
HAL Id: hal-01255833
https://univ-rennes.hal.science/hal-01255833

Submitted on 18 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Air pollution, a rising environmental risk factor for
cognition, neuroinflammation and neurodegeneration:

The clinical impact on children and beyond
L. Calderón-Garcidueñas, Emmanuelle Leray, P. Heydarpour, R.

Torres-Jardón, J Reis

To cite this version:
L. Calderón-Garcidueñas, Emmanuelle Leray, P. Heydarpour, R. Torres-Jardón, J Reis. Air pol-
lution, a rising environmental risk factor for cognition, neuroinflammation and neurodegenera-
tion: The clinical impact on children and beyond. Revue Neurologique, 2016, 172 (1), pp.69-80.
�10.1016/j.neurol.2015.10.008�. �hal-01255833�

https://univ-rennes.hal.science/hal-01255833
https://hal.archives-ouvertes.fr


A rising environmental risk factor: air pollution. 

Cognition, neuroinflammation, and neurodegeneration: the clinical impact on children and

beyond.

Lilian Calderón-Garcidueñas MA, MD, PhD 1, 2, Emmanuelle Leray 3, Pouria Heydarpour MD, MPH4, 

Ricardo Torres-Jardón PhD5, Jacques Reis MD,6

1 The University of Montana, Missoula, MT, 59812, USA

2 Universidad del Valle de México, México DF 04850

3 EHESP Sorbonne Paris Cité, Rennes, France 

4 MS research center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran

5 Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico City, 

México.

6 Service de Neurologie (Prof. Tranchant), Centre hospitalier Universitaire, Hôpital de Hautepierre
1 avenue Molière 67200 Strasbourg, Club de Neurologie de l’Environnement, France

Contact Information:

Jacques Reis 67 Rue de Graefinthal 57200 Sarreguemines, France,  Jacques.reis@wanadoo.fr

Conflict of Interest Disclosures: None reported

Grant Support: None

Key words: neurodegeneration, children’ brain development, Alzheimer disease, Parkinson Disease,

Multiple sclerosis, air pollution, particulate matter, ozone, nitrogenous oxides gases



Abstract 

Air pollution (indoor and outdoor air) is a major issue in public health as epidemiological studies 

haven pointed to the numerous detrimental health consequences (notably, respiratory 

and cardiovascular pathology). In the last fifteen years, air pollution has also been considered as a 

potent environmental risk factor for neurological diseases and neuropathology. In this review, the 

authors examine the impact of air pollution on children’s brain development and its clinical, 

cognitive, brain structural and metabolic consequences. Long-term potential consequences for 

adults’ brain and effects on multiple sclerosis are also discussed. One challenge is assessing lifetime

exposures to outdoor and indoor environments, including occupational exposures: how much, for 

how long and what type. The diffuse neuroinflammation, the damage to the neurovascular unit, and 

the production of auto-antibodies to neural and tight junction proteins are worrisome findings in 

children chronically exposed to concentrations above current standards for ozone and fine 

particulate matter (PM 2.5) and may constitute significant risk factors for the development of 

Alzheimer’s disease later in life. At last, we review data supporting the role of air pollution as risk 

factor in multiple sclerosis, pointing on the effect of Particulate Matter (PM 10) and nitrogenous 

oxides.

Résumé

La pollution de l’air (ambiant et atmosphérique) est un problème majeur de Santé Publique 

comme le montrent les études épidémiologiques illustrant les nombreuses conséquences 

sanitaires (notamment respiratoires et cardio-circulatoires). Au cours des quinze dernières années,

la pollution de l’air a été reconnue comme un  facteur de risque environnemental important dans 

les affections neurologiques. Dans cette revue les auteurs évaluent l’impact de la pollution de l’air 

sur le développement cérébral de l’enfant avec ses conséquences cliniques, cognitives, mais aussi 

structurales et métaboliques. Les conséquences potentielles à long terme sur le cerveau des 

adultes sont ensuite abordées. 



L’évaluation, vie entière, des expositions à des polluants ambiants et extérieurs constitue un réel 

défi : à quelle dose, pendant combien de temps, par quel type. Le constat, chez des enfants 

exposés de manière chronique à de l’Ozone et aux particules fines (PM2.5) à des concentrations 

au-delà des normes habituelles, d’une neuroinflammation diffuse, de lésions de l’unité 

neurovasculaire, de la production d’anticorps dirigés contre les protéines neuronales et des 

jonctions serrées, est particulièrement préoccupant. En effet, ces modifications pourraient être un

facteur de risque du développement ultérieur d’une maladie d’Alzheimer. Enfin, sont analysées 

des données qui permettent de considérer la pollution de l’air (et notamment les particules fines 

(PM 10) et les Oxydes d’azote) comme un nouveau facteur de risque de la sclérose en plaques. 
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1. Introduction 

Environmental Neurology (EN) is a new field of practice and research[1] dedicated to a global, 

comprehensive and translational study of the action of Environment on Man.  Albert Einstein 

defined environment as “everything but me”.  Environmental Medicine uses four approaches for 

the study of environmental factors affecting humans: approach by agents (e.g. chemicals), by 

milieu (e.g. a water, air), by population (e.g. children) and of course by pathologies. EN links 

neurology with public health issues. WHO define air pollution as a ”contamination of the indoor or

outdoor environment by any chemical, physical or biological agent that modifies the natural 

characteristics of the atmosphere” (http://www.who.int/topics/air_pollution/en/  ).

With the industrial revolution in the Eighty-century, the air pollution increased dramatically. 

Combustion of fossil energies (coal, coke, gasoline and diesel fuel), needed to power industries, 

transportations and housing, is responsible for the release for many hundreds of contaminants 

into the atmosphere. However the mixture of the air pollutants changed in the twenty-century; oil

and diesel replaced coal and became the major energy sources used in expending cities 

(urbanization) in the western countries. By the sixties and seventies two major types of mixtures 

were recognized the London-type smog (linked with fossil fuel combustion and PM emissions) and 

the Los Angeles-type smog or photochemical oxidant pollution whose main compounds are ozone 

and the secondary aerosols (sulfate and nitrate oxides)[2].

http://www.who.int/topics/air_pollution/en/


Nowadays, only some atmospheric air pollutants are monitored, depending on their health effects 

and regulations in the different countries, e.g. ozone, sulphur dioxide, carbon monoxide, nitrogen 

dioxide, lead and particulate matter (PM). The other air contaminants referred as hazardous 

pollutants should also be measured because highly neurotoxic chemicals are included e.g. volatile 

organic compounds (benzene, formaldehyde, tri- and tetrachloroethylene, toluene, polycyclic 

aromatic hydrocarbons PAHs etc.) and metals (lead, manganese, iron, mercury, arsenic, cadmium, 

cobalt, etc.)[3].

The neurological effects associated with sustained exposures to concentrations of outdoor

air pollutants above the current international air quality standards are an important issue for the

millions of people living in megacities around the world, including Mexico City Metropolitan Area

(MCMA), Tehran and Paris, for example.  Paris residents are exposed to high concentrations of

particulate matter (PM), nitrogen oxide (NOx), and PAHs and share with residents in New York,

Toronto,  Salt  Lake  City,  Fairbanks  AK,  Provo,  UT,  Los  Angeles-South  Coast  Air  Basin,  CA,

Nogales, AZ and MCMA their main sources of pollution: transport, industry and heating. Airborne

PM varies in its physical and chemical composition, source and particle size. PM including PM10,

coarse particles larger than 2.5 μm and smaller than 10 μm, PM2.5, fine particles larger than 100 nm

and smaller than 2.5 μm and ultrafine PM <100 nm) and their components, are key pollutants in

European cities.

This review will  focus on three topics,  the detrimental  impact of environmental  factors

upon the brain in development, its long-term potential neurodegenerative consequences and air

pollution as a risk factor in multiple sclerosis (MS). We will discuss how to evaluate air pollutant

exposures and concentration estimates, relevant publications, and the uncertainties and expected

long-term brain effects on urban residents. 



