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An efficient Jacobi-like deflationary ICA algorithm:

application to

EEG denoising

Sepideh Hajipour Sardoui&tudent Member, IEER,aurent Albera,Senior Member, IEEE,
Mohammad Bagher Shamsollasienior Member, IEEEand Isabelle Merlet

Abstract—In this paper, we propose a Jacobi-like Deflation-
ary ICA algorithm, named JDICA. More particularly, while
a projection-based deflation scheme inspired by Delfosse dn
Loubaton’s ICA technique (DelL®) is used, a Jacobi-like opti-
mization strategy is proposed in order to maximize a fourth
order cumulant-based contrast built from whitened observdions.
Experimental results obtained from simulated epileptic EES data
mixed with a real muscular activity and from the comparison in
terms of performance and numerical complexity with the Fas-
tICA, RobustICA and DelL ® algorithms, show that the proposed
algorithm offers the best trade-off between performance ad
numerical complexity when a low number (~ 12) of electrodes
is available.

Index Terms—Independent Component Analysis, deflation,
higher order statistics, Jacobi-like optimization, ElectoEn-
cephaloGraphy, denoising, interictal epileptic data.

I. INTRODUCTION

added to the contrast function [7] to force the algorithm to
extract the sources of interest during the early steps.dBssi
when the number of all sources largely encompasses the
number of sources of interest, the computational complexit
of the deflationary algorithms is greatly reduced.

In this paper, we propose an efficient Jacobi-like Deflation-
ary ICA algorithm, called JDICA, based on second and Fourth
Order (FO) statistics. The deflation procedure of our atbari
is inspired by [4]. The gradient-based ICA algorithm (cdlle
DelLR throughout this paper) proposed in [4], estimates the
sources one by one using a smart projection-based deflation
scheme. According to its gradient-based structure, the ste
size must be precisely chosen to guarantee acceptablésresul
especially with noisy data. A multi-initialization procect
can even be necessary in some practical contexts. In order to
overcome these drawbacks, we propose a Jacobi-like digorit

NDEPENDENT Component Analysis (ICA) [8], [9] is ato maximize the contrast function computed from the FO
very useful tool in signal processing especially to processmulants of the whitened observations.
biomedical signals such as ElectroEncephaloGraphic (EEGWe have examined the effectiveness of JDICA in denoising
data [1]-[5]. The ICA problem consists of retrieving unobef simulated interictal epileptic data when a low number of

served realizations of #-dimensional random vectas =

electrodes is available as for children. The comparison in

[$1,. - sP]T from observed realizations of as-dimensional terms of performance and numerical complexity with clagsic
random vector: = [z1, ... ,:vN]T that can linearly be modeled deflationary ICA algorithms, namely FastICA [6], RobustICA
as follows: [10] and Dell® shows that JDICA offers a better accuracy

P
:B:Zapsp—i—l/:As—i—l/ 1)

p=1 . L
wherev represents atV-dimensional noise independentaf
The fundamental assumption of ICA is that tiReunknown

than Dell® and a lower numerical complexity than FastICA
and RobustICA.

Il. METHODOLOGY

random variables,, (called sources) are statistically indepen- We assume that we have some realizations of the real-valued

dent, i.e. their joint Probability Density Function (PDRrc
be factorized as the product of their marginal PDFs.

random vectorz (1). Since JDICA, like a large group of
ICA algorithms, needs a prewhitening step [4] without loks o

ICA algorithms can be divided into two groups: i) "joint"generality, we assume that vecterdenotes the prewhitened
or "symmetric" approaches jointly extract the independepbservation random vector and mattk = [a,,...,ap| is

components ii) "deflationary” techniques estimate souoces

a (P x P) real-valued orthogonal mixing matrix. The aim

by one. Joint algorithms seem to converge to the expecigdour method is then to estimate tif¢ columnsa, of A
solution in practice, but no theoretical result is avaiablangd theP corresponding sources such that= a;m_ More

On the other hand, the convergence of most of deflationggyrticularly, vectora, can be identified by maximizing the
algorithms have been proved analytically [4], [6], [10]. Ifollowing contrast function:

addition, in deflationary algorithms, a penalty term can
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with respect tgg(?) whereC, (y,) is the FO marginal cumulant
of y, = g 'x. The advantage of defining such a contrast
function is that the arguments of the local maximgsadn the

