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Dynamic contrast-enhanced MR imaging: study of inter-software 

accuracy and reproducibility using simulated and clinical data 

Abstract 

Purpose. To test the reproducibility and accuracy of pharmacokinetic parameter 

measurements on five analysis software packages (SPs) for dynamic contrast-enhanced 

magnetic resonance (DCE-MR) imaging, using simulated and clinical data. 

Materials and Methods. This retrospective study was institutional review board approved. 

Simulated tissues consisted of pixel clusters of calculated dynamic signal changes for 

combinations of Tofts model pharmacokinetic parameters (volume transfer constant [Ktrans], 

extravascular extracellular volume fraction [ve]), longitudinal relaxation time (T1). The 

clinical group comprised 27 patients treated for rectal cancer, with 36 3T DCE-MR scans 

performed between November 2012 and February 2014, including dual-flip-angle T1 mapping 

and a dynamic post-contrast T1-weighted, three-dimensional spoiled gradient-echo sequence. 

The clinical and simulated images were postprocessed with five SPs to measure Ktrans, ve and 

the initial area under the gadolinium curve (iAUGC). Modified Bland-Altman analysis was 

conducted, intraclass correlation coefficients and within-subject coefficients of variation were 

calculated. 

Results. Thirty one examinations from 23 patients were of sufficient technical quality and 

post-processed. Measurement errors were observed on the simulated data for all the 

pharmacokinetic parameters and SPs, with a bias ranging from -0.19 min-1 to 0.09 min-1 for 

Ktrans, -0.15 to 0.01 for ve, and -0.65 to 1.66 mmol.L-1.min for iAUGC. The intraclass 

correlation coefficient between SPs revealed moderate agreement for the simulated data 



2 

 

(Ktrans: 0.50; ve: 0.67; iAUGC: 0.77) and very poor agreement for the clinical data (Ktrans: 

0.10; ve: 0.16; iAUGC: 0.21). 

Conclusion. Significant errors were found in the calculated DCE-MR imaging 

pharmacokinetic parameters for the perfusion analysis SPs, resulting in poor inter-software 

reproducibility. 

Keywords 

DCE-MRI, quantitative parameters, Tofts model, inter-software variability, simulated images, 

rectal cancer  
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INTRODUCTION 

As a non-invasive technique providing information on tumor microcirculation, T1-weighted 

dynamic contrast-enhanced (DCE) magnetic resonance (MR) imaging has been investigated 

in various clinical applications and perfusion parameters recognized as potential biomarkers 

of early therapeutic response (1–3). Their value has notably been reported in the assessment 

of locally advanced rectal cancer response to chemo-radiotherapy (4–8). 

In order to establish a quantitative analysis of DCE-MRI acquisitions, Tofts and Kermode 

proposed a one-compartment perfused tissue model (9) that has become  standard (10). This 

model relates the MR signal measured in the tissue of interest over time to two 

pharmacokinetic parameters: a volume transfer constant Ktrans (min-1) and an extravascular 

extracellular volume fraction ve. Additionally, a rate constant kep corresponds to the ratio 

Ktrans/ve. (11). Another common DCE-MR imaging-derived parameter is the initial area under 

the gadolinium curve (iAUGC, mmol.L-1.min). This is a model free, semi-quantitative 

approach that also requires conversion of voxel signal intensity to gadolinium concentration 

(12). 

However, these quantitative methods can be affected by many sources of variation, including 

the strength and uniformity of the main static magnetic field (B0) and the radiofrequency field 

(B1), the chosen sequence (13), the temporal resolution (14), the pre-injection T1 relaxation 

time (T1,0) calculation (15), the estimation of the arterial input function (AIF) (16), and the 

region of interest (ROI) selection in the tumor (17). These variations may compromise 

inclusion of DCE-MR imaging in multicenter clinical trials and clinical practice (18). 

 

Literature reporting the impact of variations on the analysis of DCE-MR imaging due to 

software packages (SPs) is rare. Heye et al. showed considerable variability in 
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pharmacokinetic parameters between four perfusion analysis SPs on uterine fibroid data 

although additional variation may have been introduced by the use of two ROI methods and 

five observers (19). Moreover, the "true" pharmacokinetic parameters in clinical data are 

unknown because they are composite parameters with no direct physiological, histological or 

immunohistochemical equivalent (20). Producing simulated data with a known "ground truth" 

is therefore of value as it could be used to investigate accuracy among analysis SPs. 