2. Assessing air pollutant exposures in our patients

The first issue we faced in evaluating patient’s exposures to air pollutants is: how much, for how 

long and what type? And since most people are exposed to complex mixtures of air pollutants from 

different sources-indoors and outdoors and occupational exposures-all available information has to 

be considered. Meteorological conditions, including precipitation, sunshine, ambient temperatures, 

etc., are included in the search for environmental factors associated with central nervous system 

(CNS) effects.  Traffic-related air pollutants are a prime exposure source in urbanites and we know 

the highest exposures are seen near busy roads. Automated geocoding methods are being used to 

estimate exposures and factors such as road edge and road centerline, road curvature, road width 

and the presence of ramps, can substantially alter exposure estimates near roads because of the 

spatial gradients of traffic-related pollutant concentrations[2]. Land-use regression models, line-

dispersion models, proximity-based assessments, personal monitors along with interquartile-range 

increases in air pollutant levels, inclusion of several lag day evaluations, peak seasonal associations 

are used to identify key air pollutants and exposure windows conferring the greatest risk.  The 

primary objectives of neurological endpoints and air pollution exposures will depend on the 

analysis of the neurological variables and if the effects we are interested relate to short or chronic 

air pollution exposures. Thus, a time-stratified case-crossover design will be suitable to investigate 

associations between acute exposures to PM and gaseous air pollutants and an acute event such as 

stroke, while evaluating the risk of Alzheimer’s development will require years of air pollution 

evaluations [3-5]. Moreover, since air pollution levels are generally believed to be higher in 

deprived areas, keeping in mind air pollution inequalities and ways of transportation at national, 

regional and city level have to be contemplated [6]. Platt et al., showed that elevated PM levels can 

be a consequence of 'asymmetric pollution' from two-stroke scooters, that although constitute a 

small fraction of the fleet, can dominate urban vehicular pollution through organic aerosol and 

aromatic emission factors up to thousands of times higher than from other vehicle classes [7]. 



Also important is the fact that air pollutant concentrations can have an impact upon a neurological 

endpoint without necessarily going over the accepted air quality standards. A good example is the 

association between low-level O3 exposure and ischaemic stroke in a high vascular risk subgroup 

demonstrated in a case-crossover study in Nice, France [8]. 

Evaluation of air pollutant exposures in private practice or in a hospital setting should include 

childhood exposures (including parents occupations), a full occupational and residential history, 

along with hobbies, transportation means, tobacco exposures (1st, 2nd and 3rd hand exposures), 

cooking habits, type of stove, heating sources, type of housing, distance to busy roads and highways

and fixed sources of air pollutants. In long-term studies, the ability to have good spatial exposure 

assessments and a proper control of confounders related to air pollution and the neurological 

endpoint, like socioeconomic status (SES) is key. 

3. Brain effects of polluted air on children.

Children’s prime health and optimal brain development require clean air. Brain effects associated 

with intra and extrauterine air pollution exposures in children are not broadly recognized. Pediatric 

health providers acknowledge the impact of intrauterine factors, parent-child interactions, and 

cognitive stimulation, maternal socioeconomic status during pregnancy, child’s nutrition and 

exposure to complex learning stimuli, all vital for brain development; unfortunately, air pollution 

brain effects rooted in intrauterine life and childhood are not generally acknowledged. A crucial 

point to remember is that overall children and adults are exposed to complex mixtures of air 

pollutants and although some correlations can be done with specific pollutants, it is extremely 

difficult to pin point specific CNS effects to specific environmental pollutants. 



31. Cognition effects and brain structural changes

Prenatal and postnatal exposures to complex mixtures of air pollutants produce adverse effects on 

neurodevelopment in early childhood, teen and young adulthood years. Cognition effects have been 

associated to a wide range of pollutants from tobacco, black carbon (a marker for traffic particles), 

wood smoke exposures in cooking practices, to common urban air pollutants across the world [9-

17].

Black carbon exposures and cognition were explored in 202 Boston, Massachusetts, children 9.7 

±1.7 years, in a prospective birth cohort study (1986-2001) [13]. Black carbon (per interquartile-

range increase) was associated with decreases in the vocabulary, matrices and composite 

intelligence quotient scores of the Kaufman Brief Intelligence Test and with decreases on the visual 

subscale and general index of the Wide Range Assessment of Memory and Learning. Higher levels 

of black carbon predicted decreased cognitive function across assessments of verbal and nonverbal 

intelligence and memory constructs.

Environmental tobacco smoke (ETS) exposure negatively impacts cognitive abilities among U.S. 

children and adolescents 6-16 years of age [12]. Significant inverse relationships between serum 

cotinine and scores on reading, math, and block design, but not digit span (Wechsler Intelligence 

Scale for Children-III) were observed in exposed children even at low levels of exposure. The 

combination of prolonged exposure to traffic-related air pollution (NO2, an indicator for traffic-

related air pollution) as well as noise also adversely affects digit memory span in 9-11 year olds 

living around the Schiphol-Amsterdam Airport [14]. Structural brain changes are seen in highly 

exposed urban clinically healthy children when compared to clean air controls. Fifty six percent of 

healthy Mexico City children versus controls showed prefrontal white matter hyperintensities 

(WMH) by magnetic resonance imaging (MRI) and similar lesions were observed in healthy young 

dogs (57%) living in an animal facility in the same neighborhood as the children’s [9]. 



Critical to this review, Mexico City dogs had WMH frontal lesions with vascular subcortical 

pathology associated with neuroinflammation, gliosis, and ultrafine particle deposition. The 

presence of WMH in urban children is important because childhood SES predicts the burden of 

brain WMH in older adults, establishing a potential link with dementia and stroke in later years 

[18]. The presence or absence of WMH is critical for early identification of children at risk in the 

clinical setting [10]. WMH+ positively correlate with a profile of cytokines involved in resolution of 

inflammation, immunoregulation, and tissue remodeling. Mexico City children with WMH+ 

responded to the air pollution-associated brain volumetric alterations with white and grey matter 

volume increases in temporal, parietal, and frontal regions and better cognitive performance 

compared to MC children with WMH-.  Thus, a complex modulation of cytokines and chemokines 

influences children's brain structural and volumetric responses and cognitive correlates resulting 

from environmental pollution exposures. Most recent investigations are implicating genetic 

factors, in particular, emerging evidence shows APOE genotype may play a pivotal role in the 

cognitive responses of urban children [19].This is very relevant to future increased risk of 

Alzheimer disease development. Indeed, the APOE 4 allele is the most prevalent genetic risk for 

AD [20]. APOE ε4 versus ε3 children had a reduced NAA/Cr ratio in the right frontal white matter 

and decrements on attention, short-term memory, and below-average scores in Verbal and Full 

Scale IQ (>10 points). APOE modulated the group effects between WISC-R and left frontal and 

parietal white matter, and hippocampus metabolites. APOE ε4 carriers could have a higher risk of 

developing early AD if they reside in a polluted environment [19]. Higher concentrations of metals 

associated with PM: manganese (p=0.003), nickel and chromium (p=0.02) along with higher frontal

COX2 mRNA and IL1β and olfactory bulb COX2- indicating neuroinflammation, are present in 

brains of Mexico City children and young adults, thus we also have to consider PM-metal 

neurotoxicity as a key factor likely accounting for brain damage in young urbanites[21]. 



Exposure to heavy metals including the emissions released by ferroalloy plants containing 

manganese and other metals are not uncommon, as shown in Valcamonica, Italy. High 

concentrations in soil and biomarkers associated with deficits in olfactory and motor function are 

the rule in children age 11-14 years [22]. 

In sharp contrast in terms of air pollutants, wood  smoke exposures as measured by carbon 

monoxide yielded inverse associations between CO exposure of pregnant mothers during their 3rd 

trimesters and child neuropsychological performance, including deficits in visuo-spatial integration,

short-term memory recall, long-term memory recall, and fine motor performance [15]. Longitudinal

birth cohort studies on chronic early life pollutant exposures, bring up the issue of the critical 

importance of prenatal exposures and the role of the placental barrier in the final brain effects on the

fetus. Curtis et al., identified glutamate as the active factor release from the placenta/cytotrophoblast

barriers in vitro after hypoxia or hypoxia/reoxygenation, capable of damaging developing neurons 

under experimental conditions [23]. Thus, additional factors to consider would be the placental 

damage by the culprit air pollutant and the resulting release factors damaging the developing brain, 

functionally effective tight junctions present in embryonic brain, specific transport of plasma 

proteins across the blood-CSF barrier and embryo-specific intercellular junctions between 

neuroependymal cells lining the ventricles[24].      

Polycyclic aromatic hydrocarbons (PAHs), the ubiquitous pollutants

PAHs exposures deserve special attention, because they are widely distributed in urban, 

occupational and rural environments and because in spite of their detrimental health and specific 

brain effects, we do not measure PAHs routinely. 



People’s exposures to PAHs -complex mixtures containing over 100 compounds- are associated 

with fine particle bound PAHs, abounding in indoor and outdoor air, household environmental 

tobacco smoke, cooking with biomass, landfill biogases, petrochemical complex emissions, coke 

industry and steel metallurgy soil contamination, commuter life time in freeways and busy 

roadways, diets with smoked or charbroiled meat and meat products, frying oils and snacks, and 

occupational exposures. Marseille is a prime example of an urban port center with > 1 million 

residents who — along residents in New York, Boston, Phoenix, Montreal, Los Angeles and 

Mexico City— are exposed to high concentrations of total PAHs (Figure 1A) and benzo [a]pyrene 

(Figure 1B).This stands in stark contrast to lower exposures in rural and suburban areas, i.e., 

Chesterfield, SC, population 5650, 30 people per km2 and Deer Park, TX, 3560 people per km2.  

