

lower hydrologic flow paths in permafrost-affected regions,

which would constrain water flow, and DOC origin, to rel-

atively shallow soils. Or, alternatively, the unique dissolved

organic matter (DOM) composition of yedoma permafrost

(Abbott et al., 2014; Spencer et al., 2015), containing high

levels of aliphatics and carbohydrates, could allow for more

rapid degradation after thaw. Yedoma permafrost occupies

a part of the continuous permafrost domain and its unique

composition will therefore contribute to the composition of

the DOC release from continuous permafrost. Furthermore,

permafrost DOM is relatively well-preserved due to limited

processing of organic carbon in soils under long-term frozen

conditions (Khvorostyanov et al., 2008; Schuur et al., 2008),

though permafrost-derived DOC still shows signs of process-

ing (Wickland et al., 2012; Abbott et al., 2014). Continu-

ous permafrost regions thus seem to receive relatively well-

preserved, unique DOC into soil leachates and aquatic sys-

tems leading to higher losses, whereas discontinuous per-

mafrost regions and regions without permafrost receive DOC

that has already been subject to some degree of degradation.

The presence of permafrost also impacts hydrological flow-

paths and transport times, which may result in a more effi-

cient delivery of relatively less-processed terrestrial DOC to

aquatic systems (Striegl et al., 2005; Walvoord et al., 2012).

Alternatively, preferential sorption of specific compounds,

freeze-thaw effects, or sub-zero metabolism in permafrost

could increase DOC biodegradability (Abbott et al., 2014

and references therein). The difference in BDOC with per-

mafrost extent is stronger in soils than in aquatic systems

(Table 3, Fig. 3), likely attributable to a fresher, less altered

permafrost DOC signature in soils compared to aquatic DOC

that has already undergone some processing. Newly leached

DOC from yedoma permafrost soils, representing part of our

continuous permafrost soil data (Fig. 1), will be subject to

more rapid degradation (Spencer et al., 2015).

Aquatic BDOC was negatively correlated with longitude.

Judging from the prevailing geographical regions in the data

set (Fig. 1) this suggests that aquatic BDOC in Alaska and

Canada was on average higher than in Eastern Siberia. This

could be related to a combination of the spatial spread in

our data set with the distribution of yedoma. Yedoma is

Pleistocene-aged permafrost (Zimov et al., 2006) predomi-

nantly present in northeast Siberia, but also in Alaska and

NW Canada (Kanevskiy et al., 2011), that releases extremely

biolabile DOC upon thaw (BDOC between 40–65 % after

30–40 days of incubation, Vonk et al., 2013b; Abbott et al.,

2014). In our meta-analysis, most of the aquatic BDOC in-

Figure 5. Seasonal BDOC losses (shown against Julian day) at

15–25 ◦C after 28–34 days incubation for (a) soil leachates, (b)

streams and (c) clustered large streams, rivers and large rivers for

regions without permafrost, discontinuous permafrost and continu-

ous permafrost. Trend lines denote significant relationships where

present. Solid line represents linear fit in discontinuous permafrost

(r2
= 0.33, p = 0.0003) and dashed line continuous permafrost

(r2
= 0.29, p < 0.0001).

cubations with yedoma-derived DOC are located in Alaska,

which could explain the longitudinal pattern.
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Figure 6. BDOC losses (at 20 ◦C) after 28-day incubation for soil

leachates from three cores collected near Toolik, Alaska, as part

of our circum-arctic incubation experiment (see Sect. 2.1). Soil

leachates were collected and incubated both in spring (circles) and

fall (diamonds). The three cores are indicated in blue (core 1), or-

ange (core 2), and green (core 3). In core 1 we observed active plant

growth during the spring and fall incubations.

4.2.2 Patterns within the fluvial network

In continuous permafrost regions, aquatic BDOC changes

within the fluvial network (Fig. 4). Here, large rivers (de-

fined as watersheds larger than 500 000 km2) showed signif-

icantly lower BDOC than streams, large streams, and rivers.

