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  

Abstract— A new approach for the development of tunable and reconfigurable microstrip devices is proposed. The basic idea consists 

in using a suspended substrate with integrated network of plastic tubes, which can be selectively filled in with a high permittivity 

dielectric fluid, e.g. water. The local change of the substrate effective permittivity achieved in such a way enables one to change, in a 

controlled and reversible manner, the electrical length of certain elements of microstrip circuits. As a proof-of-concept, tunable stub 

resonators based on suspended and inverted microstrip lines are designed and characterized in frequency and time domains. Then, the 

same principle is applied for the development of a 4th-order bandpass filter with 40% fractional bandwidth operating at 5 GHz. A 

tunable range of 19.5% with the insertion loss of 0.6 dB is demonstrated. The performance of the stub resonators and filter is validated 

successfully via prototyping.   
 

Index Terms— Dielectric fluid, microfluidics, reconfigurable, suspended microstrip line, tunable filters.  

I. INTRODUCTION 

HE new generation of communication systems strongly relies on reconfigurable devices enabling multiband operations. In this 

context, an extensive research has been done on agile devices and especially on bandpass filters. Reconfigurable and tunable 

filters are among the key components for emerging wideband and multifunctional RF front-ends. Nowadays, there are several 

techniques available for developing tunable filters with very good performance characteristics, including microelectromechanical 

systems (MEMS) [1]-[3], PIN diodes [4], varactors [5], [6], and agile materials [7]-[9]. These established approaches enable 

development of very compact, cheap and robust tunable filters with fast switching time. However, tunable filters based on these 

approaches may have certain limitations such as the insufficient long-term reliability due to mechanical strength at small 

dimensions intrinsic to MEMS, power consumption in case of PIN diodes, and insertion loss intrinsic for varactor diodes and agile 

materials [10]. The risk of an electrical breakdown for electrically-controlled tunable devices can also limit their applicability for 

some high-power applications.   

Microfluidic tunable devices propose an interesting alternative route to investigate. Instead of using electrical switches, they 

rely on the use of small volumes of conductive or dielectric fluids, whose flow is controlled by a micropump or external stimuli. 

A precise and reversible manipulation with the shape or position of fluid droplets enables development of various tunable 

microwave devices, including phase shifters [11], filters [12]-[16], MEMS [17], [18], and unit cells for frequency selective surfaces 

[19] and transmit arrays [20].  

 

 
 

Fig. 1.  Geometry and notations of a microstrip stub resonator with a dielectric tube placed below the suspended substrate: (a) 3-D view, (b, c) Cross-sectional 

views of the stub resonator based on the suspended and inverted microstrip lines, respectively.  

 

In this paper, we introduce a new approach for the development of tunable filters based on microfluidic principle and animated 

using dielectric fluids (Fig. 1). The basic idea of this approach was introduced in [12] in the form of a tunable stub resonator backed 

on to a polymer substrate with integrated microfluidic channels. In [15], a cavity-backed microfluidically switchable filter animated 

using two different fluids was reported.  
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Unlike earlier studies [12], [15], the microfluidic network of the filters reported in the current paper is created using plastic tubes 

placed below a suspended dielectric substrate supporting inverted microstrip lines oriented along the stubs. The specific orientation 

of the microfluidic channels and the use of commercially-available materials helped us to increase the filter tuning range and 

simplify its practical implementation. The advantages of this approach compared to the cavity-based filter reported in [15] include 

lower complexity of the  microfluidic network, proven reversible performance, faster switching time, and lower insertion loss. 

Finally, the flexibility of plastic tubing potentially enables their integration into conformal and flexible substrates, which is not the 

case for the designs reported in [12], [15]. This makes the proposed approach potentially compatible with emerging applications 

in the domain of flexible electronics, such as body-worn wireless sensors for medical and robotic applications. 

The paper is organized as follows. The concept of the tunable stub resonator based on suspended and inverted microstrip lines 

is presented in Section II. Then, a 4th-order ultra-wideband (UWB) bandpass filter is reported Section III. Finally, conclusions are 

summarized in Section IV.  