The situation is worse in developing countries, where increases in migrant populations, poor 

atmospheric PAHs reduction measures from traffic and industry, and dependence on biofuel 

contribute to high levels of PAH and PM 2.5 as is the case of Metropolitan Mexico City where 24 

million residents are greatly exposed on daily bases (Figures 1A, 1B). 

Figure 1.   (A) Sum of the average concentrations of 12 PAHs, and, (B) the average concentrations 

of Benzo(a)pyrene in PM in several areas of North America and South of France.



 The sum of the PAHs include: phenanthrene, benzo(a)pyrene, benzo(b)fluoranthene, 

benzo(a)anthracene, fluorene, fluoranthene, pyrene, chrysene, benzo(k)fluoranthene, 

dibenzo(a,h)anthracene, indene(1,2,3-cd)pyrene, and Benzo(ghi)perylene. Data of PAHs are for 

the years: 2012 Canada sites; 2010 U.S.A. sites, 2005-2007 Mexico City sites, and July, 2004 South 

of France. 

Prenatal PAHs exposures are harmful to the developing brain, high levels of PAH-DNA 

adducts in cord blood have been associated with neural tube defects, and occupational exposures 

during pregnancy increase the risk for small for gestational age babies [25-27]. In the U.S. 

exposures to PAHs as measured by urine metabolites, are seen across all ages with particularly 

high concentrations in 6 to 11 year olds [28]. Heating oil combustion and indoor sources of pyrene 

are key contributors to PAHs in cities like New York [29].  PAHs exposures are also associated with 

higher body mass index (BMI), waist circumference and obesity in 6-11 year old U.S. children [30]. 

Readers also have to be aware that high levels of poverty, low educational attainment, and below 

average mother’s IQ are critical confounder factors to evaluate cognition in children exposed to air

pollutants [25]. 

32. Neuroinflammatory and neurodegenerative changes 

In the common scenario of air pollution exposures, i.e., the urban resident living close to a busy 

road, exposed to complex mixtures in his way to work, driving his car, taking the bus or the 

subway, with a work place with other sources of toxics, goes back to his home where cooking is 

taking place, has a cigarette before going to bed, puts the heat on or opens the windows for 

ventilation, etc., inflammation is the key pathway linking complex pollutant exposures and CNS 

damage. 



The initial inflammatory process involves the upper and lower respiratory tract, follow by spilling 

of the process to a systemic inflammatory response and the production of inflammatory mediators 

capable of reaching the brain. If our lady urbanite is pregnant, then air pollutant components can 

cross the placental barrier, directly affecting the embryo and the fetus [23, 24]. Continuous 

expression of potent inflammatory mediators in the CNS and the formation of reactive oxygen 

species (ROS) are major findings in urban residents. Ultrafine PM (UFPM), PM-LPS, and metal 

uptake take place through olfactory neurons, cranial nerves such as the trigeminal and vagus, the GI

tract, the systemic circulation, and macrophage-like cells loaded with PM from the lungs[31-36]. 

Swallowing of tiny particles for example, allows for the direct contact of particulate components 

with the fragile small bowel mucosa, disrupting the tight junctions and breaking the integrity of the 

gastrointestinal (GI) barrier [36]. Activation of the brain innate immune responses resulting from 

the interaction between circulating cytokines and constitutively expressed cytokine receptors 

located in brain endothelial cells is followed by activation of cells involved in adaptive 

immunity[37]. Interactions between microglia, mast cells, endothelial cells, and macrophages are 

critical in inflammation and impact behavior [38, 39].  

Systemic oxidative stress and brisk inflammatory responses are seen in animal models and in 

humans exposed to polluted environments with diverse PM chemistry, including residual oil flash, 

endotoxins, and metals as well as high concentrations of criteria pollutants[40-42]. The individual 

inflammatory responses to air pollutants depend of diverse factors, including mitochondrial genetic 

background, age, gender, and chronic diseases [43, 44].  

A key component of air pollution exposure is neuroinflammation [45]. In megacity children there is 

a significant frontal lobe imbalance in genes essential for inflammation, innate and adaptive 

immune responses, oxidative stress, cell proliferation and apoptosis [33]. The up-regulation of 

potent inflammatory mediators involves supra and infratentorial regions and cranial nerves 

including: olfactory bulb, frontal cortex, substantia nigrae and the vagus [35].  



Chronic inflammatory perivascular infiltrates and activated microglia in the frontal and temporal 

cortex, subicular area, and the brainstem are commonly present in MCMA children, while they are 

rare in controls. There is also evidence of highly oxidized and covalently cross-linked aggregates of 

proteins affecting endothelial cells in brain capillaries i.e., the presence of abundant lipofuscin [35]. 

This finding is good evidence of a dysfunctional lysosomal degradation, not expected in children or 

young adults.

Based on the current literature, we know that air pollution PM and environmental nanoparticles are 

risk factors for the development of neuroinflammation and neurodegeneration[46-51]. Ultrafine 

particles (UFPs) are the most abundant particulate pollutants in urban and industrial areas, and their 

exposures have increased significantly because of anthropogenic sources including internal 

combustion engines, power plants, incinerators and many other sources of thermo-degradation. 

UFPs are able to stimulate inflammatory responses, damaging epithelial cells, breaking barriers and 

gaining access to the interstitium[46]. There are a significant number of proteins adsorbed onto 20 

nm sized SiO2 nanoparticles than onto the 100 nm sized nanoparticles regardless of charge. 

Proteins bound on the surface of nanoparticles may affect functional and conformational properties 

and distributions in complicated biological brain processes[51]. Exposure to different size and 

composition PM is associated with production and deposit of misfolded protein aggregates 

(amyloid, alpha synuclein, hyperphosphorilated tau), oxidative stress, cell damage and death in 

susceptible neuronal populations [52-54]. 

 The  early  neural  events  including  extensive  oxidative  stress  [55],  observed  in  our  exposed

populations are key for pathways conducing to neurodegeneration, since recent works emphasize

AD pathology as “an active host response or an environmental adaptation” [56].  



The  presence  of  neuroinflammation  as  evidenced  by  up-regulation  of  gene  network  clusters

interleukin-1 (IL-1), nuclear factor kappa B (NFκB), interferon (IFN) and toll-like receptors (TLRs)

along with tau hyperphosphorilation in MCMA children and young adults compared to controls,

supports  the  role  of  air  pollution  in  their  brain  responses  [33].  A  15-fold  frontal  lobe  down-

regulation  of  the  prion-related  protein  (PrP(C))  was  a  striking  finding  in  MCMA  young

urbanites[33].  The  down-regulation  of  the  PrP(C)  is  critical  given  its  important  roles  for

neuroprotection, neurodegeneration, and mood disorder states. 

33. Breakdown of epithelial and endothelial barriers: no barrier is intact.

All barriers are damaged by air pollutants.  A common target and a portal of entry are the nasal 

passages. A key feature of a chronically inflamed nasal and paranasal epithelia is that inflammatory 

mediators are released to the systemic circulation[57], and thus, their contribution to systemic 

inflammation and dysregulation are important.  The issue acquires a great importance in the context 

of air pollution because olfactory dysfunction is among the earliest features of AD and Parkinson’s 

disease (PD), occurring in ~ 90% of early onset cases [58]. Early olfactory deficits in MCMA 

young residents appear to be associated with the presence of β amyloid, α synuclein, ultrafine PM 

(<100 nm) in glomerular structures and massive distortion of the olfactory bulb organization[34]. 

While the breakdown of the nasal, olfactory, BBB, and alveolar-capillary barriers has

been extensively  documented,  the  research on the  involvement  of  the  gastrointestinal

barrier is at the earliest stages. There is evidence the GI tract barrier is also compromised

in the air pollution setting and recent research links inflammatory bowel diseases, changes

in  gut  microbiome,  and  abdominal  pain  with  air  pollution  [59-62].  The  integrity  of  the

gastrointestinal  (GI)  barrier  is  compromised  in  MC dogs  and  could  be  altered  in  MC

children as evidenced by the autoimmune response to TJ and neural proteins [31, 36]. 



The GI breakdown likely impacts neuronal enteric populations and PM could reach the

vagus and the brainstem. In the setting of urban air pollution, the evolution of a changing

paradigm  favoring  a  pathogen  penetrating  an  epithelial  lining  and  via  transsynaptic

transmission  reaching  preganglionic  parasympathetic  motor  neurons  of  the  vagus

nerve[63]  has  to  entertain  environmental  swallowed  particulate  matter  as  a  potential

culprit. We suggested that damage to epithelial and endothelial barriers associated to air

pollution exposures is a robust trigger of tight junction and neural antibodies [31]. Cryptic

'self' tight junction antigens can trigger an autoimmune response potentially contributing to

the  neuroinflammatory  and  Alzheimer  and  Parkinson’s  pathology  present  in  megacity

children. A key piece of information is that a major factor determining the impact of neural

autoantibodies  is  the  integrity  of  the  blood-brain  barrier[64,  65].   Thus  immunological

dysregulation  and  the  critical  “double-edged  sword”  [56]  of  a  fine  balance  between

protective and detrimental effects as a response to air pollution in a developing brain is a

major issue in young urbanites [37].