We should note here that streams (< 250 km2, n= 149) and

large rivers (> 500 000 km2, n= 60) are over-represented

in the continuous permafrost data set, when compared to

large streams (250–25 000 km2, n= 46) and rivers (25 000–

500 000 km2, n= 18). Nevertheless, this suggests that con-

tinuous permafrost regions may release DOC that degrades

more rapidly with the movement from headwaters to larger

rivers in the fluvial network than DOC that is released from

discontinuous permafrost regions or regions without per-

mafrost. Pleistocene yedoma could be such a source, as its

strong degradation potential (Vonk et al., 2013a, b; Abbott

et al., 2014) leads to preferential utilization in headwater

streams (Mann et al., 2015; Spencer et al., 2015).

4.2.3 Seasonality

BDOC decreased with Julian day for large streams, rivers

and large rivers (Fig. 5c) in both continuous and discontin-

uous permafrost regions, whereas streams (Fig. 5b) and soil

leachates (Fig. 5a) showed no seasonal pattern. This pattern

may be associated with shifts in carbon source (winter and

spring DOC in several Arctic rivers is more biolabile than in

summer; Wickland et al., 2012; Mann et al., 2012; Holmes

et al., 2008) but it is likely more related to a changing hy-

drologic residence time. In boreal and Arctic systems soil

thaw-depth increases throughout the summer, resulting in

longer water residence times in soils and headwater streams

(Harms and Jones, 2012; Jones and Rinehart, 2010; Koch et

al., 2013). This allows more time for biodegradable carbon

compounds to be mineralized before reaching the river late in

the season, effectively reducing measured BDOC in higher-

order streams and rivers later in the season. Increasing wa-

ter temperature through the season could magnify this effect

with little mineralization early in the year when soils and

streams are cold but accelerating biolabile carbon removal

in summer. Hydrologic connectivity between soils and sur-

face waters is generally weaker later in summer (Striegl et

al., 2005; Spencer et al., 2008; Koch et al., 2013), which

could explain the absence of seasonal trends for soils and

streams (Fig. 5a, b). Furthermore, soil core leachates from

a near-surface core that developed fresh plant growth during

the growing season showed higher BDOC than cores without

fresh plant growth (Fig. 6). These local plant growth-induced

spikes in BDOC, likely induced by root exudates (Marschner

and Kalbitz, 2003) could also mask seasonal trends in soil

leachate BDOC and instead highlight spatial variability.

4.2.4 Other factors affecting BDOC

There are multiple factors that affect in situ BDOC that nei-

ther we nor the investigated literature studies have consid-

ered. One of these factors is the effect of light. Photochem-

ical processes can lead to rapid DOC losses (up to 30 % in

14 days; Mann et al., 2012) and may alter the DOC compo-

sition so that it is more susceptible to microbial degradation

(Cory et al., 2013; Laurion and Mladenov, 2013). The pres-

ence of clay minerals can affect photochemical decomposi-

tion of DOC (Tietjen et al., 2005). Furthermore, POC also

serves as an important catalyst in DOC biolability (Battin

et al., 2008). In this study we do not investigate any poten-

tial co-metabolizing effects of POC degradation, or for the

biodegradability of POC itself, which could be substantial

(Sánchez-García et al., 2011; Richardson et al., 2013).

Something we could not directly address in our synthesis

was the effect of DOM composition, which can be related

to the depth of the active layer and the associated retention

of certain fractions of the DOC pool. For example, sugars

and microbially derived organic matter appear more biolabile

than plant-derived organic matter (Balcarczyk et al., 2009;

Mann et al., 2012). Also, permafrost DOM appears to be en-

riched in hydrogen-rich, aliphatic compounds that are prefer-

entially degraded in incubation experiments (Spencer et al.,

2015). The preferential degradation of biolabile components

of the bulk DOC results in an enrichment of more recalcitrant

components in soil pore waters (Wickland et al., 2007) and

in larger rivers downstream (Spencer et al., 2015).

