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Abstract

The channel capacity of a deterministic system with confidential data is an upper bound
on the amount of bits of data an attacker can learn from the system. We encode all
possible attacks to a system using a probabilistic specification, an Interval Markov Chain.
Then the channel capacity computation reduces to finding a model of a specification
with highest entropy.

Entropy maximization for probabilistic process specifications has not been studied
before, even though it is well known in Bayesian inference for discrete distributions. We
give a characterization of global entropy of a process as a reward function, a polynomial
algorithm to verify the existence of a system maximizing entropy among those respecting
a specification, a procedure for the maximization of reward functions over Interval
Markov Chains and its application to synthesize an implementation maximizing entropy.

We show how to use Interval Markov Chains to model abstractions of deterministic
systems with confidential data, and use the above results to compute their channel
capacity. These results are a foundation for ongoing work on computing channel
capacity for abstractions of programs derived from code.

1. Introduction

Context. Consider a common authentication protocol: a user is asked to enter a pass-
word. She is granted access to the system if the password corresponds to the one stored
in the system. The goal of the protocol is to refuse access to users that do not know
the password (the secret). The protocol should also prevent an attacker from guessing
or learning the secret, by interacting with the system. We want to decide whether the
protocol is secure or not against an attacker that wants to access it, but does not know
the password. But what does it mean for a system to be secure?
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One possible answer is that a system is secure if the attacker cannot authenticate
in the system. This, however, cannot be guaranteed. There is a non-zero probability
that an attacker is lucky and simply guesses the password. We could require that the
attacker cannot learn the password by interacting with the system. However, a password
is not an atomic object: would we consider the system secure if the attacker could
learn 90% of the password? Learning 90% of the password significantly increases the
attacker’s chance of guessing the whole password. Finally, we could require that in a
safe authentication protocol no attacker can learn anything about the password through
interaction, the so called non-interference definition [1]. Unfortunately, this definition
usually breaks in practice: if the attacker inserts a random password and gets rejected
he will learn that the password is not the one he tried, breaking non-interference [2].

We believe that it is not possible to give a qualitative, yes-no definition of security
that is not overly strict (rejects any authentication protocol) or overly permissive (accepts
protocols compromising a significant amount of the password). The core problem is that
even a secure protocol will allow the attacker to learn a small amount of information
about the password [3].

Quantitative Information Flow techniques can be employed to precisely quantify
the number of bits of information an attacker would gain about the confidential data of
a system by interacting with the system and observing its behavior [4], leaving to the
analyst to decide whether this amount is acceptable for the protocol analyzed.

The difference between the information, in Shannon’s information-theoretical sense
[5], that a given attacker possesses about the secret before and after a single attack is
called leakage [4]. Different attackers would infer different amount of information.
A possible quantitative definition of security of a system is the maximum leakage
of information (so leakage towards the attacker that can infer the most information).
Maximum leakage is known in security theory as channel capacity, ranging over all
attackers with the same observational power but different prior information on the
secret. As said, no single attack can leak an amount of information higher than the
system’s channel capacity [6]. For a deterministic system, the leakage is the entropy
of the observable behavior of the system conditioned by the attacker’s behavior [7],
and thus computing the channel capacity reduces to computing the behavior of the
system that maximizes entropy. This security guarantee is only valid for one process;
any perturbation of the process’ behavior would invalidate it.

Problem. The quantification of information leakage evaluates only the security of a
completely defined system, since it needs to evaluate the likelihood and estimate the
loss of confidential data of each possible user behavior and system’s reaction to it. Alas,
when a security protocol is designed the designer needs the freedom to leave some
parts underspecified, for instance the size of a password or the number of usernames
in the system. An underspecified system can be seen as the infinite union of all its
implementations. Providing a security guarantee for it is challenging, as it requires
computing the maximum leakage over all attacks by all possible attackers on all possible
implementations.

Contribution. We will present a method to obtain a safety guarantee for a protocol
specification when it is possible and signal that the protocol is unsafe otherwise. To the
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best of our knowledge, no other approach to channel capacity computation for infinite
classes of processes exists.

To execute a formal analysis of a process specification we need models for the
processes and specifications and procedures to analyze them. Following the approach
we introduced in [8] we use Markov chains (MCs) as process models, with the states
of the MC representing the observable components of the system and the transition
probabilities raising from the attacker’s uncertainty about the secret. A single MC
represents an attack scenario, in which a given attacker interacts with and observes a
given deterministic system. The entropy of the MC for the scenario is the leakage from
the system to the attacker.

In order to encode the infinite number of possible attackers and implementations,
we need the continuity of real-valued transition probability intervals, so we use Interval
Markov Chains (Interval MCs) [9] as specification models. We also show how to employ
Markov Decision Processes (MDPs) [10] as specification models. We present algorithms
that synthesize the process with maximum entropy among all those respecting a given
probabilistic specification, allowing us to give a security guarantee valid for all the
infinite processes respecting the specification, encoded as an Interval MC or as an MDP.

Specification models, and Interval MCs in particular, allow us to generalize the
system-attacker scenario to all possible attackers interacting with all possible imple-
mentations of a specification. The Maximum Entropy resolution of the nondeterminism
in the Interval MC is thus the scenario with the greatest leakage, and its entropy is the
channel capacity of the specification and the maximum amount of information that can
be leaked by any single attack to any given implementation of the specification.

Given a deterministic protocol specified as an Interval MC, we show how to:

1. Compute the entropy of a given implementation. We provide a polynomial-time
procedure to compute entropy for a Markov chain, by reduction to computation of
the Expected Total Reward [10, Chpt. 5] of a local non-negative reward function
associated with states over the infinite horizon.

2. Check if a protocol allows for insecure implementations. We provide a polynomial-
time procedure for deciding finiteness and boundedness of the entropy of all im-
plementations of an Interval MC. In general a Maximum Entropy implementation
might not exist. Implementations might be non-terminating and accumulate infi-
nite entropy, or they may have arbitrarily high, i.e. unbounded, finite entropy, so
standard optimization techniques would diverge. In such case it is not possible to
give a security guarantee for the implementations. We provide a polynomial-time
algorithm to distinguish the two cases. If a protocol allows implementations with
infinite or unbounded entropy then no matter the size n of the secret, it will have
an implementation leaking all n bits of it. We detect this so that the designer can
strengthen the protocol design appropriately.

3. Compute channel capacity of a protocol. This is a multidimensional nonlinear
maximization problem on convex sets [11]. We use a numerical procedure for syn-
thesizing with arbitrary approximation an implementation maximizing a reward
function over Interval MCs. An Interval MC can be considered as an infinite set of
processes, and since entropy is a nonlinear function of all possible behaviors of a
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Figure 1: a) Two-step Authentication b) Repeated Authentication

system, finding the one with highest entropy is not trivial. We apply this procedure
to synthesize a Maximum Entropy process implementing an Interval MC; the
entropy of such a process is the channel capacity of all processes implementing
the Interval MC.