34. Brainstem pathology

Brainstem neuroinflammatory and degenerative changes are key in exposed children and young

adults. Misfolded α-synuclein is present in 23.5% of < 25 y MC residents [66] and the  brainstem

distribution  of  this  protein  follows  key  anatomical  regions  known  to  be  involved  early  in

Parkinson’s disease (PD) stages [67, 68]. Specifically, α-synuclein has been observed in the dorsal

vagal   nucleus,  solitary  complex,  lower  raphe  nuclei,  locus  coeruleus  and  pedunculo-pontine

nuclei, as well as in the olfactory bulb of young MC residents [34, 66]. These findings correspond

to Braak stages I and II of PD characterized by autonomic and olfactory disturbances[67-69], that

are indeed present in our exposed pediatric cohorts [66]. Our observations put forward a key

question raised by numerous researchers: What events trigger the onset of Parkinson’s disease?

One important question begging an answer because by the time PD motor symptoms are present,

the pathology is irreversible[70]. 



If we follow Braak’s PD neuropathology staging, the earlier pathological changes (stages I and II)

are observed in the olfactory bulb and brainstem; the motor symptoms relate to stage III  and

beyond.  Further,  autonomic  disturbances  are  early,  as  many  as  4  decades  before  motor

manifestations. It  would be extremely difficult to ignore landmark papers pointing towards the

relationship  between  the  intranasal  neurotoxicant  and  biologically  plausible  pathways  in

explaining involvement of key early PD targets, namely the mucosal barrier of the gastrointestinal

tract  and,  via  postganglionic  enteric  neurons,  entering  the  central  nervous  system  along

unmyelinated praganglionic fibers generated from the visceromotor projection cells of the vagus

nerve” [63], and the olfactory vector hypothesis[71]. We propose these potential pathways are

involved in highly exposed urban children and more importantly, that they lead to involvement of

the brainstem. 

4. Alzheimer’s and Parkinson’s diseases and air pollution

The  interpretation  of  the  early  oxidative  stress,  the  upregulation  of  key  gene  pathways,

neuroinflammation, misfolded proteins in key anatomical areas, etc., in the brains of children and

young  adults  with  lifetime  high  exposures  to  air  pollutants  is  critical  to  the  origin  of

neurodegeneration  in  AD  and  PD.   As  Castellani  and  Perry[56]   point  it  out,  the  prevailing

paradigm of neurodegenerative changes being the etiology rather than a response to detrimental

environments at different levels, no longer holds. We are showing early AD and PD hallmarks in

MCMA children and our findings are not isolated given that other authors are showing that the

development  of  abnormal  tau  for  example,  starts  in  childhood  [72,  73].  Critical  to  our  human

studies,  systemic  inflammation,  neuroinflammation  and  misfolded  protein  aggregates  are

progressive features elicited upon the administration of air pollutant components to experimental

animals[52-54, 74-76].  Our interpretation of AD and PD hallmarks in the setting of air pollution is

on the side of initial  protective responses [32, 33]. In the Alzheimer’s brain,  tau is abnormally

hyperphosphorylated (HP) [77]. 



Tau phosphorylation could be protective (e.g., hibernation) or toxic (e.g., hyperphosphorylation and

aggregation of tau)[78]. Although the aggregation of HP tau species has been proposed to represent

a  compensatory  neuronal  response  against  oxidative  stress  and  to  serve  at  least  initially  as  a

protector  against  cell  death[79,  80],  the  detrimental  effects  of  abnormal  tau  in  AD,  related

tautopathies and under experimental conditions are not subject to controversy [55, 78, 81-84]. 

Jung et al., work establishes the strong association between long-term exposure to O3 and PM2.5 

above the current US EPA standards and increased Alzheimer’s disease risk in a cohort of 

individual>65y. They found a 138% risk of increase of AD per increase of 4.34 μg/m3 in PM2.5 

over the 10y follow-up period [85]. Jung’s work is very relevant to our work and brings the issue of

Alzheimer’s disease development over several decades and thus is subject to neuroprotective 

interventions.

If cellular defense mechanisms try to intervene but fail, as strongly suggested by several authors 

[86], and gene studies point towards the strong association with networks characterized by the very 

same common denominators i.e., oxidative stress,  seen in common diseases that are causing high 

morbility and mortality (cancer, diabetes, renal diseases, and cardiovascular diseases), then why not

pursue the notion that gene changes and the pathology in urban children is indicative of an active 

host response or environmental adaptation as suggested by Castellani and Perry [56].

Alpha-synuclein aggregation is associated to the pathogenesis of Parkinson's disease and exposure

to a myriad of environmental agents, including agrochemicals increases PD risk[87, 88]. That being

said, we need to emphasize that α-synuclein in MC children is present in key regions associated

with PD pathology:  olfactory bulb,  midbrain  and the lower sections  of  the brainstem,  e.g.,  the

medulla  oblongata.  Moreover,  MC teens  exhibit  already  olfactory  disturbances  and  autonomic

dysfunction (i.e., syncope) severe enough to require pediatric care. 



The  presence  of  up-regulated  inflammatory  cytokines,  α-synuclein  and  HPπ  olfactory  bulb

pathology in MCMA children along the breakdown of the GI duodenal barrier  in Mexico City

young  dogs  and  autoantibodies  against  tight  junction  proteins,  are  ominous  signs  possibly

associated with a number of other non-motor symptoms related to PD, such as dysautonomia and

sleep disturbances[89, 90]. 

The key role of APOE 4

The results of the clinical and neuropathological studies in highly exposed children strongly 

suggests that carriers of the allele ε4 of apolipoprotein E4 (APOE ε4), the most prevalent genetic 

risk factor for sporadic AD (21), have significantly more cognitive and neuropathology changes that

APOE ε3 carriers.  

If indeed there is interest in preventing AD, if we know that urban children with an APOE ε4 are 

clearly showing cognitive deficits, greater hyperphosphorylated tau and diffuse Aβ plaques versus 

E3 carriers (Q = 7.82, p = 0.005) [37] why not to target apoE4 and pave the way for future studies? 

Pediatric research linking Alzheimer’s early hallmarks with air pollution has been totally ignored by

the grant supporting institutions. 

5. The need for neuroprotection in high-risk children and young adults

Early neuroprotection of high-risk urban children and young adults should be in the agenda of 

health federal agencies. The inducible regulation of key gene pathways in young brains suggests 

they are evolving different mechanisms in an attempt to cope with the constant state of 

inflammation and oxidative stress related to their environmental exposures[33]. Cellular defense 

mechanisms try to intervene but fail, finally resulting in AD pathology as the disease 

progresses[91]. Oxidative stress is at the core of Alzheimer's disease and genomic vulnerability [92]

is important in the scenario of air pollution.



6. Environmental risk factors in MS

Many factors, including both genetic and environmental, have been suspected of being associated 

with MS. A complex interaction between environmental factors with susceptibility genes probably 

leads to the onset of the disease. The most likely environmental factors are sunlight exposure 

mediating vitamin D synthesis and UV radiation [93]. EBV stands out as an infectious agent that 

can explain many features of MS epidemiology[94]. Several lines of evidence also suggest smoking 

as a modifiable risk factor for MS [95-97].

6.1. Air pollution as a risk factor in MS

UV and vitamin D have been implied as most prominent environmental factors describing the 

latitudinal gradient of MS prevalence observed among European descent nations [98]. There is an 

inverse relationship between serum vitamin D level and MS clinical activity [99]. High circulating 

levels of vitamin D are associated with a lower risk of multiple sclerosis [100, 101]. Exposure to 

sunlight is the main source of vitamin D requirement for many people and may also exert a 

protective effect in MS patients. 

Air pollutants could also contribute to low circulating vitamin D levels of inhabitants of polluted 

areas. Women and children in areas with high levels of air pollutants had significantly lower 

vitamin D level [102, 103]. Increased maternal exposure to NO2 and PM10 during the whole 

pregnancy might be associated to lower cord blood serum 25(OH) D levels at birth [104], 

furthermore the high tropospheric ozone content of urban areas is also a risk factor for vitamin D 

deficiency [105]. 



Adverse effects of air pollutants on central nervous system has been observed in post-mortem 

studies of inhabitants of polluted cities [106]. In a later study, neuroinflammation, altered blood 

brain barrier, and particulate deposition in the brain of children and young adults living in cities 

with high air pollution was observed [35]. Only few studies have considered possible role of air 

pollutants in pathogenesis of MS or of MS relapses. They are described below.