Another factor that could affect BDOC is nitrogen release

from thawing permafrost (Harden et al., 2012; Keuper et al.,

2012; Harms et al., 2014). High nitrogen levels have been

found to correlate with high BDOC (Holmes et al., 2008;

Wickland et al., 2012), although we do not find a strong cor-
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Figure 7. Conceptual graph of landscape-scale and seasonal trends

in % BDOC where the upper blue box represents aquatic systems,

and the lower brown box represents soils. Aquatic BDOC increases

with decreasing catchment area, and aquatic and soil BDOC in-

crease with increasing permafrost extent in the landscape. Aquatic

BDOC in watersheds varies temporally, with more BDOC found in

winter and spring than late summer.

relation in our meta-analysis and other studies show little re-

sponse of BDOC to inorganic nutrient additions (Abbott et

al., 2014; Mann et al., 2015).

4.3 Circum-arctic patterns in BDOC

4.3.1 Geographical and seasonal patterns in BDOC

We identified distinct large-scale patterns in the biodegrad-

ability of DOC, which we illustrate in a conceptual diagram

(Fig. 7). The percentage BDOC in both soil and aquatic

systems increased from regions without permafrost to re-

gions with continuous permafrost. We attribute this increase

to better preservation of DOC in permafrost regions where

frozen storage has limited processing of the soil organic mat-

ter, and to stronger hydrologic connectivity between terres-

trial and aquatic systems. Furthermore, within aquatic net-

works, BDOC was lower in large river systems compared

with streams, and this pattern was most pronounced in con-

tinuous permafrost regions. This suggests that continuous

permafrost regions release DOC sources such as Pleistocene

yedoma that degrade rapidly in the fluvial network (Vonk et

al., 2013b; Abbott et al., 2014; Mann et al., 2015; Spencer et

al., 2015).

Aquatic BDOC in large streams and rivers decreased as

the Arctic summer progressed. This pattern was absent for

soils and streams. This could be related to a variety of fac-

tors such as seasonal shifts in carbon sources, changing DOC

residence time related to increasing thaw-depth, increasing

water temperatures later in the summer, as well as decreas-

ing hydrologic connectivity between soils and surface wa-

ters when the season progresses. Alternatively, the integrat-

ing character of rivers and larger streams could mask local-

scale heterogeneity that is more apparent in small streams

and soil leachates.

4.3.2 Circum-arctic fluxes of BDOC

Evaluating aquatic DOC export fluxes through sampling at

river mouth locations near the Arctic Ocean underestimates

the importance of the fluvial network for processing DOM.

Literature estimates of watershed-scale aquatic C gas fluxes

vary widely between 0.5 and 10 gC m−2 yr−1 (all normal-

ized to catchment area; Striegl et al., 2012; Lundin et al.,

2013; Denfeld et al., 2013; Crawford et al., 2013). When ex-

trapolated to the Arctic Ocean watershed (20.5× 106 km2;

Holmes et al., 2013) this could result in a total gaseous C

emission between 10 and 200 Tg C yr−1. These estimates

seem reasonable compared to an annual Arctic Ocean water-

shed DOC flux of 34 Tg (Holmes et al., 2012), where 34 Tg

is based on river mouth monitoring and ignores processing

within the watershed prior to arriving at the river mouth.

Also, a significant fraction of the emitted flux originates from

weathering and soil respiration sources (Striegl et al., 2005;

Humborg et al., 2009).

Wickland et al. (2012) estimated that the combined BDOC

exported by the six largest Arctic rivers to the Arctic Ocean is

2.3 Tg C yr−1, based on empirical relations between BDOC

and DOC : DIN (dissolved inorganic nitrogen) ratios. Impor-

tantly, these watershed-scale estimates exclude processing

and retention of DOC in soils, prior to delivery to aquatic

networks. As we have seen in this study, soil BDOC is on

average higher than aquatic BDOC. By using the % per-

mafrost extent in the Arctic Ocean watershed from Holmes et

al. (2013), 45 % continuous, 31 % discontinuous (including

sporadic and isolated) and 26 % without permafrost, and av-

erage soil BDOC values for each permafrost zone (20, 15 and

8 BDOC for continuous, discontinuous and no permafrost

regions, respectively; mean values from Fig. 3b) we can cal-

culate the permafrost-normalized average soil BDOC to be

16 %. Inclusion of DOC processing within soils is likely to

significantly raise the 2.3 Tg C/yr estimate for aquatic net-

works alone (Wickland et al., 2012). However, questions

about the linkages between soil and stream BDOC with deep-

ening active layer depths remain. Changes in hydrological

flow paths associated with deepening active layers could re-

duce the inputs of DOC due to mineral sorption and ad-

ditional processing during transport (MacLean et al., 1999;

Striegl et al., 2005; O’Donnell et al., 2010) but the net ef-
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fects of permafrost thaw on BDOC inputs to streams are not

yet well characterized.