The purpose of this study was to test the reproducibility and accuracy of pharmacokinetic 

parameter measurements on five analysis SPs for DCE-MR imaging, using both simulated 

and clinical data. 

This study was designed to test the hypothesis that analysis SPs do not cause variation or bias 

in Tofts model and semi-quantitative pharmacokinetic parameter measurements. 
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MATERIALS AND METHODS 

Institutional review board approval was obtained for this ancillary study of the GRECCAR 4 

trial (ClinicalTrials.gov identifier NCT0133709). 

Subjects and Perfusion Acquisition 

Twenty-seven consecutive patients (22 males, 5 females, mean age 62 years, range 31-82), 

screened in our institution for the GRECCAR 4 study investigating early response to 

chemotherapy in locally advanced rectal cancer, were included in this ancillary study. The 

main inclusion criteria were a histologically proven rectal adenocarcinoma and extramural 

extension on initial MR imaging. Thirty-six MR acquisitions (27 before treatment, 9 after 

chemotherapy) were performed between November 2012 and February 2014 on a 3T whole-

body system (Magnetom Verio, Siemens Healthcare, Erlangen, Germany). DCE-MR imaging 

consisted of a dynamic pre- and post-contrast T1-weighted, three-dimensional spoiled 

gradient-echo sequence (Volume Interpolated Breath-hold Examination, VIBE) whose 

parameters were: matrix 192x192, field of view 240x240 mm!, slice width 3 mm, repetition 

time (TR) 4.1 ms, echo time (TE) 1.4 ms, flip angle 15°, 24 slices, temporal resolution of 5.2 

s for an acquisition time of 3.5, 4.5 or 6 minutes, i.e. respectively 40, 52 or 70 dynamics. A 

bolus of gadolinium-DOTA (0.1 mmol/kg, Dotarem; Guerbet, Villepinte, France) was 

injected into an antecubital vein. In addition, dual-flip-angle (2° and 15°) pre-contrast T1 

mapping was performed. All data were stored in a research-dedicated server and could be 

retrieved retrospectively. On each examination, the slice on which the tumor section was the 

largest and most easily identifiable was selected by a radiologist (L.B., 4th-year radiology 

resident). A region of interest was drawn around all the tumor section on this slice, verified by 
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a  radiologist with 7 years of experience in rectal cancer evaluation (V.B.) and saved in the 

research-dedicated server. 

The generation of cross-vendor clinical and simulated evaluation data is illustrated in Figure 1 

and detailed below. 

Generation of Cross-vendor Evaluation Data 

Some SPs provided by MR scanner vendors do not allow analysis of DCE-MR images 

acquired on the scanners of rival vendors. To overcome this limitation, additional DCE-MRI 

acquisitions were performed on a General Electric Signa 1.5T (GE Healthcare, Milwaukee, 

WI) and a Philips Ingenia 3T scanner (Philips Healthcare, Best, the Netherlands) using a 

physical phantom (water container). The purpose of these new acquisitions was only to 

substitute these images with clinical images obtained on the 3T Verio system. Acquisition 

parameters were standardized to obtain the same spatial and temporal resolutions, TR, TE, 

flip angle, and slice thickness as on the reference Verio scan. In cases where the parameters 

could not be adjusted during the acquisition (e.g. B0 magnetic field strength) the DICOM 

header was edited with a batch DICOM metadata editor (DicomBrowser v 1.5.2, K. Archie, 

Neuroinformatics Research Group, 2012). 

A Mathematica-based software (Wolfram Research Inc., version 8.0.1.0, Champaign, IL) was 

developed to substitute phantom images acquired on the Signa and Ingenia systems with 

clinical images acquired on the Verio scanner, without changing the Dicom header. 

Generation of Simulated Data 

Simulated data were created in order to test the accuracy of each SP. We adapted a program 

written by D. Barboriak et al. (21) that ran in JSim, an open-source modeling system (22). 

This program simulated the Tofts model as it follows: 
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where Ctis is the concentration of contrast agent in the simulated tissue and Cp is the 

concentration in the blood plasma approximated by the arterial input function (9, 14). The 

variation of longitudinal relaxation time T1 of the simulated tissue or plasma due to the 

contrast media is as follows: 
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where C is the concentration of contrast media, r1 its longitudinal relaxivity and T1,0 the 

baseline T1 (before injection of the contrast media) (11). 