A retrospective study in south-western Finland, including 1205 relapses which occurred among 

406 patients in 14-year period 1985-1999, has shown a strong relationship between MS relapses 

and peak amounts in PM10 and  SO2+NO2+NO levels [107]. Odds ratio were respectively 3.0 [1.2-

7.7] and 11.7 [3.3-42.0] without lag, and 4.1 [1.6-10.6] and 9.3 [2.7-31.4] with one month lag. This 

study was conducted on a long period and included a large number of events that were 

systematically authenticated by a neurologist. However, no information regarding DMTs or clinical 

characteristics of the disease was considered, and the methods to measure air pollutants were not

described. Therefore, the exposure measurements may be not so accurate.

The best model predicting clustered pattern of female MS patients in Georgia

included PM10 [108]. This American study has studied MS prevalence at county

level in Georgia using an ecological design. Significant associations were found

between MS prevalence and PM10 levels, as well as MS prevalence and income

levels.  Study  population  comprised  9 072 576  people,  of  whom 6 247 were

declared as MS to the regional section of « Multiple Sclerosis Society ».  This

study, despite its large size, has several methodological weaknesses, such as

self-declared  diagnosis  of  MS  (not  validated  by  neurologists),  lack  of  age-

adjusted  prevalence  estimates,  and  imprecise  measure  of  air  pollutants

(county level  which is  big).  Moreover,  there may be a potential  bias in the

chronological  sequence  between  exposure  measured  in  1999  and  MS

prevalence measured in 2005. 



 Indeed, MS cases who started before 1999 are included while they have not

been exposed  to  the  studied  exposure,  unless  pollution  levels  in  1999  are

supposed to be equivalent to previous levels.

Clustering pattern of MS prevalence patients were also observed in Tehran [109, 110], and a 

significant difference in long term exposure to PM10, SO2, NO2, and NOx was observed in MS cases 

compared with controls [109]. A recent study in Tehran found higher relapse rate during the winter 

and following first month of the spring and MS relapses were correlated with NO levels [111]. They

also found that most air pollutants such as NO2, NO and CO are in high levels in the rainy season. 

Others like Pm10 and Nox are in high levels in the dry season. The correlation between NO2 levels 

of all markers of air quality and MS relapses (P=0.03, r=0.27) was weak. Best ARIMA model was 

determined between number of monthly relapses and living place, although this model was not 

significant (P=0.3). 

In Serbia, the results confirmed the influence of air pollution and climate seasonal conditions on 

disease relapses in MS patients based on a long-term observation (5 years). Lower numbers of 

days with low air pollution during the periods with low vitamin D (January–April), especially with 

increased cloudiness at 2 p.m, induce a higher risk of MS relapses in southern continental parts of 

Europe [112] . In this study, period under DMTs were excluded, and the diagnosis of relapses were

always established by MS specialized neurologists. Methods to measure exposure are clearly 

exposed. Oikonen et al suggested that PM10 increased susceptibility to adenoviral infections, 

hence increasing the relapse rate in MS patients [113]. 

A French study regarding the potential association between air pollutants and MS relapses is ongoing in 

Strasbourg city in North Eastern France. A total of 254 patients accounting for 1143 relapses in the period 

2000-2009 have been included. A case crossover design has been selected, i.e. the analysis will be 

performed by comparing among each patient the air pollutants levels observed in period where relapses 

occurred with period without relapses. 



This design allows controlling for individual confusion factors such as gender, age at MS onset etc. 

Preliminary results (unpublished yet) showed a significant association between PM10 levels during the 3 

previous days and the risk of relapse (OR=1.3; 95%CI 1.1-1.7)

Seasonal  variation  of  MS  relapses  was  also  confirmed  in  a  recent  meta-

analysis. Their frequency is higher in spring and lower in winter, which is in

favor of seasonal risk factors for MS, such as air pollutants.  

6.2. Air pollutants play a role in neuroinflammation

Evidence from lab studies suggest that ultrafine particulate matter affects CNS inflammatory 

processes and increase biomarkers of inflammation in mouse brain [114, 115]. Levels of pro-

inflammatory cytokines (IL-1α, TNF-α) and the immune related transcription factor (NF-kB) were 

increased in brain tissue of mice exposed to particulate matter compared to that of control 

animals [114]. Mice exposed to two levels of concentrated ultrafine particulate matter in central 

Los Angeles showed aberrant immune activation in the brains as judged by a dose-related increase

in nuclear translocation of two key inflammatory transcription factors (NF-κB and AP-1)[115]. In 

another study, baseline levels of the pro-inflammatory cytokines (TNF-α, IL-1α) were increased in 

the striatum after exposure to diesel engine exhaust. A similar, though not significant, trend was 

seen with the mRNA expression levels of TNF-α and TNF Receptor-subtype I [116].

63. Future directions 

Variations in exposure to air pollutants during disease course should be quantified in longitudinal 

studies with detailed assessment batteries on various clinical aspects of MS to allow researchers 

reveal potential role of air pollutants in MS pathogenesis. Appropriate study designs have to be 

selected in order to control to most of confounding and reach a high level of evidence. Moreover, 

epigenetic studies may be of interest in order to highlight the mechanisms responsible for the role 

of air pollutants in pathogenesis of MS or MS relapses.



7. Conclusions

Air  pollution  has  become  a  key  issue  in  Public  Health  (at  a  local  and  regional  level)  and  in

Environmental  Sciences.  What  can  we  do?  Improving  air  quality  and  identifying  the  young

urbanites with the most risk for neurodegeneration are key to protect our residents. But solutions

will have to come from Policy and politics.

Early cognitive deficits are associated with prenatal and early postnatal air pollutant exposures, 

brain structural, volumetric and metabolic changes are described in adolescence and early adulthood

with significant cognitive deficits that will negatively impact the academic, labour and social 

performance of the affected individuals. Pursuing the notion that gene pathway changes and the 

neuropathology in urban children and young adults is indicative of an active host response or 

environmental adaptation [56] and that genetic factors play a key role (APOE ε4) (21) why not 

target the obvious and pave the way for future studies? 

It is interesting to consider the evolution of the awareness of this issue. Disasters related to acute air 

pollution hit Europe and the US in the twenty-century. They led to a great societal and political concern

and to regulatory actions (Clean Air Act in 1956 UK and in 1970 in the US) [2], extending progressively 

into the word (e.g. European Clean Air Package)[117]. By the end of the twenty-century, air quality 

improves in western countries: lower pollutants concentration, mostly chronic or sub-acute exposure. 