II. MICROFLUIDICALLY TUNABLE STUB RESONATORS  

A. The stub topology, Materials, and Methods  

The topology of the proposed quarter-wave tunable stub resonator is shown in Fig. 1. Two alternative configurations based on 

suspended (Fig. 1b) and inverted (Fig. 1c) microstrip (MS) lines are considered. The resonators are designed on the Rogers 

RT/Duroid 5880 substrate (H1 = 0.254 mm, r = 2.2, tan = 0.0009 at 10 GHz) with a standard copper cladding (t =18m). For the 

suspended configuration (Fig. 1b), the use of thin laminate helps us to enhance the impact produced by a small volume of water 

guided by tubes. On the contrary, for the inverted MS line (Fig. 1c), the substrate thickness is less important because the fields are 

mostly confined in free space. For consistency, both resonators are initially designed on the same substrate.  

The signal line width for the suspended and inverted MS lines is equal to W0 = 3.2 mm and 2.4 mm, respectively, which provides 

a 50  characteristic impedance in both cases. The central frequency of the resonators is set at 5 GHz.  

The size of the air gap between the ground plane and the suspended substrate (or the strip in case of the inverted MS line) is 

defined as H2 = Dout = 0.5 mm, where Dout is the external diameter of the ultrathin-wall PTFE tube from AdTech, UK (this selection 

is based on the availability, however, it fits well the size of the air gap required for suspended microstrip circuits operating in the 

addressed frequency band). The permittivity and loss tangent of the tube material are t = 2.1 and tan = 0.0004 at 10 GHz. The 

tube internal diameter is Din = 0.3 mm. 

The fluid used in this study is deionized (DI) water, whose permittivity at 5 GHz is defined as εr = 74, tanδ = 0.3. These values 

are given by the Debye function at 25°C [21], [22]. The large value of the water permittivity results in a significant local change 

of the substrate effective permittivity even for a small volume of water guided by the tube. This effect can be further enhanced 

using several tubes. Note that the tube diameter is only a fraction of the strip width, so several tubes can be placed under the stub 

simultaneously (Fig. 1b and 1c).  

The electromagnetic performance of the devices reported in this paper is studied using the full-wave commercial software HFSS 

v.15 based on the finite element method.  

B. Simulation data 

The width of MS lines affects the substrate effective permittivity and thus Q-factor and resonant frequency of the stub resonators. 

The freedom in selection of the stub width can be used to enhance its tuning range. This effect is illustrated in Fig. 2 which shows 

the frequency response of the stub resonators having different width (W = 1 mm and 2 mm) with one tube placed below the 

substrate.  The length of the stubs is given in the figure legends.  

As we can see in Fig. 2, the narrower stub demonstrates a stronger shift of the resonant frequency between the 'on' and 'off' 

states, which correspond to the tube with and without water, respectively. We can also see that the stub resonator based on the 

inverted MS line has better agility than the one based on the suspended line. Both observations are explained by the ratio of volumes 

occupied by the tube and by the electric fields of the MS line. The larger the ratio, the stronger impact on the effective permittivity 

(and thus agility of the resonant frequency) is observed.  

 



 

 
           (a) 

 
           (b) 

 

Fig. 2.  Simulated S-parameters of the the suspended (a) and inverted (b) stub resonators with one tube placed under the stubs as shown in inset: (green line) no 
water, (blue line) with water. Different styles of the lines denote the stubs with different width: (dashed line) W = 1 mm, (solid line) W = 2 mm.  

 

As we can see in Fig. 3, the tuning range can be further expanded by increasing the number of tubes, N. For each value of N, the 

frequency shift (tuning range) is determined as follows:  

 f = (f1 - f2)/f1, (1) 

    

where f1 and f2 is the stub resonant frequency without and with water, respectively, defined from HFSS simulations. Note that f1 > 

f2. Again, the response is studies for inverted and suspended stub resonators having width of W = 1 and 2 mm. The black triangular 

marks indicate the values of N for which the area covered with tubes equals the stub width, namely N×Dout = W.  