_____ p [4]. This property
ensures our maximization (2) to converge to one column of
the matrix A. Consequently one of the sources is extracted.
Thus a projection deflation procedure is applied to subttect



contribution of the extracted source from the mixture. Bhes Now using the multi-linearity property of cumulants, it is
two steps require a particular parametrization of the eteme shown thatC,(y;) can be written as follows:

of the unit sphere which is given by: L . X
Lemma 1PEach unit nor?n colur):m vectgre RY whose Calwn) = d40(g; +>(tp))4 N dgl(g;) +)(tp))3(g};)(tp))+
' 9 da2 (957 (t))* (95 (8))? + dus (g5 (6,)) (95 (£))*+

last componenyp is strictly positive can be represented as = 1(’1+) A . 5 P . P o0
the last column of an orthogonal matrix given by: dos(gp ™ (tp))" + d3o(g, 7 (1)) + d21(g, " (tp)) " (g9p " (p))
G(t) = Gp_i(tp_1) ... Ga(t2)Ga (1) @) He(g " )(gp " (8)* +dos(gp () +dao(gy ™ (8))
s+ di(gl Y () (9p " (tp)) + doz(gp ) + dio(gh ™)

where theP — 1 real-valued elements of = [t1,...,tp_1] 4
correspond to tangents of uniquely defined angles beIongiﬁ@dOl(gP ) + doo (®)
to]—m/2,m/2[andG,(t,) is a Givens rotation of siz€” x  where the coefficientsl;; are defined in appendix. Conse-
P) derived from an identity matrix for which th@, p)-th, quently, by cczlmputing the derivati?}/e of (8), we obtain:
(P, P)-th, (p, P)-th, (P, p)-th components are replaced with
(L+£2) 712, (1442) 72, £, (14+42) /% and —t, (1+£2)71/2, D emly +y[1HE (D fal) =0 ©
respectively. m=0 n=0

Proof derives from [4, lemma 2.2] by expressing(#) and Where the coefficients,,, and f,, are given in appendix.
sin(f) as a function of = tan(#). This parametrization differs Equation (9) can be simplified to &th degree polynomial
from that of [4] and allows us both to reformulate the corttragguation as follows: S /
(2) as a rational function and to consider other optimizati U m - '
strategies such as a Jacobi-like procedure. CZO Zoe"em_ntp ~(1+ty) Z@ /Zofnlfm/_n,tp -0 0

TO. extr?ct the first source, we then propose to _Compme8?7 rooting (10),8 solutionsi,, are obtained. Then we calculate
matrix G (t) such that its last columrg™ (t), maximizes

; . .- the contrast function (2) for all real-valued roots and we
the contrast function (2) with respect to Our Jacobi-like 2)

o ) choose the roof"”" which maximizes it. Eventually, we
optimization procedure consists of decompost®d’ (¢) as a v y

i ) (1(opt) a+) (f(opt) i
product of P — 1 elementary Givens rotatiorG}’ (t,) and of calculate the matrice€z, (f, *) and G"V(t," 7). This

sequentially identifying the® — 1 corresponding parametersprocedure is performed iteratively for gl {1, .., P—1} and

t,. The (P — 1)-dimensional optimization problem is thusfor several sweeps until convergence. At this stage, the firs

. . . . ... columna; of the estimated mixing matrix is given by the
replaced withP —1 sequential mono-dlmensmnalopt|m|zat|or‘ t undat (149 (7(0Dt) d the first . imated b
problems. In practice, several sweeps of the 1 parameters ast upaate of**(tp"]) and the first source is estimated by
are necessary to achieve convergence. More preciselysletsu = @, .
consider thep-th mono-dimensional maximization problem of After estimating the first source, we remove its contributio
a sweep of our Jacobi-like procedure. It consists in comgutiffom the observations by projecting the observations dmto t
matrix G (t,) defined byG""(t,) = G (t,)G" such subspace orthogonal to that spanned doy py computing
that its last columng*)(¢,,), maximizes the contrast functionz") = IIa whereIl) is a (P — 1 x P) projection matrix
(2), whereG"~ is the product of all the elementary GivendUilt by stacking vertically theP” — 1 first rows of the last

rotations estimated previously. update ofG““(fl(f’pt))T. Now to estimate the other sources,
Denoting the last column ofG"~ by gt = the same procedure should be done by using equations (4) to
[gﬁl’),...,gg”]T, the last column ofG“" can be written (10). The only difference is that the vector of observations
as: x should be replaced by the observatioff—) of reduced
T dimension(P — p + 1) in order to extract the-th source.
g () = [ () gl = @) (PLrE ®