References

1. Reis J, Roman GC. Environmental neurology: a promising new field of practice and research. 
Journal of the neurological sciences. 2007;262(1-2):3-6.
2. Zhang JJ, Samet JM. Chinese haze versus Western smog: lessons learned. Journal of thoracic 
disease. 2015;7(1):3-13.
3. Kyle AD, Wright CC, Caldwell JC, Buffler PA, Woodruff TJ. Evaluating the health significance of 
hazardous air pollutants using monitoring data. Public health reports. 2001;116(1):32-44.
4. Bakian AV, Huber RS, Coon H, Gray D, Wilson P, McMahon WM, et al. Acute air pollution 
exposure and risk of suicide completion. American journal of epidemiology. 2015;181(5):295-303.
5. Stafoggia M, Cesaroni G, Peters A, Andersen ZJ, Badaloni C, Beelen R, et al. Long-term 
exposure to ambient air pollution and incidence of cerebrovascular events: results from 11 European 
cohorts within the ESCAPE project. Environmental health perspectives. 2014;122(9):919-25.
6. Fecht D, Fischer P, Fortunato L, Hoek G, de Hoogh K, Marra M, et al. Associations between air 
pollution and socioeconomic characteristics, ethnicity and age profile of neighbourhoods in England and 
the Netherlands. Environmental pollution. 2015;198:201-10.
7. Platt SM, Haddad IE, Pieber SM, Huang RJ, Zardini AA, Clairotte M, et al. Two-stroke scooters 
are a dominant source of air pollution in many cities. Nature communications. 2014;5:3749.
8. Suissa L, Fortier M, Lachaud S, Staccini P, Mahagne MH. Ozone air pollution and ischaemic 
stroke occurrence: a case-crossover study in Nice, France. BMJ open. 2013;3(12):e004060.
9. Calderon-Garciduenas L, Mora-Tiscareno A, Ontiveros E, Gomez-Garza G, Barragan-Mejia G, 
Broadway J, et al. Air pollution, cognitive deficits and brain abnormalities: a pilot study with children and 
dogs. Brain and cognition. 2008;68(2):117-27.
10. Calderon-Garciduenas L, Mora-Tiscareno A, Styner M, Gomez-Garza G, Zhu H, Torres-Jardon R, 
et al. White matter hyperintensities, systemic inflammation, brain growth, and cognitive functions in 
children exposed to air pollution. Journal of Alzheimer's disease : JAD. 2012;31(1):183-91.
11. Calderon-Garciduenas L, Engle R, Mora-Tiscareno A, Styner M, Gomez-Garza G, Zhu H, et al. 
Exposure to severe urban air pollution influences cognitive outcomes, brain volume and systemic 
inflammation in clinically healthy children. Brain and cognition. 2011;77(3):345-55.
12. Yolton K, Dietrich K, Auinger P, Lanphear BP, Hornung R. Exposure to environmental tobacco 
smoke and cognitive abilities among U.S. children and adolescents. Environmental health perspectives. 
2005;113(1):98-103.
13. Suglia SF, Gryparis A, Wright RO, Schwartz J, Wright RJ. Association of black carbon with 
cognition among children in a prospective birth cohort study. American journal of epidemiology. 
2008;167(3):280-6.
14. van Kempen E, Fischer P, Janssen N, Houthuijs D, van Kamp I, Stansfeld S, et al. 
Neurobehavioral effects of exposure to traffic-related air pollution and transportation noise in primary 
schoolchildren. Environmental research. 2012;115:18-25.
15. Dix-Cooper L, Eskenazi B, Romero C, Balmes J, Smith KR. Neurodevelopmental performance 
among school age children in rural Guatemala is associated with prenatal and postnatal exposure to carbon
monoxide, a marker for exposure to woodsmoke. Neurotoxicology. 2012;33(2):246-54.
16. Kim E, Park H, Hong YC, Ha M, Kim Y, Kim BN, et al. Prenatal exposure to PM(1)(0) and NO(2) 
and children's neurodevelopment from birth to 24 months of age: mothers and Children's Environmental 
Health (MOCEH) study. The Science of the total environment. 2014;481:439-45.
17. Kicinski M, Vermeir G, Van Larebeke N, Den Hond E, Schoeters G, Bruckers L, et al. 
Neurobehavioral performance in adolescents is inversely associated with traffic exposure. Environment 
international. 2015;75:136-43.
18. Murray AD, McNeil CJ, Salarirad S, Whalley LJ, Staff RT. Early life socioeconomic circumstance 
and late life brain hyperintensities--a population based cohort study. PloS one. 2014;9(2):e88969.
19. Calderon-Garciduenas L, Mora-Tiscareno A, Franco-Lira M, Zhu H, Lu Z, Solorio E, et al. 
Decreases in Short Term Memory, IQ, and Altered Brain Metabolic Ratios in Urban Apolipoprotein epsilon4 
Children Exposed to Air Pollution. Journal of Alzheimer's disease : JAD. 2015;45(3):757-70.



20. Michaelson DM. APOE epsilon4: the most prevalent yet understudied risk factor for 
Alzheimer's disease. Alzheimer's & dementia : the journal of the Alzheimer's Association. 2014;10(6):861-8.
21. Calderon-Garciduenas L, Serrano-Sierra A, Torres-Jardon R, Zhu H, Yuan Y, Smith D, et al. The 
impact of environmental metals in young urbanites' brains. Experimental and toxicologic pathology : official
journal of the Gesellschaft fur Toxikologische Pathologie. 2013;65(5):503-11.
22. Lucchini RG, Guazzetti S, Zoni S, Donna F, Peter S, Zacco A, et al. Tremor, olfactory and motor 
changes in Italian adolescents exposed to historical ferro-manganese emission. Neurotoxicology. 
2012;33(4):687-96.
23. Curtis DJ, Sood A, Phillips TJ, Leinster VH, Nishiguchi A, Coyle C, et al. Secretions from placenta,
after hypoxia/reoxygenation, can damage developing neurones of brain under experimental conditions. 
Experimental neurology. 2014;261:386-95.
24. Saunders NR, Liddelow SA, Dziegielewska KM. Barrier mechanisms in the developing brain. 
Frontiers in pharmacology. 2012;3:46.
25. Peterson BS, Rauh VA, Bansal R, Hao X, Toth Z, Nati G, et al. Effects of Prenatal Exposure to Air 
Pollutants (Polycyclic Aromatic Hydrocarbons) on the Development of Brain White Matter, Cognition, and 
Behavior in Later Childhood. JAMA psychiatry. 2015.
26. Yi D, Yuan Y, Jin L, Zhou G, Zhu H, Finnell RH, et al. Levels of PAH-DNA adducts in cord blood 
and cord tissue and the risk of fetal neural tube defects in a Chinese population. Neurotoxicology. 
2015;46:73-8.
27. Langlois PH, Hoyt AT, Desrosiers TA, Lupo PJ, Lawson CC, Waters MA, et al. Maternal 
occupational exposure to polycyclic aromatic hydrocarbons and small for gestational age offspring. 
Occupational and environmental medicine. 2014;71(8):529-35.
28. Li Z, Sandau CD, Romanoff LC, Caudill SP, Sjodin A, Needham LL, et al. Concentration and 
profile of 22 urinary polycyclic aromatic hydrocarbon metabolites in the US population. Environmental 
research. 2008;107(3):320-31.
29. Jung KH, Liu B, Lovinsky-Desir S, Yan B, Camann D, Sjodin A, et al. Time trends of polycyclic 
aromatic hydrocarbon exposure in New York City from 2001 to 2012: assessed by repeat air and urine 
samples. Environmental research. 2014;131:95-103.
30. Scinicariello F, Buser MC. Urinary polycyclic aromatic hydrocarbons and childhood obesity: 
NHANES (2001-2006). Environmental health perspectives. 2014;122(3):299-303.
31. Calderon-Garciduenas L, Vojdani A, Blaurock-Busch E, Busch Y, Friedle A, Franco-Lira M, et al. 
Air pollution and children: neural and tight junction antibodies and combustion metals, the role of barrier 
breakdown and brain immunity in neurodegeneration. Journal of Alzheimer's disease : JAD. 
2015;43(3):1039-58.
32. Calderon-Garciduenas L, Franco-Lira M, Mora-Tiscareno A, Medina-Cortina H, Torres-Jardon R, 
Kavanaugh M. Early Alzheimer's and Parkinson's disease pathology in urban children: Friend versus Foe 
responses--it is time to face the evidence. BioMed research international. 2013;2013:161687.
33. Calderon-Garciduenas L, Kavanaugh M, Block M, D'Angiulli A, Delgado-Chavez R, Torres-Jardon
R, et al. Neuroinflammation, hyperphosphorylated tau, diffuse amyloid plaques, and down-regulation of 
the cellular prion protein in air pollution exposed children and young adults. Journal of Alzheimer's disease :
JAD. 2012;28(1):93-107.
34. Calderon-Garciduenas L, Franco-Lira M, Henriquez-Roldan C, Osnaya N, Gonzalez-Maciel A, 
Reynoso-Robles R, et al. Urban air pollution: influences on olfactory function and pathology in exposed 
children and young adults. Experimental and toxicologic pathology : official journal of the Gesellschaft fur 
Toxikologische Pathologie. 2010;62(1):91-102.
35. Calderon-Garciduenas L, Solt AC, Henriquez-Roldan C, Torres-Jardon R, Nuse B, Herritt L, et al. 
Long-term air pollution exposure is associated with neuroinflammation, an altered innate immune 
response, disruption of the blood-brain barrier, ultrafine particulate deposition, and accumulation of 
amyloid beta-42 and alpha-synuclein in children and young adults. Toxicologic pathology. 2008;36(2):289-
310.
36. Calderón-Garcidueñas Lilian  G-MA, Vojdani Aristo, Franco-Lira Maricela, Reynoso-Robles 
Rafael , Montesinos-Correa Hortencia, Pérez-Guillé Beatriz , Sarathi Mukherjee Partha ,Torres-Jardón  
Ricardo , Calderón-Garcidueñas Ana ,  Perry George. The Intestinal Barrier in Air Pollution-Associated Neural
Invol vement in Mexico City Residents: Mind the Gut, the Evolution of a Chan ging Paradigm Relevant to 