For the narrower stubs (W = 1 mm), the frequency shift f grows rapidly for N ranging from 1 to 3 and reaches about 11% and 

17% for the suspended and inverted MS lines, respectively. On the contrary, for the wider stubs (W = 2 mm) f grows slower but 

reaches higher values of about 14% and 20%, respectively. The stronger agility observed for wide stubs and those based on inverted 

MS lines is explained by the larger relative variation of the substrate effective permittivity (Fig. 4). Here, the effective permittivity 

is estimated as 
 

eff(N) = [c/(4(L+L)×fN)]2, (2) 
 

where c is the speed of light in vacuum, L is the physical length of the stub, L is the equivalent length of the open stub due to the 

fringing fields [23], and fN is the stub resonant frequency taken from HFSS data for a given number of tubes. Here, we assume that 

L does not depend on N and thus can be defined analytically for N = 0. This assumption does not take into account the variation 

of the charge in fringing profile, however this effect is minor and thus can be neglected. 
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Fig. 3.  Shift of the resonator frequency of the stub resonators vs. number of tubes. Two pairs of curves correspond to the stubs based on the inverted (blue line) 

and suspended (red line) MS lines. The hollow and solid rectangular marks denote the stubs with W = 1 mm and 2 mm, respectively. The triangular marks indicate 

the values of N for which the tube area is equal to the width of the stub.  

 

 
Fig. 4.  Effective permittivity of the substrate calculated according to Eqn. (2) vs. number of tubes. The notations are the same as in Fig. 3.  

 

The comparison of Fig. 3 and 4 reveals that the maximum tuning range is achieved when tubes cover the area with the width of 

approximately 2W. A further increase of N produces no impact in terms of the frequency shift. The ripples observed for inverted 

stubs in Fig. 4 for N > 3 are due to positioning of the tubes with respect to the stub central line for odd and even values of N. The 

tubes are always centered with respect to the stub, thus for N odd and even the stub edges occur either above the center of the tube 

(inset Fig. 1) or between the tubes (inset Fig. 4).   

The impact of the tube material is studied in Fig. 5 for the case of one centered tube, whose permittivity, εt , is varied from t = 

1 to 20. For each value of εt, the frequency shift is determined with respect to the resonant frequency of the stub with an empty 

tube having the same permittivity value. The dimensions of the tube remain constant. As we can see, the tuning range increases 

rapidly when t varies from 1 to 5. Further increase leads to a monotonic decrease of f because the higher permittivity of the tube 

material reduces the variation of the substrate effective permittivity achieved due to water. This tendency is similar for both 

structures, however, a twofold advantage is terms of tuning range is observed for the inverted MS line.  
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Fig. 5.  Shift of the resonant frequency for the stub resonators (W = 2 mm) based on the inverted (L = 12.72 mm) and suspended (L = 12.85 mm) MS lines vs. 

permittivity of the tube material. 

 

 
Fig. 6.  Shift of the resonant frequency for the stub resonators (W = 2 mm) based on the inverted (L = 12.72 mm) and suspended (L = 12.85 mm) MS lines vs. tube 

displacement with respect to the stub central line. 

 

Finally, the impact of the tube position on the stub resonant frequency is illustrated in Fig. 6. The tube is filled with water. For 

each point, the frequency shift is determined with respect to the resonant frequency of the same stub with a centered tube. As we 

can see, the inverted stub is less sensitive to the misalignment than the suspended one. Indeed, a nearly zero frequency shift is 

observed for the inverted MS line until the tube is located underneath the strip. On the opposite, the resonant frequency of the 

suspended stub slowly varies even for a minor shift of the tube with respect to the central position (x  0.2 mm). This analysis is 

important because of two reasons. First, it gives information about the possible errors due to the tube misalignment in the proof-

of-concept experimental studies reported below. Second, it reveals immunity of the inverted stubs to the positioning of the 

microfluidic network, whose architecture, in some cases, is predetermined by the structure of the substrate, e.g. [12]. 
 

C. Experimental data (frequency domain) 

To verify experimentally the feasibility of the proposed approach, several prototypes of microfluidic tunable stub resonators 

(both suspended and inverted) have been fabricated. However, for brevity, we limit the following discussion to the structures based 

on inverted MS lines.  

Fig. 7 shows a prototype of the microfluidic tunable stub resonator fabricated by laser etching. A 6mm-thick aluminum plate is 

used as a support and ground plane. Circular washers with a thickness of 0.5 mm keep the substrate suspended above the ground 

plane. The tube is placed below the printed circuit board (PCB) and aligned with respect to the notches cut on the edge of the PCB 

(Fig. 7a). The water is supplied by a numerically controlled ElveFlow® pressure generator enabling a stable pulseless flow with a 

possible modulation of the pressure in time. 