On the theoretical level, this paper extends the well know Maximum Entropy Principle
of Jaynes [12], from constraints on probability distributions to interval constraints on
discrete probabilistic processes. We consider Interval MCs as constraints over proba-
bilistic processes and resolve them for maximum entropy. As a result we validate the
intuition that channel capacity computation as known in security research corresponds
to obtaining least biased solutions in Bayesian inference for processes.
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Figure 2: Maximum Entropy implementa-
tion for the Two-step Authentication

Examples. Consider two examples of models of
deterministic authentication processes. Figure 1a
presents an Interval MC for a two-step authenti-
cation protocol with username and password. The
actual transition probabilities will depend on how
many usernames exist in the system, on the re-
spective passwords, on their length and on the
attacker’s knowledge about all of these; but stay-
ing at the specification level allows us to consider
the worst case of all these possible combinations, and thus gives an upper bound on the
leakage. The Maximum Entropy implementation for the Two-step Authentication is
given in Fig. 2; its entropy is the channel capacity of the system over all possible prior
informations and behaviors of the attacker and design choices of the implementer.

Consider another example. Figure 1b presents an Interval MC specification of the
Repeated Authentication protocol, in which the user inserts a password to authenticate,
and is allowed access if the password is correct. If not, the system verifies if the
password entered is in a known black list of common passwords, in which case it rejects
the user, considering it a malicious attacker. If the password is wrong but not black
listed the user is allowed to try again. The black list cannot cover more than 90% of the
possible passwords, and we assume that the attacker has no information about it.

Note that the transition probabilities from state 2 is a design choice left to the
implementer of the system, while the transition probabilities from state 1 depend on a
given attacker’s knowledge about the password, and thus cannot be controlled even by
the implementer. By abstracting these two different sources of nondeterminism at the
same time we maximize entropy over all possible combinations of design choices and
attackers, effectively finding the channel capacity of the specification.
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Figure 3: a) Correct implementation of the Repeated Authentication. b) Incorrect implementation of the
Repeated Authentication.

The implementation maximizing entropy is the one revealing most information
about the system’s secret. This is consistent with our intuition. For instance, if the black
list is empty the user can continue guessing the password indefinitely: the probability of
eventually reaching state 3 is 1. In this implementation sooner or later the attacker will
discover the password, and thus the system’s secret will be completely revealed.

Figure 3 shows two implementations of the Repeated Authentication presented in
Fig. 1a. None of them maximizes entropy. In fact, it is not possible to give a Maximum
Entropy implementation for such protocol; this means that whatever the length n of the
secret, it is possible to give an implementation that leaks all n bits of information. We
will discuss the significance of this in Sect. 7. The Maximum Entropy implementation
for the Two-step Authentication is given in Fig. 2. We explain how it has been synthe-
sized in Sect. 6.

The paper is structured as follows. We introduce terminology and notation in
Sect. 3. Section 4 recalls the definition of entropy for MCs, and relates it to abstract
specifications. In Sect. 5 we introduce algorithms computing entropy of a given MC. In
Sect. 6 we find the implementation of an Interval MC maximizing the entropy. In Sect. 7
we deal with Interval MCs that allow for implementations with infinite or unbounded
entropy. In Sect. 8 we discuss the use of MDPs as specification models. We conclude in
Sect. 9.

2. State of the Art and Related Work

This paper appeared previously as an extended abstract in the 24th Nordic Workshop
on Programming Theory (2012) and subsequently in the conference version in the 7th
International Conference on Language and Automata Theory and Applications (2013).
This considerably extended version features extended introduction and related work
sections, a section on the application of the technique described to Markov Decision
Processes and a conclusion section. We also added detailed proof to all lemmata and
theorems, some definition and many explainations and intuitions to clarify the ideas
behind the paper.

The information-theoretical approach to system security that we consider here
follows Clark et al. [4, 13] in using the difference between the Shannon entropy of
the probability distribution over the secret before and after the attack as a measure
for insecurity. Among the other measures vulnerability has been shown by Smith to
have interesting qualities when considering a single attack by an attacker with no prior
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information about the secret [14], and Köpf et al. show how to use probabilistic measures
to quantify the security of side channels [15, 16]. Providentially, for deterministic
protocols the orderings induced by all measures of insecurity coincide [7, 17], showing
the robustness of the approach. Recently, Alvim et al. proposed to generalize the
approach to generic gain functions depending on properties of the protocol, and also
introduced an ordering based on channel factorization that is conjectured to extend the
ordering to the probabilistic case [18].

The ordering of the attackers according to their potential for inferring information
about the secret forms a lattice, known as the Lattice of Information [19]. The states
of the Markov chains we use to model protocols represent observables, i.e. classes of
equivalence of the possible models according to the attacker’s observational power; we
refer to [8] for the details. This use of equivalence relation is closely related to the
application of abstract interpretation to security [20, 21, 22], even though they have been
applied to obtain or approximate non-interference. The union of abstract interpretation
and information theory would be a natural and promising development in the field of
quantitative information flow.

Channel capacity as a security guarantee [6] has been studied for many different
models of computation. Chatzikokolakis, Palamidessi and Panangaden use it to give a
formula for anonymity analysis of protocols described by weakly symmetric matrices
[23], based on the probabilistic anonymity approach by Bhargava and Palamidessi [24].
Chen and Malacaria generalize this result to asymmetric protocols [25] and also study
the channel capacity of deterministic systems under different observation models [26].
Our method, unlike theirs, handles infinite classes of models instead of single models,
and uses different states of a Markov chain to represent the different logical states of the
system instead of considering the system as a function from inputs to outputs.

3. Background on Probabilistic Processes

We often refer to deterministic, stochastic and nondeterministic behavior. We use the
adjective deterministic for a completely predictable behavior, stochastic for a behavior
that follows a probability distribution over some possible choices, and nondeterministic
for a choice where no probability distribution is given.

We define common concepts in probability theory and information theory that are
used through the paper. We refer to basic books on the subject [27] for the definitions
of sample space S, probability of event P (E) and so on. We call X a discrete random
variable and X a discrete stochastic process, i.e. an indexed infinite sequence of discrete
random variables (X0.X1, X2, ...) ranging over the same sample space S. The index of
the random variables in a stochastic process can be understood as modeling a concept
of discrete time, so Xk is the random variable representing the system at time unit k.

3.1. Markov Chains

A discrete stochastic process is a Markov chain C = (C0, C1, C2, ...) iff ∀k ∈ N.
P (Ck|Ck−1, ..., C0) = P (Ck|Ck−1). A Markov chain on a sample space S can also be
defined as follows:

6



Definition 1. A triple C = (S, s0, P ) is a Markov Chain (MC), if S is a finite set of
states containing the initial state s0 and P is an |S| × |S| probability transition matrix,
so ∀s, t∈S. Ps,t≥0 and ∀s∈S.

∑
t∈S Ps,t = 1.

We slightly misuse notation, interpreting states as natural numbers and indexing matrices
with state names. This is reflected in figures by labeling of states both with textual
descriptions and numbers.

A state is deterministic if it has exactly one outgoing transition with probability 1,
stochastic otherwise. It is known [27] that the probability of transitioning from any state
s to a state t in k steps can be found as the entry of index (s, t) in matrix P k.

We call π(k) the probability distribution vector over S at time k and π
(k)
s the

probability πk(s) of visiting the state s at time k. This means that, considering a
Markov chain C as a time-indexed discrete stochastic process (C0, C1, ...), we write
π(k) for the probability distribution over the random variable Ck. Since we assume
that the chain starts in state s0, then π(0)

s is 1 if s = s0 and 0 otherwise. Note that
π(k) = π0P

k, where P k is matrix P elevated to power k, and P 0 is the identity matrix
of size |S| × |S|.