The program also simulated the spoiled gradient-echo MR sequence signal S corresponding to 

the simulated tissue:  
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where TR denotes the repetition time, " is the flip angle, and S0 denotes the equilibrium 

magnetization holding to the assumption that TE < T2* (23).  

The longitudinal relaxivity r1 of the contrast media was set to 3.9 mmol-1.s-1 (r1 relaxivity at 

37°C and 3T of DotaremTM in human plasma) (24), the blood longitudinal time of relaxation 

T1,0 to 1.6 s (25). 

Eighteen theoretical DCE-MR tissue signal curves were generated using different 

combinations of Ktrans (0.2, 0.4, 0.6 min-1), ve (0.2, 0.4, 0.6) and baseline longitudinal 

relaxation time T1,0 (800, 1000 ms). A population arterial input function was used for the 

simulation (21) and saved as a nineteenth signal curve, constituting the signal of a simulated 

artery voxel.  
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We developed a second Mathematica-based software to convert these curves into pixel 

clusters for three Gaussian noise levels (zero, mild [1% standard deviation] and strong [10% 

standard deviation]) and insert them into DICOM dynamic images (Figure 1b). Pixel clusters 

of a theoretical signal corresponding to the T1,0 of the tissues were also inserted into variable 

flip angle sequences. 

Perfusion Data Postprocessing 

The DCE-MR imaging postprocessing SPs evaluated in this study included three proprietary 

SPs (Table 1): syngo.MR Tissue 4D v.40A (Siemens Healthcare, Erlangen, Germany) [A], 

Advantage Windows GenIQ v.11.3 (GE Healthcare, Milwaukee, WI) [B], IntelliSpace Portal 

T1 Permeability v.6.0.1 (Philips Healthcare, Best, the Netherlands) [C]; and two academic 

plugins running in OsiriX (v.5.8.1, University Hospital of Geneva, Switzerland (26)): DCE 

Tool (v.2.0, K. Sung, UCLA, http://kyungs.bol.ucla.edu) [D] and UMM perfusion (v.1.5.1, F. 

Zöllner et al., University of Mannheim, Germany (27)) [E]. The DCE-MRI examinations with 

clinical images and those with simulated inserted data were transferred to each SP. One 

unblinded observer (L.B.) measured pharmacokinetic parameters on each SP, with the 

following approach regarding software options: 

-! use of the Tofts model (or, if unavailable, the extended Tofts model that also 

calculates vp, the plasmatic volume fraction) 

-! use of a patient-based AIF was preferred if available: an ROI was drawn in the left 

common femoral artery when postprocessing clinical data and in the simulated artery 

voxels when analyzing simulated data; 

-! if the time to peak was not automatically determined, the same value was input into 

each SP for each patient; 
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-! if the software did not incorporate T1,0 mapping but required a reference value 

corresponding to the tissue of interest the "Soft tissue" value (900 ms) was input; 

-! the iAUGC was set to the area under the gadolinium curve for 60 seconds after the 

bolus peak; 

-! no motion correction was applied. 

Parametric maps of Ktrans, ve, kep and iAUGC were exported and transferred to a centralized 

database. Sets of previously saved ROIs were applied to each parametric map in order to 

avoid measurement variability due to ROI positioning (28). 

Validation of the image data manipulation 

Extensive software manipulation of the image data was necessary so the same datasets could 

be evaluated with SPs from different vendors. To confirm that this manipulation was valid 

and did not introduce variability of its own, the original set of images acquired from one 

patient on the Verio scanner and the examinations acquired on the Signa and Ingenia systems 

in which the Verio images had been inserted were post processed with the same cross 

platform SP (DCE Tool). Same values of Ktrans, ve, kep and iAUGC were obtained for the three 

sets of images. 

Statistical Analysis 

Statistical analyses were performed using PASW Statistics (v.19.0, SPSS, Chicago, IL). 

Simulated Data 

A Bland-Altman analysis was conducted, measuring the difference between the value of a 

parameter measured by an SP and its simulated "true" value (29). Bias and dispersion 

correspond to the average and standard deviation of these differences, respectively. Intraclass 
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correlation coefficients (ICCs) and their 95% confidence intervals were calculated to 

determine the absolute agreement of pharmacokinetic parameter output among SPs. 