. Note that the estimation of FO cumulants is not required
[0 s 95 () Gyt s - 9 ()] at each iteration of our Jacobi-like procedure. TNé FO
cumulants Cy,, 1y, ns.na,2 Of VECtor x can be estimated at
. the beginning of the procedure and sorted inNZ x N2)
,(,H + 7”9;*) (5) matrix, Q,, called quadricovariance [1]. The FO cumulants
1 ggf)

where:

(1+)
9p
V14182 Cha, mama.mam» Of vectorz() can then be derived using the

. T i
(1) tp z()H n ©) following formula Q) ;{{QmH where:

gp (tp) = —=—=9
\1+t2 1+t H:H(H(i)®ﬂ(i)) (11)

. i=1
It appears that only thg-th and P-th components of**(t,) With @ the Kronecker product operator.
depend ont,. Then, we set the derivative of the contrast

1
(tp) = ———=g
\1+t2

function with respect te, equal to zero to find the appropriate 1. N UMERICAL COMPLEXITY

t, value: In this section, we analyze the numerical complexity of
oC(y)%/4 1 dC4(y1) the proposed algorithm in terms of real-valued floating poin
T = 204@1)87@, =0 () operations (flops). A flop corresponds to a multiplication

followed by an addition, but in practice only the number of
which results in simply vanishingCjy (y1)/0t,,. multiplications is computed. In the following computatin



P, N and T are the number of sources, the number dhat the JDICA algorithm offers the best compromise between
observation channels and the number of time samples, respeerformance and numerical complexity when a low number
tively. f4(P) = P(P + 1)(P + 2)(P + 3)/24 is equal to the of electrodes is used even if RobustICA converges faster. It
number of free entries in a fourth order cumulant tensor @fplies that one iteration of RobustICA requires more flops
dimensionP enjoying all symmetriesB = min(TNT2+4N73+ than one sweep of JDICA.

PNT,2TN?) is the number of flops required to perform
spatial whitening R is the complexity required to compute the
roots of a reaB-th degree polynomial by using the companion
matrix technique (we may tak& = 972 flops). As a result 0.6
the proposed ICA algorithm requirds+ 27 + 2P + N P% + 055
3T f4(P)+ 3,2, (20%(p— D2 (p* —p+1) + X0 (0°T +
pP+(p—1)P2)+ 30, Ttp_yi1 (R+4p® /3 —Tp*+62p/3+
195 +min((p—2)T +8(4T +8), 4p+ 8(2p* +p? + 7))) flops
to extract allP sources. 041

0.65

051

Error

IV. PERFORMANCEANALYSIS ON SIMULATED DATA
A. Data generation

The simulated epileptic EEG was generated using a realistic
model developped in our team [3]. We built a mesh of the
cortical surface from a 3D MRI T1 image of a subject (BrainFig. 1. Average Error as a function of flops obtained by vagytiine number
Visa, SHFJ, Orsay, France). This mesh is composed of 405t @§stimated sources’ with SNR=—5dB.
triangles of mean surfacemm?. A current dipole is placed

6 7
10 Flops 10

at the barycenter of each triangle and oriented orthogpiall clean data noisy data IDICA denoised data
the triangle surface, leading to a field of current dipol@BniE [l Lot Wit

X ) . ) WY AR L Lt ittt I T L i i L
this mesh,P. distributed sources, called "patches”, generatir _, pmhpiretisarenaivmndonimt] [dMRAASASHH oo

interictal spikes, are defined. Each patch is composed of 1 ,

dipole sources to which we assigned hyper-synchronousspi ;.. YRy , . —
like activities generated from a model of neuronal popatei OL it m SRR
[3]. From this setup and considering 12 electrodes, NAME ;| yjuuwiimvenpmiipornirl hebsimbmisiiiniianio ,
Fpl, Fp2, C3, C4, T3, T4, O1, 02, F7, F8, TS and T6, th il