A state t is reachable from a state s if ∃k.P ks,t > 0. We assume that all states are
reachable from s0 in the MCs considered. A subset R ⊆ S is strongly connected if for
each pair of states s, t ∈ R, t is reachable from s.

For a state s of a Markov chain, the expected residence time denotes the expected
amount of time units that the Markov chain will spend in state s, while the first hitting
probability of state t after state s denotes the probability that state t will ever be visited
under the condition that state s is being visited.

Definition 2. The expected residence time in a state s is defined as

ξs =

∞∑
n=0

Pns0,s

Definition 3. The first hitting probability of state t after state s is defined as

ρ(s, t) =

∞∑
n=1

P(Xn = t,Xn−1 6= t,Xn−2 6= t, ...,X1 6= t | X0 = s)

We will sometime write ρs for ρ(s0, s). Note that ξs = ρs
∑∞
n=0 P

n
s,s. A state s is

recurrent iff ξs =∞, transient otherwise.
We show how the expected residence time of all states in a Markov chain can be

computed in polynomial time by reducing the problem to solving a system of linear
equations. By definition expected residence time is infinite for each recurrent state, so
we first check which states are recurrent, and then we calculate the expected residence
time for the remaining (transient) states. We say that two states s, t ∈ S communicate,
written s↔ t, if s is reachable from t and vice versa. Note that s↔ s. Communication
is an equivalence relation and as such it induces communicating classes:

Definition 4. A communicating class C ⊆ S of a Markov chain is a maximal subset of
the states of the Markov chain such that each pair of states in C communicates, i.e.

∀s, t ∈ C. | s↔ t
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A Markov chain can be divided in its communicating classes by finding its Strongly
Connected Components with e.g. Tarjan’s algorithm [28]. The Strongly Connected
Components correspond exactly to the communicating classes.

A communicating class C is said to be closed if, once it is visited, the probability
that a state outside it will ever be visited is zero:

Definition 5. A closed communicating class (CCC) of a Markov chain is a communi-
cating class C such that P(Xk+1 ∈ C | Xk ∈ C) = 1

Whether a communicating class is closed can be decided in polynomial time. It is
known [27] that all states in a closed communicating class of a finite Markov Chain are
recurrent, while all other states are transient, so we can divide the states in recurrent
and transient states in polynomial time. Let R be the set of the recurrent states; then
∀s ∈ R. ξs =∞.

The expected residence time of the transient states can be found by solving the
system of equations ξt = π

(0)
t +

∑
u∈S\R Pu,tξu for all t ∈ S\R (in polynomial time).

Use of Markov chains to model generic secret-dependent processes has been previ-
ously introduced in [8], including ways to automatically generate them from imperative
program code. Each state of the MC represents a reachable combination of values of
the public variables of the system and levels of knowledge about the private variables.
We refer to [8] for the full discussion.

3.2. Interval Markov Chains

Definition 6. [29] A closed-interval Interval Markov Chain (Interval MC) is a tuple
I = (S, s0, P̌ , P̂ ) where S is a finite set of states containing the initial state s0, P̌ is an
|S| × |S| bottom transition probability matrix, P̂ is a |S| × |S| top transition probability
matrix, such that for each pair of states s, t ∈ S we have 0 ≤ P̌s,t ≤ P̂s,t ≤ 1.

Note that for the bottom and top probability matrices it is not necessarily true that
the values for a given state s will sum up to 1, as is the case for the probability transition
matrix in Definition 1. The top and bottom matrices just state maximums and minimums
for the transition probabilities between each pair of states.

The following defines when an MC implements an Interval MC in the Uncertain
Markov Chain (UMC) semantics [29]:

Definition 7. A Markov chain C = (S, s0, P ) implements an Interval Markov Chain
I = (S, s0, P̌ , P̂ ), written C � I, if ∀s, t ∈ S. P̌s,t ≤ Ps,t ≤ P̂s,t.

An example of an Interval MC is the Repeated Authentication dpicted in Fig. 1b.
The MC in Fig. 3a uses a black list covering 80% of the passwords and is thus an
implementation of the Interval MC in Fig. 1b, while the Markov chain in Figure 3b
uses a black list covering 99% of the passwords and it is not an implementation of the
Interval MC in Fig. 1b.

We assume without loss of generality that our Interval MCs are coherent, meaning
that every value for each transition interval is attained by some implementation. Coher-
ence can be established by checking that both following conditions hold [30]:
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1. ∀s, t ∈ S.P̌s,t ≥ (1−
∑
u6=t P̂s,u)

2. ∀s, t ∈ S.P̂s,t ≤ (1−
∑
u6=t P̌s,u)

Any Interval MC I = (S, s0, P̌ , P̂ ) can be transformed into a coherent Interval MC
I ′ = (S, s0, P̌

′, P̂ ′) by changing the top and bottom transition probability matrices to
the following:

1. P̌ ′s,t = max(P̌s,t, 1−
∑
u6=t P̂s,u)

2. P̂ ′s,t = min(P̂s,t, 1−
∑
u 6=t P̌s,u)

The resulting coherent Interval MC I ′ is unique and has the same implementations
as the original incoherent Interval MC I [30], so in particular it has an implementation
iff I has at least one implementation. It is also interesting to note that if an Interval MC
is coherent then it is possible to give an implementation in which a positive probability
is assigned to all transitions for which this is allowed by the Interval MC, as stated by
the following lemma.

Lemma 1. Let I = (S, s0, P̌ , P̂ ) be a coherent Interval MC. Then there exists an
implementation C = (S, s0, P ) of I in which ∀s, t ∈ S.P̂s,t > 0⇒ Ps,t > 0.

Proof. 1 We recall the coherence assumptions:

1. ∀s, t ∈ S.P̌s,t ≥ (1−
∑
u6=t P̂s,u)

2. ∀s, t ∈ S.P̂s,t ≤ (1−
∑
u6=t P̌s,u)

Assume with no loss of generality that ∀s, t ∈ S.P̂s,t > 0⇒ P̌s,t < P̂s,t.
We will proceed ad absurdum. Let’s consider a state s ∈ S and assume there

is no implementation of I in which ∀t ∈ S.P̂s,t > 0 ⇒ Ps,t > 0, meaning in all
implementations there exists at least one state t′ such that P̂s,t′ > 0 ∧ Ps,t′ = 0. Let
C = (S, s0, P ) be one such implementation. Clearly it must be P̌s,t′ = 0. Since the
implementation is a Markov chain it holds that

∑
t∈S Ps,t = 1 thus

∑
t∈S
t 6=t′

Ps,t = 1.

Let’s assume that ∀u 6= t′.Ps,u = P̌s,u; we have that 1−
∑
u 6=t P̌s,u = 1−

∑
u6=t Ps,u =

0, but this is not possible since P̂s,t′ > 0 by assumption and P̂s,t′ ≤ (1−
∑
u 6=t′ P̌s,u)

by coherence. Thus there must be a state t′′ ∈ S such that t′′ 6= t′ and Ps,t′′ > P̌s,t′′ .
But then consider a positive constant ε such that ε < P̂s,t′ and ε < Ps,t′′ − P̌s,t′′ ;

the implementation with transition probabilities P ′ defined as

P ′s,t =


ε if t = t′

Ps,t′′ − ε if t = t′′

P ′s,t otherwise

1We extend our thanks to Lei Song for the proof of this lemma.
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is an implementation of I in which ∀t ∈ S.P̂s,t > 0 ⇒ Ps,t > 0, contradicting the
assumption that no such implementation exists.