Clinical Data 

A Bland-Altman analysis was conducted, measuring the difference between the value of a 

parameter measured by SP X and the one measured by SP Y. ICCs were also calculated, and 

the test-retest root mean square coefficient of variation method (30) was applied to obtain the 

within-subject coefficient of variation for a pairwise comparison of all SP combinations. 

Ratio tumor / simulated reference tissue!

For each patient and each software package, the ratio between the pharmacokinetic 

parameters extracted from the ROI drawn over the tumor and those extracted from the ROI 

drawn over one simulated tissue (Ktrans = 0.4, ve = 0.4, T1,0 = 1000 ms, no noise), 

constituting a reference tissue, was calculated. Then, intraclass correlation coefficients for 

each pharmacokinetic parameter ratio among the different SPs were calculated. 
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RESULTS 

Simulated Data 

Fifty-four pixel clusters, corresponding to 18 combinations of Ktrans/ve/T1,0 values at three 

noise levels, were successfully fed into the dynamic MR images acquired on the three 

scanners and processed with the five SPs. The iAUGC of simulated tissues was in the range of 

14.8-44.5 mmol.L-1.min (mean 27.2 mmol.L-1.min, standard derivation 9.5 mmol.L-1.min). 

All measurements are provided in Appendix 1 and graphically plotted in Figure 2. Details of 

all statistical tests are given in the tables and figures. The most significant results are reported 

below. 

Bland-Altman Analysis 

A graphical representation of the Bland-Altman analysis is given in Figure 3, illustrating the 

accuracy of SPs for measuring the pharmacokinetic parameters. SPs A, B and D tended to 

underestimate Ktrans (bias: -0.13, -0.05 and -0.19 min-1, respectively), especially for high Ktrans 

values, whereas SPs C and E slightly overestimated it (bias: 0.03 and 0.09 min-1, 

respectively). SPs A, D and E underestimated ve (bias: -0.10, -0.13 and -0.15 min-1, 

respectively) and there was a wide dispersion of values measured by all the SPs (range 0.03-

0.8). SPs A and D measured iAUGC accurately but there was a wide dispersion of values 

measured by SPs B and C (5.05 and 8.17 mmol.L-1.min, respectively). 

Correlation Analysis 

The ICCs for testing absolute agreement between SPs in terms of pharmacokinetic parameters 

are given in Table 2, reflecting inter-software reproducibility. ICCs ranged from 0.50 for 

Ktrans to 0.77 for iAUGC. Subanalyses of repeatability considering potential sources of 
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variation among the SPs (excluding the SPs applying a different physiological model than 

Tofts model, not allowing for variable T1 mapping, or using a population based arterial input 

function) did not show significantly different values. 

The measurements on noiseless, low-noise and high-noise image sets were very similar, with 

an intraclass correlation coefficient between the calculated pharmacokinetic parameters at 

different levels of noise equal to 0.99. 

Clinical Data 

Five examinations (from four patients) were rejected: two of them because the cancer 

involved the anal canal, one due to an error in the slice orientation of the DCE-MR 

acquisition, and two due to severe artifacts caused by hip prostheses. Thirty one examinations 

were thus post processed. Among them, four could not be processed by SP C due to errors in 

variable flip angle sequences positioning. Mean tumor size was 6.8 cm!, ranging from 1.9 to 

24.4 cm!, and mean tumor T1,0 measured by the DCE Tool was 1201 ms, ranging from 423 to 

2280 ms. All measurements are provided in Appendix 2 and graphically plotted in Figure 4. 

Bland-Altman Analysis 

The Bland-Altman plots in Figure 5 show the differences in agreement between SPs. 

Dispersion was significant in all comparisons for all the pharmacokinetic parameters. Ktrans 

values returned by SP A were lower than values returned by all the other SPs, whereas all 

parameters values returned by SP B were higher than those returned by other SPs, except for 

Ktrans values when compared to SP E. Concerning the iAUGC measurements, the best 

agreement was observed between SPs A and D (bias: -3.48 mmol.L-1.min, dispersion: 7.69 

mmol.L-1.min). 
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Correlation Analysis 

The ICCs (Table 2) showed very poor agreement between SPs for all the pharmacokinetic 

parameters concerning clinical data, ranging from 0.10 for Ktrans to 0.21 for iAUGC.  

Subanalyses based on the SPs features did not show significantly better reproducibility, as for 

the ratios between the pharmacokinetic parameters extracted from the ROI drawn over the 

tumor and those extracted from a reference simulated tissue. 