4.4 Method considerations and recommendations

In order to compare BDOC losses across Arctic, and alter-

nate systems, it is crucial to standardize the methods with

which biodegradability is assessed. Our meta-analysis high-

lighted the significant variability in incubation design across

the currently available literature making robust comparisons

of BDOC across studies challenging. We suggest the follow-

ing DOC incubation method, which is intentionally kept sim-

ple to be feasible at more remote field sites (a more detailed

protocol is available in the supplementary information). Ad-

ditionally, we suggest a few optional protocol steps that could

be used to assess further environmental controls on BDOC.

4.4.1 Standardized DOC incubation protocol

– As soon as possible after collection, filter water samples

through pre-combusted (450 ◦C > 4 h) 0.7 µm glass fiber

filters and chill (ca. 4 ◦C) until ready to incubate.

– Rapid incubation setup is strongly recommended since

many biolabile DOC compounds have turnover times

of hours. We advocate against freezing samples due to

DOC flocculation, compositional and structural changes

in the DOC, and bacterial viability (Fellman et al.,

2008).

– Decant filtrate into triplicate sets of 40 mL pre-

combusted (550 ◦C > 4 h) glass vials, and fill each vial

with 30 mL filtrate. Use a triplicate glass vial set for

each time point in your incubation. We recommend five

time points at which one triplicate set will be consec-

utively removed from incubation: T = 0, T = 2, T = 7,

T = 14 and T = 28 days. Use clean caps with silicone

or teflon septa (avoid rubber which can leach DOC).

Potentially, a longer time step (T = 90; e.g. Holmes et

al., 2008) can be added to assess less labile DOC. In

that case, we also recommend assessing DIC production

(see additional protocol steps, below) as this method is

more sensitive in detecting small changes. We want to

point out, however, that the majority of the incubations

will respond within 28 days, and longer incubations will

introduce issues such as bottle effects.

– Our reasons for recommending 40mL glass vials are

several; they are commonly available, they can be

cleaned through pre-ashing, the required total volume

per incubation is relatively small but sufficient for anal-

ysis, and our analyses suggest that variation in bottle

size may affect BDOC results.

– Inoculation of samples is not needed as filtration

through 0.7 µm allows for a sufficient amount of bac-

teria to pass the filter.

– Incubate the vials in the dark (to avoid autotrophic res-

piration and photodegradation), with loose caps and reg-

ular shaking to avoid oxygen-depletion.

– We recommend performing sample incubation at room

temperature (20 ◦C), as this is most common, relatively

easy to maintain, and allows comparison between stud-

ies. This will provide the potential BDOC as 20 ◦C

is generally above ambient temperature. Document the

temperature throughout the experiment precisely.

⇒ If possible, the incubations should be carried out at

a stable temperature for example by using an oven or

incubator.

– Re-filter the incubated samples through pre-combusted

(450 ◦C > 4 h) 0.7 µm filters (to avoid problems with

flocculation and remove most microbial biomass) for

each time step. Store the filtered samples in pre-

combusted (550 ◦C > 4 h) 40 mL glass vials, acidify to

pH 2 with 30 µL concentrated HCl. Cap tightly and store

dark and chilled until analysis.

– For logistical reasons, we recommend assessment of

BDOC through DOC loss (see Eq. 1).

– For details regarding DOC analysis, see the supple-

mentary information. Note that samples with low initial

DOC concentrations may approach the detection limit

of OC analyzers.