We will use this result later in the proof of Theorem 2.
A state s of an Interval MC is deterministic if ∃t. P̌s,t = 1, stochastic otherwise.

We say that a state t is reachable from a state s if ∃s1, s2, ..., sn ∈ S.s1 = s ∧ sn =
t ∧ P̂si,si+1

> 0 for 1 ≤ i < n. We say that a subset R ⊆ S is strongly connected if
∀s, t ∈ R. t is reachable from s.

Note that if there is an implementation in which a subset of states R ⊆ S is strongly
connected, then R must be strongly connected in the Interval MC.

3.3. Markov Decision Processes
Definition 8. A Markov Decision Process (MDP) [10] is a tuple P = (S, s0, P,Λ)
where S is a finite set of states containing the initial state s0, Λs is the finite set of
available actions in a state s ∈ S and Λ =

⋃
s∈S Λs, and P : S × Λ × S → [0, 1]

is a transition probability function such that ∀s, t ∈ S.∀a ∈ Λs. P (s, a, t) ≥ 0 and
∀s ∈ S.∀a ∈ Λs.

∑
t∈S P (s, a, t) = 1. We write P(s,a),t = x for P (s, a, t) = x.

1

1
2a

b

1

a

3 1

a
1/3

2/3

Figure 4: A simple MDP

An MDP makes a nondeterministic choice of an action in
each state. A selection of an action determines a probability
distribution over the successor states. A probabilistic strategy
is a function σ : S → δ(Λs) assigning to a state s a probability
distribution over the actions in Λs. A probabilistic strategy is
positional if its probability distributions assign probability 1
to some action. The (infinite) set of strategies of the process
P is denoted ΣP .

In the MDP depicted in Fig. 4 there are two possible positional strategies, namely the
one choosing action a in state 1 and transitioning to state 2 with probability 1, and the
one choosing action b and transitioning to state 2 with probability 1

3 and to state 3 with
probability 2

3 . There is also one probabilistic strategy for each probability distribution
over the two actions.

A strategy resolves an MDP into an MC, and in that sense MDPs, similarly to
Interval MCs, can also be used as specifications for MCs; every strategy defines a
different MC.

4. Entropy of Processes and Specifications

The entropy of a discrete probability distribution quantifies lack of information about
the events involved. This idea can be extended to quantify nondeterminism, understood
as degree of unpredictability of an MC.

Definition 9. Let X be a random variable on the discrete domain (x1, ..., xn) and
P(X = xk) its probability distribution. Then the entropy of the random variable X is
defined as

H(X) = −
n∑
i=1

P(xi) log2(P(xi))
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Entropy is always non-negative. It is maximal for the uniform distribution, in which
case its value is log2 n [27], representing complete ignorance about the value assumed
by the random variable. On the other extreme, H(X) is 0 if and only if the probability
distribution on X assigns a given value to it with probability 1. For MCs, entropy
is maximum for the process in which all possible paths in the chain have the same
probability.

To define the entropy of a Markov chain C we need to introduce the concepts
of conditional entropy and joint entropy [27, 5]. Conditional entropy quantifies the
remaining entropy of a variable Y given that the value of other random variables (Xi

here) is known.

H(Y | X1, . . . , Xn) = −
∑
t∈S

∑
s1∈S

· · ·
∑
sn∈S

P(Y = t,X1 = s1, . . . , Xn = sn) ·

· log2 P(Y = t | X1 = s1, . . . , Xn = sn) ,

where P(Y = t,X1 = s1, . . . , Xn = sn) denotes the joint probability of the events
Y = t, X1 = s1, . . . , Xn = sn.

Joint entropy is simply the entropy of several random variables computed jointly,
i.e. the combined uncertainty due to the ignorance of n random variables. It turns out
[27] that joint entropy can be calculated in the following way, using conditional entropy,
which will be instrumental in our developments for MCs.

H(X0, X1, . . . , Xn) = −
∑
s0∈S

∑
s1∈S

· · ·
∑
sn∈S

P(X0 = s0, X1 = s1, . . . , Xn = sn) ·

· log2(P(X0 = s0, X1 = s1, . . . , Xn = sn)) =

= H(X0) +H(X1 | X0) + · · ·+H(Xn | X0, X1, . . . , Xn−1)

Now, the definition of entropy of an MC is unsurprising, if we take the view of the
processes as a series of random variables; it is the joint entropy of these variables (recall
that due to the Markov property, the automata-view, and the probabilistic view of MCs
are interchangeable):

Definition 10. We define the entropy of a Markov chain C = (Xn, n ∈ N) as the joint
entropy over all Xn: H(C) = H(X0, X1, X2, . . . ) =

∑∞
i=0H (Xi |Xi−1 . . . X0 ).

Note that since we have assumed a single starting state in each MC, it is always the
case that H(X0) = 0. Also the above series always converges to a real number, or to
infinity, since it is a sum of non-negative real numbers.

In leakage analysis, entropy corresponds to the information leakage of the system
only when the system is deterministic and the attacker cannot interact with it [7]. Using
probability intervals we can lift the latter restriction, as different distributions on the
attacker’s input would only lead to different transition probabilities, and the intervals
already consider all possible transition probabilities.

The entropy of an MC is in general infinite. In the next Section we will show that
the entropy of an MC is finite if and only if the chain is absorbing. Considering only
absorbing MCs avoids the problem of the entropy of an MC being in general infinite.
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We always consider terminating protocols, and they can be encoded as absorbing MCs
where the absorbing states represent the termination of the protocol; consequently the
entropy of a Markov chain encoding a terminating process is always finite.

We stress that it is common [31, 5] to compute the average entropy of each step of
the MC and to call it the entropy of the MC. In our opinion, technically speaking this
notion should be more precisely named an entropy rate [27]. Here we want to compute
the actual entropy since the entropy, not its rate, represents the information leakage in
a security scenario where the states of the MC are the observables of a deterministic
protocol.

An alternative characterization of entropy of a process depends explicitly on which
states get visited during the lifetime of the process. Since every state s has a probability
distribution over the next state we can compute the entropy of that distribution, which we
will call local entropy L(s) of s: L(s) = H(Xk+1 | Xk = s) = −

∑
t∈S Ps,t log2 Ps,t.

Note that L(s) ≤ log2(|S|). Also, in general, the value of entropy of an MC is not equal
to the sum of the local entropy values for each state. Such sum will have to be weighted
against the expected residence time of each state to characterize the “global” entropy.

Now consider the Interval MC specification of the Repeated Authentication protocol
in Fig. 1b. Different implementations of it, like the ones in Fig. 3ab, will have different
entropy values. We define a Maximum Entropy implementation for an Interval MC, as
an implementation MC, which has entropy not smaller than the entropy of any other
implementation (if such exists):

Definition 11. Let I be an Interval Markov Chain. Then a Markov chain C is a Maxi-
mum Entropy implementation of I if the following holds:

1. C � I

2. H(C) is finite

3. ∀C′.C′ � I ⇒ H(C′) ≤ H(C)

The boundedness and synthesis of a Maximum Entropy implementation of an
Interval MC will be treated in Sect. 6. It may be that the maximum entropy is actually
infinite, or that the set of attainable entropies is unbounded; we discuss these cases in
Sect. 7.