Variation Analysis 

Within-subject coefficients of variation for all SP comparisons (Table 3) were always above 

0.20, except when comparing the iAUGC measurements provided by SPs A and D (0.19). 

They ranged from 0.40 to 0.88 for Ktrans, 0.27 to 0.47 for ve, 0.35 to 0.92 for kep, and 0.19 to 

0.76 for iAUGC. 
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DISCUSSION 

Our results yielded significant errors in pharmacokinetic measurements for all the perfusion 

analysis SPs when postprocessing simulated data, leading to substantial inter-software 

variability. Inter-SP reproducibility was worse when dealing with clinical data. 

 

The within-subject variation across SPs found in our study, ranging from 40% to 88% for 

Ktrans, was higher than the upper limit of 20% which is the goal of current quantitative 

imaging initiatives (18). It exceeded the 40% Ktrans decrease between pre- and post-

chemoradiotherapy found by Kim et al. to be associated with rectal tumor downstaging when 

using a single perfusion analysis SP (5). Considering that the  difference between mean Ktrans 

values after chemotherapy among patients with or without complete pathological response is 

about 0.3 min-1, according to Gollub et al. (4), the limits of agreement observed in our study 

are considerably wider and therefore a potential source of error when assessing patient 

prognosis. 

 

A large proportion of the observed variation may be explained by the different methods of T1,0 

relaxation time estimation. Some SPs computed parametric maps from T1-weighted variable 

flip-angle sequences whereas others used reference values from the literature or requested 

user input. Applying set T1,0 times across an entire heterogeneous lesion including areas of 

necrosis is a potential source of error (31). The T1,0 values measured in the clinical lesions had 

a much wider range than the 800 ms and 1000 ms values used in our simulated data, which 

were closer to the soft tissue reference value of 900 ms (25). This wide spectrum of T1,0 

values in the tumor, whether real or overestimated by the variable flip-angle method of 
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calculation, could provide an initial explanation for the greater variability seen in the 

pharmacokinetic parameters calculated from clinical data as compared to the simulated data. 

 

Another source of variation may be the arterial input function. Most SPs proposed a patient-

based AIF, asking the user to draw an ROI in an artery on the dynamic acquisition, whereas 

SP A only used a population-based AIF. Vascular peak characterization was automatic in two 

SPs and user-defined in the other SPs. This should mainly affect calculation of Ktrans, which 

reflects the earlier phases of the enhancement curve whereas ve correlates with the later phases 

(16), and could explain the greater variability of Ktrans as compared to ve in our measurements. 

Lastly, although this information was not always available in the SP documentation, it is 

probable that their curve-fitting algorithms were different, leading to differences in 

pharmacokinetic parameter output (32). 

 

The iAUGC measurement errors for SP C are surprising despite calculation of a parametric 

T1,0-map. The only source of error should arise from signal conversion to gadolinium 

concentration. Our theory is that this software does not integrate the measured data curve but 

its fit according to the Tofts model. Errors in curve adjustment according to Ktrans and ve could 

therefore bias calculation of iAUGC. 

 

Heye et al. previously showed considerable variability for DCE-MR imaging pharmacokinetic 

parameter computation among SP [A] and four cross-platform perfusion analysis SPs on 

clinical data (19). Huang et al. also showed a wide variability in pharmacokinetic parameters 

between between several multicentric in-house SPs on breast cancer data (33). Our 

comparison of the three main MR vendor SPs confirmed this lack of reproducibility and our 

results on simulated data quantify the measurement errors of each SP. 
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Using the same simulation tool but with lower Ktrans values, Cron et al. observed a high 

percentage of unphysical values when comparing the reaction of three DCE-MR analysis SPs 

to increasing noise levels (34).This study re-enforces the Quantitative Imaging Biomarkers 

Alliance profile recommendations that a single SP should be used for any longitudinal study 

or any static evaluation across a given population of patients (18). 

This study had limitations. Concerning the simulated data, the choice of Ktrans values was 

partly empirical, since average measurements in the literature dealing with rectal cancer 

ranged from 0.2 to 2.1 min-1 (4, 5, 7). We chose lower values reflecting our clinical practice 

and associated with physiological enhancement curves. We considered that 1026 

measurements on simulated data were sufficient to achieve statistical power but more 

combinations of pharmacokinetic parameters could have been used.  