Parkinson Disease Risk. Journal of Alzheimers Disease & Parkinsonism. 2015;5(1):1-12.
37. Lampron A, Elali A, Rivest S. Innate immunity in the CNS: redefining the relationship between 
the CNS and Its environment. Neuron. 2013;78(2):214-32.
38. Wohleb ES, McKim DB, Sheridan JF, Godbout JP. Monocyte trafficking to the brain with stress 
and inflammation: a novel axis of immune-to-brain communication that influences mood and behavior. 
Frontiers in neuroscience. 2014;8:447.
39. Dong H, Zhang X, Qian Y. Mast cells and neuroinflammation. Medical science monitor basic 
research. 2014;20:200-6.
40. Huang W, Wang G, Lu SE, Kipen H, Wang Y, Hu M, et al. Inflammatory and oxidative stress 
responses of healthy young adults to changes in air quality during the Beijing Olympics. American journal of
respiratory and critical care medicine. 2012;186(11):1150-9.
41. Behbod B, Urch B, Speck M, Scott JA, Liu L, Poon R, et al. Endotoxin in concentrated coarse and
fine ambient particles induces acute systemic inflammation in controlled human exposures. Occupational 
and environmental medicine. 2013;70(11):761-7.
42. Marchini T, Magnani ND, Paz ML, Vanasco V, Tasat D, Gonzalez Maglio DH, et al. Time course 
of systemic oxidative stress and inflammatory response induced by an acute exposure to Residual Oil Fly 
Ash. Toxicology and applied pharmacology. 2014;274(2):274-82.
43. Wittkopp S, Staimer N, Tjoa T, Gillen D, Daher N, Shafer M, et al. Mitochondrial genetic 
background modifies the relationship between traffic-related air pollution exposure and systemic 
biomarkers of inflammation. PloS one. 2013;8(5):e64444.
44. Huttunen K, Siponen T, Salonen I, Yli-Tuomi T, Aurela M, Dufva H, et al. Low-level exposure to 
ambient particulate matter is associated with systemic inflammation in ischemic heart disease patients. 
Environmental research. 2012;116:44-51.
45. Block ML, Calderon-Garciduenas L. Air pollution: mechanisms of neuroinflammation and CNS 
disease. Trends in neurosciences. 2009;32(9):506-16.
46. Terzano C, Di Stefano F, Conti V, Graziani E, Petroianni A. Air pollution ultrafine particles: 
toxicity beyond the lung. European review for medical and pharmacological sciences. 2010;14(10):809-21.
47. Wu J, Wang C, Sun J, Xue Y. Neurotoxicity of silica nanoparticles: brain localization and 
dopaminergic neurons damage pathways. ACS nano. 2011;5(6):4476-89.
48. Win-Shwe TT, Fujimaki H. Nanoparticles and neurotoxicity. International journal of molecular 
sciences. 2011;12(9):6267-80.
49. Sharma HS, Sharma A. Neurotoxicity of engineered nanoparticles from metals. CNS & 
neurological disorders drug targets. 2012;11(1):65-80.
50. Sharma A, Muresanu DF, Patnaik R, Sharma HS. Size- and age-dependent neurotoxicity of 
engineered metal nanoparticles in rats. Molecular neurobiology. 2013;48(2):386-96.
51. Shim KH, Hulme J, Maeng EH, Kim MK, An SS. Analysis of SiO2 nanoparticles binding proteins in
rat blood and brain homogenate. International journal of nanomedicine. 2014;9 Suppl 2:207-15.
52. Levesque S, Taetzsch T, Lull ME, Kodavanti U, Stadler K, Wagner A, et al. Diesel exhaust 
activates and primes microglia: air pollution, neuroinflammation, and regulation of dopaminergic 
neurotoxicity. Environmental health perspectives. 2011;119(8):1149-55.
53. Levesque S, Taetzsch T, Lull ME, Johnson JA, McGraw C, Block ML. The role of MAC1 in diesel 
exhaust particle-induced microglial activation and loss of dopaminergic neuron function. Journal of 
neurochemistry. 2013;125(5):756-65.
54. Levesque S, Surace MJ, McDonald J, Block ML. Air pollution & the brain: Subchronic diesel 
exhaust exposure causes neuroinflammation and elevates early markers of neurodegenerative disease. 
Journal of neuroinflammation. 2011;8:105.
55. Wang X, Wang W, Li L, Perry G, Lee HG, Zhu X. Oxidative stress and mitochondrial dysfunction 
in Alzheimer's disease. Biochimica et biophysica acta. 2014;1842(8):1240-7.
56. Castellani RJ, Perry G. The complexities of the pathology-pathogenesis relationship in 
Alzheimer disease. Biochemical pharmacology. 2014;88(4):671-6.
57. Calderon-Garciduenas L, Macias-Parra M, Hoffmann HJ, Valencia-Salazar G, Henriquez-Roldan 
C, Osnaya N, et al. Immunotoxicity and environment: immunodysregulation and systemic inflammation in 
children. Toxicologic pathology. 2009;37(2):161-9.
58. Doty RL. Olfaction in Parkinson's disease and related disorders. Neurobiology of disease. 



2012;46(3):527-52.
59. Bergin IL, Witzmann FA. Nanoparticle toxicity by the gastrointestinal route: evidence and 
knowledge gaps. International journal of biomedical nanoscience and nanotechnology. 2013;3(1-2).
60. Kaplan GG, Szyszkowicz M, Fichna J, Rowe BH, Porada E, Vincent R, et al. Non-specific 
abdominal pain and air pollution: a novel association. PloS one. 2012;7(10):e47669.
61. Kaplan GG, Hubbard J, Korzenik J, Sands BE, Panaccione R, Ghosh S, et al. The inflammatory 
bowel diseases and ambient air pollution: a novel association. The American journal of gastroenterology. 
2010;105(11):2412-9.
62. Kish L, Hotte N, Kaplan GG, Vincent R, Tso R, Ganzle M, et al. Environmental particulate matter 
induces murine intestinal inflammatory responses and alters the gut microbiome. PloS one. 
2013;8(4):e62220.
63. Braak H, Rub U, Gai WP, Del Tredici K. Idiopathic Parkinson's disease: possible routes by which 
vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. Journal of neural 
transmission (Vienna, Austria : 1996). 2003;110(5):517-36.
64. Levin EC, Acharya NK, Han M, Zavareh SB, Sedeyn JC, Venkataraman V, et al. Brain-reactive 
autoantibodies are nearly ubiquitous in human sera and may be linked to pathology in the context of 
blood-brain barrier breakdown. Brain research. 2010;1345:221-32.
65. Diamond B, Honig G, Mader S, Brimberg L, Volpe BT. Brain-reactive antibodies and disease. 
Annual review of immunology. 2013;31:345-85.
66. Calderon-Garciduenas L, D'Angiulli A, Kulesza RJ, Torres-Jardon R, Osnaya N, Romero L, et al. 
Air pollution is associated with brainstem auditory nuclei pathology and delayed brainstem auditory evoked
potentials. International journal of developmental neuroscience : the official journal of the International 
Society for Developmental Neuroscience. 2011;29(4):365-75.
67. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology 
related to sporadic Parkinson's disease. Neurobiology of aging. 2003;24(2):197-211.
68. Del Tredici K, Braak H. Dysfunction of the locus coeruleus-norepinephrine system and related 
circuitry in Parkinson's disease-related dementia. Journal of neurology, neurosurgery, and psychiatry. 
2013;84(7):774-83.
69. Meissner WG. When does Parkinson's disease begin? From prodromal disease to motor signs. 
Revue neurologique. 2012;168(11):809-14.
70. Tison F, Meissner WG. Movement disorders in 2013: diagnosing and treating PD-the earlier the
better? Nature reviews Neurology. 2014;10(2):65-6.
71. Prediger RD, Aguiar AS, Jr., Matheus FC, Walz R, Antoury L, Raisman-Vozari R, et al. Intranasal 
administration of neurotoxicants in animals: support for the olfactory vector hypothesis of Parkinson's 
disease. Neurotoxicity research. 2012;21(1):90-116.
72. Braak H, Del Tredici K. Where, when, and in what form does sporadic Alzheimer's disease 
begin? Current opinion in neurology. 2012;25(6):708-14.
73. Braak H, Thal DR, Ghebremedhin E, Del Tredici K. Stages of the pathologic process in Alzheimer
disease: age categories from 1 to 100 years. Journal of neuropathology and experimental neurology. 
2011;70(11):960-9.
74. Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, et al. Systemic LPS causes chronic 
neuroinflammation and progressive neurodegeneration. Glia. 2007;55(5):453-62.
75. Hartz AM, Bauer B, Block ML, Hong JS, Miller DS. Diesel exhaust particles induce oxidative 
stress, proinflammatory signaling, and P-glycoprotein up-regulation at the blood-brain barrier. FASEB 
journal : official publication of the Federation of American Societies for Experimental Biology. 
2008;22(8):2723-33.
76. MohanKumar SM, Campbell A, Block M, Veronesi B. Particulate matter, oxidative stress and 
neurotoxicity. Neurotoxicology. 2008;29(3):479-88.
77. Wang JZ, Xia YY, Grundke-Iqbal I, Iqbal K. Abnormal hyperphosphorylation of tau: sites, 
regulation, and molecular mechanism of neurofibrillary degeneration. Journal of Alzheimer's disease : JAD. 
2013;33 Suppl 1:S123-39.
78. Avila J, Leon-Espinosa G, Garcia E, Garcia-Escudero V, Hernandez F, Defelipe J. Tau 
Phosphorylation by GSK3 in Different Conditions. International journal of Alzheimer's disease. 
2012;2012:578373.