5. Computing Entropy of Markov Chains

We now provide an algorithm for computing entropy of a given MC. We cast entropy
as a non-negative reward function on an MC, and then apply standard techniques to
compute it. We also provide a simple decision procedure for deciding whether entropy
of an MC is finite.

A non-negative reward function over the transitions of an MC is a function R :
S × S → R+ assigning a non-negative real value, called reward, to each transition.
Given a reward function R we can compute the value of the reward for a concrete
execution of an MC by summing reward values for the transitions exercised in the
execution. More interestingly, we can compute the expected reward of each state s ∈ S
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as R(s) =
∑
t∈S Ps,tRs,t, and then the expected reward over the infinite behavior of

an MC C is R(C) =
∑
s∈S R(s)ξs [10, Chpt. 5].

Each R(s) can be computed in time linear in the number of states, so calculation
of expected rewards for all states can be done in quadratic time. Since computing the
expected residence time for a state s is in PTIME as shown in Sect. 3, we can also
compute R(C) in polynomial time.

Let the reward function be R(s, t) = − log2 Ps,t. Then the expected reward for
each state is its local entropy, or R(s) = −

∑
t∈S Ps,t log2 Ps,t = L(s). Note that

this is an unorthodox non-negative reward function, since the reward for choosing a
transition in a given state is not a constant but depends on the probability distribution
over the successors of the state, as a function of the form R : S × S × P → R+. It
turns out that the (global) entropy of the MC is the expected reward with this reward:

Theorem 1. For an MC C = (S, s0, P ) we have that H(C) =
∑
s∈S L(s)ξs.

Proof. Consider the chain rule for conditional entropy:

H(Xn|X1, X2, ..., Xn−1) =

= −
N∑
t∈S

N∑
s0∈S

· · ·
N∑

sn−1∈S
P (Xn = t,X0 = s0, ..., Xn−1 = sn−1)·

· log(P (Xn = t|X1 = s1, ..., Xn−1 = sn−1))

=
∑
s∈S

π(n−1)
s H(Xn|Xn−1 = s) =

∑
s∈S

π(n−1)
s L(s)

Where π(0)
s is 1 if s = s0 and 0 otherwise. We can see that the entropy at time n is the

sum on each state of the local entropy of the state multiplied by the probability to be in
that state at time n− 1. Applying this to the chain rule for joint entropy over an infinite
time we have that

H(X0, X1, X2, ...) = H(X0) +

∞∑
n=1

H(Xn|X0, X1, ..., Xn−1)

= H(X0) +

∞∑
n=1

∑
s∈S

π(n−1)
s L(s)

= H(X0) +
∑
s∈S

L(s)

∞∑
n=1

π(n)
s

= H(X0) +
∑
s∈S

L(s)

∞∑
n=1

Pns0,s

=
∑
s∈S

L(s)

∞∑
n=0

Pns0,s =
∑
s∈S

L(s)ξs

13



As any other reward of this kind, the entropy of an MC can be infinite. Intuitively,
the entropy is finite if it almost surely stops increasing. This happens if the execution is
eventually confined to a set of states with zero local entropy (deterministic). Since the
recurrent states of a chain are exactly the ones that are visited infinitely often, we obtain
the following characterization:

Corollary 1. The entropy H(C) of a chain C is finite iff the local entropy of all its
recurrent states is zero.

The above observation gives us an algorithmic characterization of finiteness of
entropy for MCs: the entropy of a chain is finite if and only if the chain has one or more
absorbing states or absorbs into closed deterministic cycles. Entropy can only be infinite
for infinite behaviors; for the first n execution steps the entropy is always bounded by
n log2 |S|.

We can classify the processes in two categories: those which eventually terminate
the stochastic behavior, and those which do not. Many processes become deterministic
(or even terminate) after some time. This is the case for a terminating algorithm like a
randomized primality test, or for randomized IP negotiation protocols like Zeroconf,
which stops behaving randomly as soon as an IP number is assigned. Such processes
have finite entropy. On the other hand, the processes that take probabilistic choices
forever and never become deterministic have infinite entropy. Using Corollary 1 we
characterize the processes having finite entropy as terminating and the processes having
infinite entropy as non-terminating. In this sense we consider a process as terminated
when its behavior will be forever deterministic, as it will not reveal any more information
about the secret.

6. Maximum Entropy Implementation of an Interval MC

Interval MCs describe infinite sets of MCs. We now show how to find an implemen-
tation that maximizes entropy, in the sense of Definition 11. Since our Markov chains
represent the behavior of deterministic processes, the Maximum Entropy implementa-
tion we synthesize is also the one with maximum leakage, and its leakage is thus the
channel capacity of all implementations.

In Fig. 2 we show the Maximum Entropy implementation of the Two-step Authen-
tication specification in Fig. 1a. Its entropy is log2 3 ≈ 1.58496 bits. This allows
us to guarantee that none of the infinite possible implementations of the Two-step
Authentication will leak more than log2 3 bits of information to any possible attacker.

Obtaining a Maximum Entropy implementation is a challenging problem. In the
first place, such an implementation may not exist, as the set of attainable entropies may
be unbounded, so we need an algorithm to verify its existence. Secondly, even if it exists
finding it consists of solving a nonlinear optimization problem with constraints over an
infinite domain.

We propose a numerical approach to the general problem of solving Interval MCs
for non-negative reward functions, and apply it to finding a Maximum Entropy im-
plementation. We first check that such an implementation exists, and then proceed to
synthesize it. Remember that an implementation maximizing the expected total reward
for the reward function R(s, t) = − log2(Ps,t) is a Maximum Entropy implementation.
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The expected reward of a reward function may be infinite. An Interval MC admits
implementations with infinite entropy if it has a state that can be recurrent and stochastic
in the same implementation. We call this the infinite case.

If an Interval MC has a state that is recurrent and deterministic in some implementa-
tions and transient and stochastic in some others, but never both recurrent and stochastic
in the same implementation, the set of entropies of its implementations is unbounded,
despite all the individual implementations having finite entropy; an example is the
Repeated Authentication in Fig. 1b. We call this the unbounded case. This happens
because the reward assigned to a transition is not a constant, but a logarithmic function
of the actual transition probability. With such reward it is possible that the total reward
value can be unbounded across possible implementations (not just finite or infinite as for
classical non-negative rewards). Note that this does not happen with constant rewards,
and is specific to our problem.

6.1. Existence of a Maximum Entropy Implementation
We now show an algorithm for determining whether an Interval MC has a Maximum

Entropy implementation with finite entropy. To do this we first give a definition of end
components [32, 33] for Interval MCs. Then we show the algorithm for deciding the
existence of a Maximum Entropy implementation.

An end component is a set of states of the Interval MC for which there exists an
implementation such that once the behavior enters the end component it will stay inside
it forever and choose all transitions inside it an infinite number of times with probability
1. We refer to [32] for further discussion.