We could have used a faster temporal resolution in our simulated data, but this choice requires 

acquiring fewer slices, which is a limiting factor in a clinical context because it implies a 

smaller coverage of the tumor. Moreover, although the technical parameters of the DCE MR 

sequence were suboptimal, they were the same for each postprocessing SP and thus cannot be 

held responsible for the variability we observed. 

Only one unblinded observer evaluated the postprocessing of simulated and clinical 

acquisitions, thus eliminating another measurement variability factor.  

Also, an additional source of variability concerning clinical data may have been the organ of 

interest, i.e. rectal tumors, which can be affected by technical difficulties such as peristaltism. 

Nevertheless, the technique we used was approved by several authors (4–8) and concerns 

pharmacokinetic measurement reproducibility.  

Inability to access the source code of commercial SPs prevented any automation in the 

postprocessing process, possibly resulting in additional variability due to the user, but this 

reflected clinical practice. 



17 

 

 

In conclusion, there are significant errors in calculated DCE-MR imaging pharmacokinetic 

parameters (Ktrans, ve, iAUGC) among perfusion analysis SPs, resulting in poor inter-software 

reproducibility. There is a need for standardization to enable the use of DCE-MR imaging as a 

quantitative biomarker in multicenter trials and clinical practice. For now, a single SP should 

be used in a given study, in agreement with international recommandations,and absolute 

values of pharmacokinetic parameters provided in the literature should be viewed with 

caution. 
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ABBREVIATIONS 

AIF = arterial input function 

DCE = dynamic contrast-enhanced 

DICOM = digital imaging and communications in medicine 

iAUGC = initial area under the gadolinium curve 

ICC = intraclass correlation coefficient 

Ktrans = volume transfer constant 

ROI = region of interest 

SP = software package 

ve = extravascular extracellular volume fraction 
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TABLES!

!"#$%&'(&!"#$%&'"(")*+(#,*#),%-.%/&01!2%34"5#$5%6-,*7(-)+,,#$5%86,&

Characteristics Tissue 4D [A] GenIQ [B] T1 permeability [C] DCE Tool [D] UMM perfusion [E] 

Developer Siemens General Electric Philips K Sung, UCLA 
F Zöllner, G Weisser, 
Mannheim University 

Platform Syngo Advantage Windows IntelliSpace Portal OsiriX OsiriX 

License Proprietary Proprietary Proprietary Free Open source 

Pharmacokinetic model Tofts Tofts, extended Tofts Extended Tofts Tofts, extended Tofts 

Tofts, extended Tofts,  
2 compartment exchange,  
2 compartment filtration,  

2 compartment uptake 

T1 relaxation time estimation 
Variable flip angle 
map or user input 

Reference value 
according to 
anatomical 
localization 

Variable flip angle 
map 

Variable flip angle 
map or user input 

None 

Arterial Input Function Population based 
Population or patient 

based 
Population or patient 

based 
Population or patient 

based 
Population or patient 

based 
Time to peak measurement User input Automatic Automatic User input User input 

Motion correction and registration Possible Possible No No No 
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!"#$%&'(&!""#$%&$'(#%)*+,$'-&,,.,/+$0,+1,,/$23#$4%&$356&.67%89/,+97$36&6.,+,&#$

Pharmacokinetic parameter Simulated Tissues  Clinical Data 

SP type ICC 95% CI  ICC 95% CI 

Ktrans      

All 0.50 0.23 – 0.70  0.10 0.01 – 0.25 
SPs applying Tofts model (excluding [C]) 0.43 0.14 – 0.65  0.12 0 – 0.29 

SPs allowing for variable T1 mapping ([A],[C], [D]) 0.47 0.04 – 0.74  0.10 -0.6 – 0.33 

SPs with patient based arterial input function (excluding [A]) 0.51 0.19 – 0.73  0.13 0 – 0.32 

All - ratio tumor / simulated reference tissue    0.11 0.02 – 0.27 

ve      

All 0.67 0.38 – 0.82  0.16 0.04 – 0.35 
SPs applying Tofts model (excluding [C]) 0.64 0.30 – 0.81  0.23 0.07 – 0.43 

SPs allowing for variable T1 mapping ([A],[C], [D]) 0.76 0.22 – 0.91  0.21 -0.01 – 0.47 