To prevent the substrate bending, the stub is fabricated on 1 mm thick Rogers RT/Duroid 5880 laminate. The use of the thicker 

substrate led to a minor shift of the central frequency that was compensated by adjusting the length of the stub.  

The measurements are performed using the Agilent N5242A PNA-X Vector Network Analyzer through standard SMA 

connectors with flat center conductors.  

Fig. 8 compares the simulated and measured S-parameters of the stub resonator shown in Fig. 7 with one and two tubes. As a 

reference, the frequency response of the same stub with empty tubes is also shown. As we can see, a good agreement between the 

measured and simulated data is obtained for both configuration. A minor discrepancy observed for 'on' state (with water) can be 

attributed to (i) inaccuracy in the definition of the water permittivity, (ii) inaccuracy in the definition of the tube materials 

properties, and (iii) imperfect shape of the tube core. The former factor may occur due to the temperature relation of the water 

permittivity and the bounded water phenomenon, which alters the permittivity of water in narrow capillaries. The other two factors 

come from the fabrication quality. Microscopic images of the tube revealed the imperfect circular shape of the tube core, which 

may result in some fluctuation of the volume of water inside the tube. As a consequence, local variation of the effective permittivity 

is also possible. The tube material properties were not studied due to very small dimensions, although this parameter can strong 

affect the response (see Fig. 5).  
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 (a)    (b) 

Fig. 7.  Prototype of the inverted stub resonator (W = 2 mm, L = 12.85 mm, H1 = 1 mm): (a) PCB plate with a microstrip stub resonator, (b) assembled device with 
SMA conectors and one tube placed underneath the PCB plate.  

 

 
(a) 

 
(b) 

 

Fig. 8.  Simulated (solid line) and measured (dashed line) S-parameters for the stub resonator Shown in Fig. 7: (a) one tube, (b) two tubes. 

 

D. Experimental data (time domain) 

To assess the switching time of the microfluidic tunable devices, a setup illustrated in Fig. 9a with two pressure generators (PG) 

was developed. Here, PG1 was used to provide a constant air flow with a pressure p0 ~ 400 mbar, whereas PG2 was providing a 

water flow with the pressure of p = p0 ± 200 mbar modulated in time. The modulation period was 2s with a low pressure provided 

for 0.5s. The device under test (DUT) is the single stub resonator shown in Fig. 7 with 1 tube, whose frequency response is shown 

in Fig. 8a. The S-parameters of the stub resonator measured at the central frequency in time domain are illustrated in Fig. 9b. The 

high and low level of S11 corresponds to the 'on' and 'off' states of the device. The time sweep is 180s with a break from 6s to 174s. 

As we can see, the level and pulse duration of S11 remains stable with time. The switching time is estimated as ts = 70ms ± 20ms 

(this estimate is based on the roll-off time of the S11 impulse).  
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 (a)  (b) 

Fig. 9.  Time domain measurements of the stub resonator presented in Fig. 7: (a) schematic drawing of the experimental setup with two pressure generators 
providing a stable airflow and pulse water flow mixed in the T-junction,  

(b) S-parameters measured in time domain at the central frequency.  

III. MICROFLUIDICALLY TUNABLE BANDPASS FILTER 

A. Filter topology & Simulation data  

The topology of the proposed microfluidic tunable bandpass filter is shown in Fig. 10. The filter consists of four half-wave 

tunable stub resonators separated by quarter-wave inverters. The synthesis of the filter is based on the Tchebycheff approximation 

[23]. The dimensions of the proposed filter are given in Table I. The 'initial' dimensions are obtained for the filter with no tubes. 

The 'optimized' ones are determined in an additional optimization step taking into account the presence of one tube filled with 

water. This additional step enabled us to achieve the desired -20 dB level of the reflection coefficient for all states of the filter, 

namely with one and two tubes with and without water (Fig. 11).  The central frequency of the filter in 'off' state, f1, is set as 5 

GHz. The –3dB fractional bandwidth (FBW) is 40% for all states. The filter tuning range f equals 8% and 12% for one and two 

tubes, respectively, if defined in accordance with Eqn. (1), where f1 and f2 is the central frequency of the filter in 'off' and 'on' states, 

respectively. For both states, the central frequency is defined as the geometric mean of 3-dB cutoff frequencies.  