Definition 12. Given an Interval MC I = (S, s0, P̌ , P̂ ), a set of states R ⊆ S is an
end component of I if the following holds:

1. R is strongly connected;

2. ∀s ∈ R, t ∈ S\R.P̌s,t = 0;

3. ∀s ∈ R.
∑
u∈R P̂s,u ≥ 1.

Corollary 2. For an Interval MC I = (S, s0, P̌ , P̂ ), if R ⊆ S is an end component of
I then there is an implementation of I in which P(Xn+1 /∈ R | Xn ∈ R) = 0.

1

22
4 [1,1]

[0,0.5]

3
[0,0.4]

[0,1]
[0,0.5]

[0.6,1]

[0.5,1]

[0,1]

Figure 5: Interval MC with multiple end
components

An end component is maximal if no other end
component contains it. In the Interval MC pictured
in Fig. 5 we have that {1, 2} is an end component,
{1, 3} is an end component, and {1, 2, 3} and {4}
are maximal end components.

Algorithm 1 finds all maximal end components
of an Interval MC. It first identifies all candidate end-
components and their complement—the obviously transient states; then it propagates
transient states backwards to their predecessors who cannot avoid reaching them. The
predecessors are pruned from the candidate end-components and the procedure is
iterated until a fixed point is reached.
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Tag all states of S as UNCHECKED;
Find the strongly connected components (SCCs) of the Interval MC (e.g. with
Tarjan’s algorithm) and tag any state not in any SCC as TRANSIENT;
repeat

foreach SCC C do
Select a state s ∈ C tagged UNCHECKED;
Check that ∀t ∈ S\C.P̌s,t = 0. If not, remove s from C, tag it
TRANSIENT, tag UNCHECKED all states in C with a transition to s and
select another state;
Check that

∑
u∈C .P̂s,u ≥ 1. If not, remove s from C, tag it TRANSIENT,

tag UNCHECKED all states in C with a transition to s and select another
state;
Tag s as ENDCOMPONENTSTATE;

end
until all states in any non-empty SCC are tagged as ENDCOMPONENTSTATE;

Algorithm 1: Find all maximal end components of an Interval MC.

Lemma 2. Algorithm 1 runs in time O(|S|3), and upon termination the states of the
Interval MC are tagged as ENDCOMPONENTSTATE if they are part of any maximal end
component, and tagged as TRANSIENT otherwise.

Proof. Clearly the algorithm always terminates, and when it does no state is tagged
UNCHECKED.

Remember from Section 3 that the communicating classes of a Markov chain
correspond to the Strongly Connected Components (SCCs) in its graph representation.
In Algorithm 1 we similarly use the SCCs of the Interval MC graph to identify the
potential end components.

We show that a state t is tagged as TRANSIENT iff there is no maximal end
component containing it. If t is not in any strongly connected component, it is obvious.
Note that if C is a SCC then there is no end component that contains both states inside
C and outside C. If t is in a SCC C at the beginning of the loop, but not after the end
of the algorithm, it was removed in some iteration of the loop; remember that the two
checks that are performed for each state check that there is at least one implementation
such that P(Xn+1 /∈ R|Xn = t). Let’s consider the iteration in which t was removed. If
it was the first state to be removed from C, it means that for any implementation there is
a positive probability of transitioning from t to a state outside C, so t must be transient
in any implementation. Thus we can assume by inductive hypothesis that any state
removed from C at a certain iteration k is necessarily transient; then if t gets removed
after iteration k it means that it has a positive probability to go to a state u /∈ C or to a
state that has been removed from C in a previous step; in both cases t has necessarily
positive probability to go to a transitive state, and is thus transitive.

Since we proved that no states are tagged UNCHECKED after running the algorithm
and that states are tagged TRANSITIVE iff they are not in any maximal end component,
necessarily states are tagged ENDCOMPONENTSTATE iff they are in some maximal
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Make the Interval MC coherent (see Sect.3);
Find the maximal end components of the Interval MC with Algorithm 1 and call
their union Sω;
if there is a stochastic state in Sω then

signal that no Maximum Entropy implementation exists
else

signal that a Maximum Entropy implementation exists
end

Algorithm 2: Verify whether an IMC has a Maximum Entropy implementation

end component.
COMPLEXITY: Let n = |S|. Tarjan’s algorithm runs in time quadratic in n. Each

time a state is selected in the loop it is tested in time linear in n, and each state gets
visited at most O(n2) times, so the total running time of the algorithm is O(|S|3).

Algorithm 2 establishes finiteness of Maximum Entropy across all implementations
of an Interval MC. After finding the maximal end components we check whether each
end component state in I is deterministic. Because the Interval MC is coherent, this
check simply amounts to verifying that for each state in each end component there is a
successor state with lower bound on transition probability being 1. If this is the case,
then there exists a Maximum Entropy implementation for I with a finite entropy value.

Algorithm 2 for deciding existence of finite maximum entropy implementation is
sound and complete:

Theorem 2. Let I be an Interval MC and Sω the union of all its end components. Then
I has no Maximum Entropy implementation iff a state s ∈ Sω is stochastic.

Before proving Theorem 2 we need an additional lemma showing a connection
between recurrent states and end components:

Lemma 3. Let I = (S, s0, P̌ , P̂ ) be an Interval MC and Sω the union of all states of
all its end components. Then s ∈ Sω iff there exists an implementation of I in which s
is recurrent.

Proof. Let R be an end component of I and s ∈ R.
IF: We want to show that there exists an implementation in which s is recurrent.

Consider an Interval MC I ′ = (S, s0, P̌ , P̂
′) identical to I except that P̂ ′ is defined as

follows:

∀s, t ∈ S.P̂ ′s,t =

{
0 if s ∈ R ∧ t /∈ R
P̂s,t otherwise

Note the following:

• I ′ is coherent: since I is coherent we need to check I ′ only on the intervals
that differ from I, meaning the P̂s,t where s ∈ R ∧ t /∈ R; we need to show
that P̂s,t = 0 ≤ 1−

∑
u6=t P̌s,u, but this is obvious since ∀s.

∑
t∈S P̌s,t ≤ 1 by

consistency assumption of I.

17



• R is an end component in I ′: this is obvious since P̌ is not modified and P̂ for
transitions to state inside R is also unmodified.

• Any implementation of I ′ is also an implementation of I, since I ′ refines I.

We know by Definition 12 that R is a strongly connected component in I ′, and by
Lemma 1 this means that there is an implementation in which R is strongly connected.
By the definition of I ′ clearly for any implementation of I ′, ∀n ∈ N.P(Xn+1 /∈
R|Xn ∈ R) = 0. This means that there is an implementation of I ′ in which R
is a closed communicating class, meaning all states in it are recurrent. Since every
implementation of I ′ is also an implementation of I, this is also true for I.

ONLY IF: We want to show that if there exists an implementation C of I in which
s is recurrent, then there is an end component R of I such that s ∈ R. By definition
of recurrent states we know that in the implementation C we have ρ(s, s) = 1. Let’s
consider the set of the successors of s in any number of steps: Succ∗(s) = {t ∈ S|∃k ∈
N.P ks,t > 0} ⊆ S.