forward problem was then calculated using a realistic he |, m”' O PR WWMMW
model made of three nested homogeneous VOIUMES SNAPING 1 buwwwipmedriivasrmshpwmd
brain, the skull and the scalp (ASA, ANT, Enschede, Nethe FBMWMM A st sy
lands). The aforementioned electrodes are COMMONIY USEC 15 bhumheptvminmbeiniomtince] ihiphospvieosptn] b \
record EEG in pediatric patients. The epileptic aCtVitythst 1 Luwmsslppmsbpspresomal Mpibas
level of these electrodes, namely the signal of interes§ wa

then obtained by solving the forward problem using a realist (&4 - * J {u,‘/- 3 (S
head model and the Boundary Element Method (BEM). In SN\ «\' @n\ ‘X’ &4 \ (\7
this paper, we considered a single patch localized in the lef *‘j% h / *"E%
superior temporal gyrus and 50 Monte Carlo simulations were '
generated. In addition &-dimensional signal of non-interest
extracted from real2-channel EEG and composed of muscl€ig. 2. Denoising of real interictal spikes data (a) a ndise-interictal spikes,
activity, background EEG and instrument noise was added(%a” epoch including spikes hidden in muscle activity af)d5EG denoised

. . p . . . by JDICA. The source localization results at the output &Ex&o-MUSIC
each trial with a specified Signal-to-Noise Ratio (SNR). afe depicted at the bottom of each column. P

>

B. Results

We compared the performance of the proposed JDICA V. APPLICATION TO REAL DATA
algorithm with three deflationary ICA algorithms, namely In this section we evaluate JDICA in the case of real data.
FastICA, RobustICA, DelE. Note that, unlike the three otherThe JDICA algorithm was applied to denoise interictal spike
algorithms, RobustICA does not require any prewhiteningbtained from a patient suffering from drug-resistant iphrt
The performance was computed as a function of compugpilepsy. Scalp-EEG data were acquired from 12 electrodes a
tional complexity using the Normalized Mean-Squared Errer sampling frequency of 256 Hz. These data were reviewed
(NMSE) as defined in [1]. In our experiment, the data length is order to isolate an epoch of clean data containing irtiric
fixed to5120 samples and the SNR value-i$ dB. By varying spikes (figure 2(a)) and an epoch of noisy EEG containing
the number of estimated sourcésin the range of2 to 12, spikes hidden by muscle activity of high amplitude (figure
we make vary the computational complexity of each algorithra(b)).
Figure 1 shows then the average Error as a function of flopsThe same procedure as for simulated data was applied to
at the output of the four algorithms. This figure illustrateseconstruct the denoised EEG signals by using JDICA (figure



2(c)). Since we do not know the ground truth to evaluate the i1—1 dp—1
performance of the proposed method, a source localization + 6 Z Z Cp.ir 71-271-3@9;]1’)9%’)9;;’))
process was performed on the original clean signal (coreide ig=1 ig=1

ig#Pp i3F£DP

as a reference), on the noisy data, as well as on data denoised o o

by JDICA. The recent 4-ExSo-MUSIC algorithm [2] was; _ ( o 1-)\3 o (1-)\2
used to achieve source localization. As shown in figure %?1_421 Cravinine (95, ) +3 Zl Cririniaa(dy )
the epileptic spikes maximal at temporal and frontotemipora n#p - i2%i1.p

electrodes (T4, F8) on clean data are retrieved at the same - e
electrodes on denoised data. In addition, the muscle dctivi Yis +62 Z
visible on noisy data is strongly reduced by the JDICA 226 2ap

procedure at F8 and T4 and almost entirely removed at other P—1 P—1 P—1 P—1
channels. Source localization (bottom of figure 2 of cleaa) (2dyy = Z Z Z Z Ciinsininads, 95 95 g5

(1-) (1-) (1-)
CP-,il-,iz-,is-,wgil 9iy "Yig )

and of denoised spikes (2c) is similar (right anterior terafjo i1=1ig=1 iz=1 iz=1
and consistent with the patient pathology. For noisy data, t nAwiege sty aze
spike source is incorrectly localized. co=d(g%™)? — di1 (g5 ™) + dis(g5 )" — dsr (95 ) +