4.4.2 Additional protocol steps

– Ambient incubation temperature: incubate at the ambi-

ent temperature of the water or soil from where the sam-

ple was collected to allow for application of results to

ambient conditions. Run control incubations at 20 ◦C.

– Nutrient amendment: because the effect of nutrients

on DOC processing is unclear, we recommend run-

ning experiments both with and without added nutri-

ents. Amount of added nutrients should be adapted in

relation to initial nutrient concentration according to the

Redfield ratio, but in general an amendment of NO−3
(to a concentration of 80 µm), NH+4 (80 µm) and PO3−

4

(10 µm; Holmes et al., 2008) is appropriate for aquatic

and soil leachates. Run control incubations without nu-

trient amendment.

– DIC production: if field and laboratory settings allow

we recommend also assessing C loss through DIC pro-

duction, to provide BDOC estimates through two inde-

pendent methods. We suggest to measure the CO2 con-

centration in the headspace of the incubation flask and

calculate the change in DIC (headspace CO2 plus dis-

solved CO2, carbonate, and bicarbonate in the aqueous

phase). This method is detailed in Kalbitz et al. (2003).
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Keep all other parameters (such as filter pore size, in-

cubation temperature, and approximate sample volume)

similar to the control incubation that measures DOC

loss.

– Light incubation: dark incubations eliminate effects of

autotrophic respiration and photodegradation; however

to simulate realistic DOC drawdown, light is a critical

factor (Mann et al., 2012; Cory et al., 2013).

– DOC “quality” (composition) measurements: If possi-

ble, we recommend assessing DOM compositional in-

formation for, at least, initial water samples or soil

leachates and, if possible, also on incubated waters

and soil leachates (i.e., post-incubation). These mea-

sures may include optical properties (specific ultraviolet

absorbance, fluorescence excitation-emission matrices),

and compound-specific analyses (carbohydrates, amino

acids, lignin phenols, Fourier transform ion cyclotron

resonance mass spectrometry, etc.). Note that short sam-

ple storage times are desirable for most analyses.

5 Conclusions

Half of the global belowground soil OC pool is stored in

circum-arctic permafrost but little is known about the pro-

cesses controlling transport and degradation of DOC, a key

regulator of the rate of permafrost carbon release from the

Arctic watershed to the atmosphere. We synthesized results

from 14 BDOC studies from the permafrost region and com-

plemented this with novel BDOC data determined using a

standardized method from across the Arctic. We observed a

large variability in soil and aquatic BDOC, even under uni-

form conditions. Despite the significant heterogeneity, we

found that both soil and aquatic DOC is more biodegradable

in regions with continuous permafrost compared to regions

without permafrost. Within continuous permafrost regions,

the degradability of DOC decreased from headwater streams

to larger river systems, suggesting that permafrost DOC is

preferentially utilized within the network. Furthermore, we

discovered that aquatic BDOC in large streams and rivers de-

creased as the Arctic summer progressed, whereas this pat-

tern was absent for soils and small streams.

Based on our synthesis of BDOC studies and additional

measurements, we predict that slow future transformation

of continuous permafrost into discontinuous permafrost re-

gions could release an initial, relatively short-term, pulse of

biodegradable DOC but will on longer timescales possibly

lead to the release of DOC that is more recalcitrant. The to-

tal gaseous watershed C flux may, however, increase as more

DOC could be processed within soils prior to release into

aquatic networks due to deeper thaw depths and increasing

residence time (Striegl et al., 2005). Furthermore, a length-

ening of the arctic summer thaw period could result in lower

DOC biodegradability in large streams and rivers, but higher

biodegradability in small streams and soils.

The Arctic is changing, and so is the coupling between

its carbon and hydrologic cycles. There still are large uncer-

tainties related to processing and transport of DOC, and few

data are available from northern Canada and Russia, from

discontinuous permafrost regions, and across all seasons. We

strongly recommend that future studies of DOC degradabil-

ity assess BDOC by means of our standardized DOC incu-

bation protocol, to facilitate optimal use and integration of

future data sets with existing knowledge.

The Supplement related to this article is available online

at doi:10.5194/bg-12-6915-2015-supplement.
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