SPs with patient based arterial input function (excluding [A]) 0.63 0.28 – 0.81  0.14 0 – 0.35 

All - ratio tumor / simulated reference tissue    0.14 0.03 – 0.30 

kep      

All 0.55 0.29 – 0.73  0.11 0.01 – 0.28 
SPs applying Tofts model (excluding [C]) 0.46 0.17 – 0.67  0.12 0 – 0.28 

SPs allowing for variable T1 mapping ([A],[C], [D]) 0.82 0.57 – 0.91  0.13 -0.03 – 0.35 

SPs with patient based arterial input function (excluding [A]) 0.55 0.23 – 0.75  0.15 0.01 – 0.34 

All - ratio tumor / simulated reference tissue    0.13 0.02 – 0.29 

iAUGC      

All 0.77 0.69 – 0.85  0.21 0.02 – 0.44 
SPs applying Tofts model (excluding [C]) 0.90 0.84 – 0.94  0.27 0.01 – 0.53 

SPs allowing for variable T1 mapping ([A],[C], [D]) 0.77 0.66 – 0.85  0.44 0.12 – 0.69 

SPs with patient based arterial input function (excluding [A] 0.72 0.61 – 0.82  0.16 -0.02 – 0.41 

All - ratio tumor / simulated reference tissue    0.20 0.03 – 0.42 

      

ICC = intraclass correlation coefficient; CI = confidence interval; SPs = software packages 
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!)*+,&-(&:9+59/;2*(<,7+$"%,==979,/+#$%=$>6&96+9%/$=%&$'))$23$
"%.?6&9#%/#&

 Ktrans ve kep iAUGC 
A vs. B 0.82 0.37 0.78 0.49 

A vs. C 0.54 0.37 0.58 0.44 

A vs. D 0.63 0.29 0.69 0.19 

A vs. E 0.88 0.27 0.92 - 

B vs. C 0.67 0.47 0.53 0.76 

B vs. D 0.55 0.42 0.35 0.47 

B vs. E 0.40 0.28 0.45 - 

C vs. D 0.63 0.43 0.46 0.49 

C vs. E 0.75 0.31 0.69 - 

D vs. E 0.57 0.32 0.52 - 

A: Tissue 4D; B: GenIQ; C: T1 permeability; D: DCE Tool; E: UMM perfusion 

-: not available (iAUGC calculation is not available in UMM perfusion) 

The test-retest root mean square coefficient of variation method was applied to 

obtain the within-subject coefficient of variation for a pairwise comparison of all 

SP combinations 
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FIGURE LEGENDS 

Fig. 1: Diagram of the process of software packages (SPs) comparison with clinical images 

and simulated data. Phantom images acquired on the GE and Philips scanners were 

substituted with clinical dynamic images acquired on the Siemens scanner, without changing 

the DICOM headers.  Moreover, the banners with simulated pixel clusters were inserted into 

the dynamic images acquired on each scanner; the central cluster corresponds to the simulated 

artery, the other eighteen correspond to simulated tissues with different Ktrans, ve and T1,0 

combinations. 

Fig. 2: Box plots of simulated tissue pharmacokinetic parameters according to perfusion 

analysis SPs (light gray) compared to their “true” simulated values (dark gray). The top and 

bottom box edges represent the 25th and 75th percentiles, respectively; horizontal central 

lines represent the median values; top and bottom whiskers represent the 10th and 90th 

percentiles, respectively; circled points represent outliers. The results pertain to the entire set 

of reference values. 

Fig. 3: Bland-Altman analysis for simulated tissue pharmacokinetic parameters.  : bias 

(mean of the differences between the measured and simulated true value). Left and right ends 

of horizontal bars correspond to the lower and upper limits of agreement, respectively. The 

length of the horizontal bar is proportional to the dispersion. 

Fig. 4: Box plots of clinical data pharmacokinetic parameters according to perfusion analysis 

SPs. The top and bottom box edges represent the 25th and 75th percentiles, respectively; 

horizontal central lines represent the median values; top and bottom whiskers represent the 

10th and 90th percentiles, respectively; circled points represent outliers. 

Fig. 5: Bland-Altman analysis for clinical data pharmacokinetic parameters.  : bias (mean 

of the differences between the measurements taken on each lesion by two SPs). Left and right 
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ends of horizontal bars correspond to the lower and upper limits of agreement, respectively. 

The length of the horizontal bar is proportional to the dispersion. 
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