(2d22 — 4doa)gS " (g 7)? + (4dao — 2d22) (95 ) g+

VI. CONCLUSION (1-\2/ (1-)\2 (1—) (=)
1— - 1= -
In this paper, we proposed a new deflationary ICA al- (8 = 3dia) (g5 ) (g5 )" + (220 = 2d02)g, g

gorithm based on a Jacobi-like optimization procedure to ) s
separate independent sources. We examined the effectiverie = (2doz2 — 2d20)(g, )" + (2d20 — 2do2)(gp )"+
of the proposed algorithm in denoising of simulated pedi-
atric epHepyc data. The. comparison in terms of perforneanc (a4, — 4doa) (g8 7)" + (2das — 4dao) (g5 ) +
and numerical complexity with the FastlICA, RobustICA and Ly e i -

( ) (6d —10d )g( )(g( ))3—|—(6d —10d )(g( ))39( )+
DelL® algorithms shows that the proposed algorithm offers the "3 13)9p \Ip ; 13 o 31)39p r
best trade-off between performance and numerical comtglexi (12dos — 12d22 4 12d40)(gy ) (95 ") — 4dnigy g5~
when a low number of electrodes is available, such as in
pediatric patients. We also examined the feasibility of GBI e, = (3d31 — 3di3)(g5 )" + (3da1 — 3di3)(gp )+
in thg case of real interictal data an_d showed that the JDICA(12d04 —12dyy + 12d40)g}<@m(g;—>)3 + (12das — 12dgs—
algorithm is able to properly denoise real data as well as (o3 (o) o2/ (192
simulated ones. As a part of our future work, we will examine 12dao) (g, ) gp " + (18d13 — 18d31)(g,, )" (9p ")
the proposed algorithm with higher number of electrodes ) .
which may lead to different results. e3 = (2do2 — 2d20)(g, ) + (4doa — 2d22)(g, )"+

(2dao — 2d02) (9% )2 + (4dao — 2d22) (95 )+

APPENDIXA (6d13—10d31)g% ) (g9 ™)% + (6d31 —10d13) (90 )3 g4~ +
13 31)9p \Gp 31 13){9p 9p
d40 :Cp,p,p,p,mv d31 :4OP,p,p,p,m7 d22 :60P7P,p,p,m (12d22 - 12d04 - 12d40)(g;;17))2(9$7))2 - 4d119;,17)9$7)
d13=4CpppPpz, doa=Cppppra , \ o o
by by es = di(gy ) + dis(gy ) — di(gp ™) —dai(gp ')+
d3o=4)  Coppiradsy s dn=12) Crppiradi (ddos — 2d22) (9 ) g™ + (2da2 — 4dao)gy (95 ~)*+
il bl (3d31 — 3d13) (95 ) (95 ) + (2do2 — 2d20)g 9~
P-1 P-1
di2 =12 Z Cpppiragy, s doz=4 Z Crppi gy fo=diogp” —dogy ™ +di2(gp)> — dan(gy )+
nZ e (2d21 = 3do3)gy (9 )* + (3dso — 2da2) (g )95~
P-1 i—1
d20:62 (Cpm,il (s )2 Zcp,p,il,iz,:cgﬁf)gz(:)) J1=(2d12 — 3ds0)(g )® + (2da1 — 3dos) (g )*+
e 2 (6dosz — Td21) (95 )9~ + (6ds0 — Td12)gs (g 7)?
P—-1 i1—1 _ d (1-) _ d (1-)
_ Oy G- 109 019
d11:12z (CP,P,p,il,m(g;: 242 Z CP,p,il,ig,mgl(‘i )g§; )) ? r
T 7 fo=diogh ) — dorgy ) + (2d21 — 3d03)(9;717))3+
P-1 i1—1 - (1-)\2 (1-)\2 ,(1—)
- 5 a- (6dos — Td21)g, ' (9p )" + (Td12 — 6d30)(g, ) gp
do2 =06 (CP,P,z' w95 )42 ) Crpisinadi 9 )) ' '
i; 1,21 1 122:] 1,72 1 2 + (3d30 _ 2d12)(g;;*))3
i1 #p ig #p
— (1-33 - a-n2 o) f3 = (2d12 — 3dz0)gl (95 ")* — diogl ™ — dia(gy ) -
d1o:4z (OP,il,h,n.,m(gil )43 Z Chyir i in,z (95, )i, Goons i P P G o
=1 ig=1 d21(gp ) - dOlgp + (2d21 - 3d03)(9p ) 9dp

i1 #Pp igFil, p
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