Clearly s ∈ Succ∗(s). Let’s consider a state t ∈ Succ∗(s): since t is a successor
of s obviously ρ(s, t) > 0, but then since ρ(s, s) = 1 it must be ρ(t, s) = 1, meaning
that s ∈ Succ∗(t). Since ∀t, u ∈ Succ∗(s).∃k, k′.P kt,s > 0 ∧ P k′s,u > 0 then ∀t, u ∈
Succ∗(s).P k+k′

t,u > 0, meaning Succ∗(s) is strongly connected in C and consequently
in I.

Let’s again consider a state t ∈ Succ∗(s): we proved that all states in Succ∗(s)
are reachable from it, now we prove ad absurdum that no state outside Succ∗(s) is
reachable from t. Consider u ∈ S\Succ∗(s) such that Pt,u > 0. Then since t is
reachable from s and u is reachable from t then u is reachable from s, contradicting
u ∈ S\Succ∗(s). Thus in C there is no transition with probability greater than 0
from a state in Succ∗(s) to a state outside Succ∗(s); since C implements I it must be
∀t ∈ Succ∗(s), u ∈ S\Succ∗(s).P̌t,u = 0 and since C is a Markov chain it must be
that ∀t ∈ Succ∗(s),

∑
u∈Succ∗(s) .P̂t,u ≥ 1. We have shown that Succ∗(s) respects all

conditions in Definition 12, and thus it is an end component.

Now we can proceed with the proof of Theorem 2:

Proof of Theorem 2. Let R be an end component of I and s ∈ R.
IF: Let N = {C � I|s is stochastic in C} and R = {C � I|s is recurrent in C}.

Since s ∈ Sω then by Lemma 3 R 6= ∅, while N 6= ∅ by assumption. We can distinguish
two cases:

• N ∩ R 6= ∅: let C ∈ N ∩ R; then in the implementation C state s is both recurrent
and stochastic, and consequently H(C) =∞ by Theorem 1, thus no Maximum
Entropy implementation exists. In this case we say that the entropy of I is infinite.

• N ∩ R = ∅: let C ∈ R be an implementation in which R is strongly connected; it
exists by Lemma 1. We argue that ∃s ∈ R.∃t /∈ R.P̂s,t > 0 ad absurdum: let’s
assume no state inR has an allowed transition outsideR, then since N 6= ∅ there is
an implementation in which a state s ∈ R is stochastic and recurrent, contradicting
N ∩ R = ∅. Then ∃s ∈ R.∃t /∈ R.P̂s,t > 0. Consider C′ ∈ N which is identical to
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C except that we assign an arbitrarily small positive probability ε to the transition
from s to t and the remaining 1− ε to states inside R. Note that C′ /∈ R. Since we
did not modify any other state in R it is still true that ∀u ∈ R\{s}.ρ(u, s) = 1
while ρ(s, s) = 1− ε. Consider an arbitrarily small 1 > δ ≥ ε. If there exists a
path of finite length l from s to itself with probability 1− ε, let δ = ε; if such a
finite path does not exist it means that

∑∞
n=0 P

n
s,s = 1 − ε, in which case take

δ = 1−
∑l
n=0 P

n
s,s for an arbitrarily large fixed l ∈ N. In any case we will have∑l

n=0 P
l
s,s = 1− δ. Note that δ gets arbitrarily close to ε as l→∞.

Let’s study ξs. Consider the set K={n | Pns0,s > 0}; it is nonempty by reachability
of s. Let k = inf(K) and ρ = P ks0,s. Since ρ ≤ ρs we can write

ξs =

∞∑
n=0

Pns0,s ≥ ρ
∞∑
n=0

Pns,s

= ρ

(
l−1∑
n=0

Pns,s +

2l−1∑
n=l

Pns,s +

3l−1∑
n=2l

Pns,s + ...

)

≥ ρ

(
(1− δ) + (1− δ)

l∑
n=1

Pns,s + ...

)
= ρ

(
(1− δ) + (1− δ)2 + (1− δ)3 + ...

)
= ρ

∞∑
m=1

(1− δ)m =
ρ

δ
− 1 ≈ ρ

ε

since δ can get arbitrarily close to ε. Note that ρ does not depend on ε. We proved
that ξs is bounded from below by ρ

ε , which can grow as much as we want since ρ
is a positive constant and ε can be chosen arbitrarily small.

Now let’s study the local entropy of s. By the properties of entropy we have that
the smallest case2 is when it has two outgoing transitions, one with probability ε
to a state outside R and the other with probability 1− ε to a state inside R. Thus
we say that L(s) ≥ −((ε log2 ε) + ((1− ε) log2(1− ε))), and consequently

L(s)ξs ≥ −
ρ((ε log2 ε) + ((1− ε) log2(1− ε)))

ε

Note that

lim
ε→0
−ρ((ε log2 ε) + ((1− ε) log2(1− ε)))

ε
=∞

meaning L(s)ξs is an increasing function as ε tends to zero, and since H(C) =∑
t∈S L(t)ξt clearly for each implementation it is possible to give another with a

smaller ε and finite but greater entropy, meaning no maximum entropy implemen-
tation exists. In this case we say that the entropy of I is unbounded.

2Since ε can be arbitrarily small, the cases in which the transitions have probability ε′ and 1− ε′ with
ε′ < ε are included
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ONLY IF: We will assume we can give implementations of the Interval MC with
any entropy value and show that such a state s must exist. We will proceed ad absurdum:
let’s assume for any implementation it is possible to give another implementation with
higher entropy for the Interval MC but for any implementation any state s ∈ Sω is
deterministic. Since deterministic states contribute no entropy, only states not in the
end component have positive entropy; let t /∈ Sω be any one of them. From Lemma
3 we know that there is no implementation in which t is recurrent, meaning that in
each implementation ξt is finite and ρ(t, t) < 1. This means that there cannot be a
cycle in any implementation from t to itself with probability 1, and since we allow
only closed intervals this also means that there exists a small positive δ such that in
no implementation t has a cycle to itself with probability greater than 1 − δ. ξt can
be written as the expected residence time in t from itself multiplied by the first hitting
probability ρt of t:

ξt = ρt

∞∑
n=0

Pnt,t

Note that:

• since ρt is a probability, then it is bounded from above by 1;

• since t has no path to itself with probability greater than 1−δ, then ∀l ∈ N.P lt,t ≤
1− δ;

thus we can write

ξt = ρt

∞∑
n=0

Pnt,t ≤
∞∑
n=0

(1− δ)n =
1

δ

Since local entropy is bounded from above by log2 |S| then for each state t it holds
that L(t)ξt ≤ log2 |S|

δ ; then H(C) =
∑
t∈S L(t)ξt ≤ |S| log2 |S|

δ , contradicting the
assumption that for any implementation it is possible to give one with higher entropy.

Theorem 2 proves that Alg. 2 is sound and complete to verify the existence of a
Maximum Entropy implementation as defined in Def. 11 for a given Interval MC I. If
such an implementation exists, its entropy is the channel capacity for all implementations
of the system and can be used as an upper bound on the information leakage of all such
implementations, providing a security guarantee for the protocol represented by I. We
will now show a numerical method to synthesize a Maximum Entropy implementation
with arbitrary precision. In Sect. 7 we discuss the case in which such an implementation
does not exist.