79. Lee HG, Perry G, Moreira PI, Garrett MR, Liu Q, Zhu X, et al. Tau phosphorylation in Alzheimer's
disease: pathogen or protector? Trends in molecular medicine. 2005;11(4):164-9.
80. Buee L, Troquier L, Burnouf S, Belarbi K, Van der Jeugd A, Ahmed T, et al. From tau 
phosphorylation to tau aggregation: what about neuronal death? Biochemical Society transactions. 
2010;38(4):967-72.
81. Hernandez F, Avila J. Intra- and extracellular protein interactions with tau. Current Alzheimer 
research. 2010;7(8):670-6.
82. Spillantini MG, Goedert M. Tau pathology and neurodegeneration. The Lancet Neurology. 
2013;12(6):609-22.
83. Clavaguera F, Hench J, Goedert M, Tolnay M. Invited review: Prion-like transmission and 
spreading of tau pathology. Neuropathology and applied neurobiology. 2015;41(1):47-58.
84. Goedert M, Falcon B, Clavaguera F, Tolnay M. Prion-like mechanisms in the pathogenesis of 
tauopathies and synucleinopathies. Current neurology and neuroscience reports. 2014;14(11):495.
85. Jung CR, Lin YT, Hwang BF. Ozone, particulate matter, and newly diagnosed Alzheimer's 
disease: a population-based cohort study in Taiwan. Journal of Alzheimer's disease : JAD. 2015;44(2):573-
84.
86. Bonda DJ, Wang X, Lee HG, Smith MA, Perry G, Zhu X. Neuronal failure in Alzheimer's disease: 
a view through the oxidative stress looking-glass. Neuroscience bulletin. 2014;30(2):243-52.
87. Silva BA, Breydo L, Fink AL, Uversky VN. Agrochemicals, alpha-synuclein, and Parkinson's 
disease. Molecular neurobiology. 2013;47(2):598-612.
88. Baltazar MT, Dinis-Oliveira RJ, de Lourdes Bastos M, Tsatsakis AM, Duarte JA, Carvalho F. 
Pesticides exposure as etiological factors of Parkinson's disease and other neurodegenerative diseases--a 
mechanistic approach. Toxicology letters. 2014;230(2):85-103.
89. Palma JA, Kaufmann H. Autonomic disorders predicting Parkinson's disease. Parkinsonism & 
related disorders. 2014;20 Suppl 1:S94-8.
90. Anang JB, Gagnon JF, Bertrand JA, Romenets SR, Latreille V, Panisset M, et al. Predictors of 
dementia in Parkinson disease: a prospective cohort study. Neurology. 2014;83(14):1253-60.
91. Xia J, Rocke DM, Perry G, Ray M. Differential network analyses of Alzheimer's disease identify 
early events in Alzheimer's disease pathology. International journal of Alzheimer's disease. 
2014;2014:721453.
92. Rodrigues R, Petersen RB, Perry G. Parallels between major depressive disorder and 
Alzheimer's disease: role of oxidative stress and genetic vulnerability. Cellular and molecular neurobiology. 
2014;34(7):925-49.
93. Ascherio A, Munger KL. Environmental risk factors for multiple sclerosis. Part II: Noninfectious 
factors. Annals of neurology. 2007;61(6):504-13.
94. Ascherio A, Munger KL. Environmental risk factors for multiple sclerosis. Part I: the role of 
infection. Annals of neurology. 2007;61(4):288-99.
95. Riise T, Nortvedt MW, Ascherio A. Smoking is a risk factor for multiple sclerosis. Neurology. 
2003;61(8):1122-4.
96. Mikaeloff Y, Caridade G, Tardieu M, Suissa S. Parental smoking at home and the risk of 
childhood-onset multiple sclerosis in children. Brain. 2007;130(10):2589-95.
97. Hernán MA, Oleky MJ, Ascherio A. Cigarette Smoking and Incidence of Multiple Sclerosis. 
American journal of epidemiology. 2001;154(1):69-74.
98. Simpson S, Blizzard L, Otahal P, Van der Mei I, Taylor B. Latitude is significantly associated with 
the prevalence of multiple sclerosis: a meta-analysis. Journal of Neurology, Neurosurgery & Psychiatry. 
2011:jnnp. 2011.240432.
99. Soilu-Hanninen M, Laaksonen M, Laitinen I, Eralinna JP, Lilius EM, Mononen I. A longitudinal 
study of serum 25-hydroxyvitamin D and intact parathyroid hormone levels indicate the importance of 
vitamin D and calcium homeostasis regulation in multiple sclerosis. Journal of neurology, neurosurgery, and
psychiatry. 2008;79(2):152-7.
100. Munger KL, Zhang S, O’reilly E, Hernan M, Olek M, Willett W, et al. Vitamin D intake and 
incidence of multiple sclerosis. Neurology. 2004;62(1):60-5.
101. Munger KL, Levin LI, Hollis BW, Howard NS, Ascherio A. Serum 25-hydroxyvitamin d levels and 
risk of multiple sclerosis. JAMA. 2006;296(23):2832-8.



102. Hosseinpanah F, Sima H, Heibatollahi M, Moghbel N, Asefzade S, Azizi F. The effects of air 
pollution on vitamin D status in healthy women: a cross sectional study. BMC Public Health. 
2010;10(1):519.
103. Agarwal KS, Mughal MZ, Upadhyay P, Berry JL, Mawer EB, Puliyel JM. The impact of 
atmospheric pollution on vitamin D status of infants and toddlers in Delhi, India. Archives of disease in 
childhood. 2002;87(2):111-3.
104. Baiz N, Dargent-Molina P, Wark JD, Souberbielle JC, Slama R, Annesi-Maesano I, et al. 
Gestational exposure to urban air pollution related to a decrease in cord blood vitamin d levels. The Journal
of clinical endocrinology and metabolism. 2012;97(11):4087-95.
105. Manicourt DH, Devogelaer JP. Urban tropospheric ozone increases the prevalence of vitamin D
deficiency among Belgian postmenopausal women with outdoor activities during summer. The Journal of 
clinical endocrinology and metabolism. 2008;93(10):3893-9.
106. Calderon-Garciduenas L, Azzarelli B, Acuna H, Garcia R, Gambling TM, Osnaya N, et al. Air 
pollution and brain damage. Toxicologic pathology. 2002;30(3):373-89.
107. Oikonen M, Laaksonen M, Laippala P, Oksaranta O, Lilius EM, Lindgren S, et al. Ambient air 
quality and occurrence of multiple sclerosis relapse. Neuroepidemiology. 2003;22(1):95-9.
108. Gregory AC, 2nd, Shendell DG, Okosun IS, Gieseker KE. Multiple Sclerosis disease distribution 
and potential impact of environmental air pollutants in Georgia. The Science of the total environment. 
2008;396(1):42-51.
109. Heydarpour P, Amini H, Khoshkish S, Seidkhani H, Sahraian MA, Yunesian M. Potential Impact 
of Air Pollution on Multiple Sclerosis in Tehran, Iran. Neuroepidemiology. 2014;43(3-4):233-8.
110. SAEI M, HOLAKOUIE-NAIENI K, MOSTAFAVI E, SAHRAIAN MA, MAHMOODI M, MANSOURNIA 
MA, et al. Spatial Analysis of Multiple Sclerosis Disease in Tehran Metro-poli¬tan Zone, Iran, 2001- 2012. 
Iranian Journal of Public Health. 2014;43(5):621-9.
111. Mehrpour M, Shams-hosseini NS, Rezaali S, Sahraian MA, Taki S. Effect of Air Pollutant Markers
on Multiple Sclerosis Relapses. Iranian Journal of Public Health. 2013;42(10):1167-73.
112. Vojinoviü Slobodan SD, Lukiü Stevo, Saviü Ljiljana, Vojinoviü Jelena. Disease relapses in 
multiple sclerosis can be influenced by air pollution and climate seasonal conditions. Vojnosanit Pregl. 
2015;72(1):44-9.
113. Oikonen MK, Eralinna JP. Beta-interferon protects multiple sclerosis patients against enhanced 
susceptibility to infections caused by poor air quality. Neuroepidemiology. 2008;30(1):13-9.
114. Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D, Sioutas C, et al. Particulate matter in 
polluted air may increase biomarkers of inflammation in mouse brain. Neurotoxicology. 2005;26(1):133-40.
115. Kleinman MT, Araujo JA, Nel A, Sioutas C, Campbell A, Cong PQ, et al. Inhaled ultrafine 
particulate matter affects CNS inflammatory processes and may act via MAP kinase signaling pathways. 
Toxicology letters. 2008;178(2):127-30.
116. Gerlofs-Nijland ME, van Berlo D, Cassee FR, Schins RP, Wang K, Campbell A. Effect of prolonged
exposure to diesel engine exhaust on proinflammatory markers in different regions of the rat brain. Particle
and fibre toxicology. 2010;7:12.
117. Agency EE. Safeguarding people from environmental risks to health; The European 
environment — state and outlook 2015: synthesis report. Copenhagen: 2015.