6.2. Synthesis of a Maximum Entropy Implementation

We have been characterizing the existence of a Maximum Entropy implementation
with finite entropy, now we propose a numerical technique to synthesize it with an
arbitrary precision [11]; the Maximum Entropy implementation of the Two-step Au-
thentication in Fig. 2 has been obtained this way. We reduce the problem to solving a
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multidimensional maximization on convex sets by considering each of the |S|2 transition
probabilities Ps,t in the chain as different dimensions, each of which can take values in
the interval [P̌s,t, P̂s,t], generating a convex polytope.

Due to coherence of the Interval MC there exists at least one Markov chain im-
plementing it, so the polytope will be nonempty. We need to add to the system the
constraints ∀s ∈ S.

∑
t∈S Ps,t = 1 to ensure every solution can be interpreted as an

MC. Since these constraints are linear, the domain is still a convex polytope. A point in
the polytope thus defines a Markov chain. The objective function to maximize is the
entropy of such Markov chain, which can be calculated in PTIME as shown in Sect. 5.

This optimization problem for an everywhere differentiable function can be solved
using numerical methods. Once the global maximum is found with a numerical algo-
rithm, the parameters Ps,t interpreted as a MC give a Maximum Entropy implementa-
tion.

Example. Consider the Two-step Authentication in Fig. 1a. The entropy of the system
is H = (−(P1,2 log2(P1,2))− ((1−P1,2) log2(1−P1,2)))+P1,2(−(P2,4 log2(P2,4))−
((1−P2,4) log2(1−P2,4))) under constraints 0≤P1,2 ≤ 1∧ 0≤P2,4 ≤ 1. It is maximal
for P1,2 = 2/3, P2,4 = 0.5. The Maximum Entropy implementation is shown in Fig. 2.

7. Infinite vs Unbounded Entropy for Interval MCs

We now give insight about the difference between unbounded and infinite entropy
for an Interval MC and give a decision procedure to distinguish the two cases.

The infinite case means that it is possible to give implementations with infinite
entropy, and by Corollary 1 an implementation with infinite entropy must be non
terminating. Thus this case means that the specification allows for non-terminating
implementations, during which an arbitrary amount of information will be leaked.

The unbounded case means that all implementations terminate, but whatever the
size of the secret, it is possible to give an implementation that leaks all of it, and thus
we cannot give security guarantees for their behavior.

Consider the Repeated Authentication in Fig. 6a; since state 1 can be both recurrent
and stochastic but never both, we are in the unbounded case, and in fact it is possible to
give implementations with arbitrary entropy. Since the Repeated Authentication is a
security scenario, this means that it is possible to give implementations that leak any
amount of information about the confidential data, and thus this should be considered
an insecure authentication protocol, as it is not possible to give any security guarantee
for it.

In this particular case this depends on the fact that we allow the black list to be
empty; in this implementation the attacker can try all possible passwords, and thus will
eventually leak all of the confidential data. In Figure 6b we show a modified version
in which the black list covers at least 30% of the passwords; for this case the Interval
MC has a Maximum Entropy implementation, and is thus possible to give a security
guarantee.

Algorithm 3 discriminates these two cases. The idea is to build an implementation
that maximizes the end components (in which all states that can be stochastic are stochas-
tic). If this implementation has stochastic states in a strongly connected component,
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Figure 6: a) Specification for the Repeated Authentication with unbounded entropy. b) Specification for the
Repeated Authentication with bounded entropy.

Find all maximal end components of the Interval MC;
Modify the transition probabilities so that all end components are closed: for each
end componentR, set P̂s,t = 0 for all s ∈ R, t /∈ R;
Make the Interval MC coherent again with the coherence algorithm;
if the states of all end components are deterministic then

signal that no infinite entropy implementation exists
else

signal that an infinite entropy implementation exists
end

Algorithm 3: Verify whether an Interval MC allows for infinite implementations.

then it will be possible to generate an infinite amount of entropy, otherwise the entropy
of any implementation is always finite.

After step 2 the Interval MC will still have implementations, since by the definition
of end components it is possible to give an implementation that has probability 0 of
leaving the end component; we are just forcing it to happen for all our end components
and checking if this makes them necessarily deterministic or not.

8. Discussion about Maximum Entropy Strategy of an MDP

We briefly discuss the usage of Markov Decision Processes as specification models,
to show that the approach can be generalized to different specification theories.

As for Interval MCs, reward functions over transitions can be defined for MDPs. In
an MDP P = (S, s0, P,Λ) a non-negative reward function is a function R : S ×
Λ × S → R+ assigning a non-negative reward value to each triple (s, a, t) such
that s, t ∈ S, a ∈ Λs. The expected reward for a state-action pair (s, a) is a linear
combination R(s, a) =

∑
t∈S P(s,a),tR(s,a),t. Finding a strategy maximizing a non-

negative reward function is known as the Positive-bounded Expected Total Reward
problem in Puterman’s book [10].

As for Interval MCs, we want to cast entropy as a non-negative reward function
over transitions of MDPs and we want to find the strategy that maximizes entropy.
Alas, the reward function for entropy would have to sum up all the probabilities of
going from a state s to a state t through all the actions in Λs, and thus cannot be
cast in this form. Consider Fig. 4; the probability of transitioning from state 1 to
state 2 depends on both P(1,a),2 and P(1,b),2 and thus we cannot compute it by as-
signing rewards to a transition without considering every other transition from the
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same state. The reward function would have to be defined on states, becoming R(s) =
−
∑
t∈S

((∑
a∈Λs

P(s,a),t

)
log2

(∑
a∈Λs

P(s,a),t

))
, which contains a non-linear depen-

dency on the choice of strategy (P(s,a),t), so standard reward optimization methods do
not apply.
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Figure 7: MDP model for the Two-step Au-
thentication

More importantly, the Maximum Entropy strat-
egy would not be positional. Consider the MDP
model of the Two-step Authentication protocol in
Fig. 7. Each strategy for assigning probabilities to
actions a and b in states 1 and 2 resolves the MDP
in a Markov chain, allowing us to use the MDP
as a specification model. The Maximum Entropy
strategy is the strategy assigning probability 2

3 to a
and 1

3 to b in state 1 and probability 1
2 to a and 1

2 to
b in state 2, so this is an example of a case in which the Maximum Entropy strategy is not
positional. This prevents us from using common algorithms like value iteration, policy
iteration and reduction to linear programming [10, Chpt. 7] to find the optimal solution.
A numerical approximation approach needs to be applied, showing the inherent hardness
of the problem and validating our approximation approach in the case of Interval MCs.

9. Conclusion and Future Work

It can be possible to give an upper bound to the leakage of a protocol even if some
of its parameters are unspecified, computing the entropy of the Maximum Entropy
implementation of the specification when it exists. If such implementation does not
exist, the protocol is inherently insecure and should be modified. Existence of the
Maximum Entropy implementation can be determined in polynomial time in the size
of the model, while its synthesis requires the solution of a nonlinear multidimensional
maximization problem.

The intention is to allow implementation of intelligent tools that can automatically
concretize underspecified models and give security guarantees to specifications, and
eventually optimize the parameters of such models to make them more resistant to
attacks. It would be interesting to extend our results (and the tool) to specifications with
open intervals, and to other abstractions such as non-trivial subclasses of Constraint
MCs [34] or Abstract Probabilistic Automata [35].
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