As we can see in Fig. 12, the increase of N up to 5 enables one to achieve the tuning range of 19.5% that is in line with the 

results obtained for a single-stub resonator (Fig. 3). The variation of the FBW versus N does not exceed 2.5%.  

Finally, Fig. 13 represents the variation of the central frequency and insertion loss (IL) defined from HFSS simulations versus 

number of tubes. Here, f1 and f2 denote the central frequency of the filter being in 'off' and 'on' states, respectively. The variation 

of f2 reveals the impact of empty tubes on the central frequency, whereas f1 enables one to estimate the tuning range for each value 

of N. The insertion loss of the filter remains below 0.6 dB for all N, that is much lower than reported for tunable filters based on 

alternative approaches [1]-[10]. Note that tubes can be filled in independently enabling a multi-step tuning of the filter center 

frequency within a given range with the total number of states equal to N+1, where N is the number of tubes. 

 
 

 
Fig. 10.  Topology and notations of the 4th-order microfluidic tunable bandpass filter. The structure is symmetrical with respect to yz-plane. The substrate size is 

90mm×55mm. 
 

 
TABLE I. DIMENSIONS OF THE FILTER (in mm) 

L1 L2 L3 L4 L5 W1 W2 W3 W4 W5 

Initial values 

22.90 13.15 12.91 13.07 13.01 2.27 1.74 1.19 1.30 1.19 

Optimized values 

21.14 13.35 13.11 13.07 13.01 2.27 1.84 1.26 2.07 1.89 
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Fig. 11.  Simulated S-parameters of the filter shown in Fig. 10: (a) one tube,  
(b) two tubes. The blue solid and red dashed lines denote two stated of the filter with and without water, respectively. 

  
Fig. 12.  Shift in central frequency (left axis) and FBW (right axis) of the filter vs. number of tubes. 
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Fig. 13.  Central frequency (left axis) and insertion loss (right axis) of the filter vs. number of tubes. 

 

Experimental data 

A prototype of the proposed microfluidic tunable filter is shown in Fig. 14. Its dimensions are given in Table I (optimal design). 

It was fabricated using the same technique and materials as the single stub resonator reported in Section II.C.  

The measured and simulated S-parameters of the filter with one and two tubes are shown in Fig. 15. A good agreement between 

the measured and simulated data is achieved both for the FBW and tuning range. A slightly higher level of S11 within the pass band 

is explained by the cumulative effect of the factors discussed in Section II.C. An additional negative impact on the reflection 

coefficient is possible due to the SMA connectors soldered to the inverted MS line (their impact is not important for stub resonators 

because of the performance difference: stopband in case of stubs and passband in case of the filter). The obtained experimental 

data confirm the feasibility of the proposed approach for the development of more complex microfluidically tunable and 

reconfigurable devices. 

  

    

 

 

 

 
  (a)  (b) 

 

  (c) 

Fig. 14. Prototype of the tunable filter: (a) dielectric substrate with the  

4th order bandpass filter, (b) assembled device on the aluminum plate with SMA connectors, (c) measurement setup. The dimensions are given in Table I. 
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Fig. 15.  Measured and simulated S-parameters of the filter shown in Fig. 10: (a) one tube, (b) two tubes. The blue solid and red dashed lines denote two stated of 

the filter with and without water, respectively.  

 

IV. CONCLUSION 

A new approach for the development of tunable microstrip filters has been proposed based on the microfluidic principle. The 

originality of the approach consists in using inverted microstrip lines and plastic tubes oriented parallel to stub resonators. Two 

types of tunable filters have been designed and fabricated as a proof-of-concept. The performance of microstrip stub resonators, 

based on suspended and inverted microstrip lines, have been compared. The latter configuration was found more attractive due to 

a wider tuning range and lower sensitivity to possible misalignment between stubs and microfluidic channels. Then, an UWB 

bandpass filter with a fractional bandwidth of 40% has been implemented, based on the same approach. Its theoretical tuning range 

is 19% with the insertion loss of <0.6 dB. A literature review showed that these characteristics are sound compared to existing 

analogs.   

The performance of both devices has been validated successfully via prototyping. The time-domain measurements of the tunable 

stub resonator revealed reversible switching between two states with a switching time of about 70ms. 

The proposed approach can be used for the development of a wide class of tunable and reconfigurable devices. It can be scaled 

in frequency, subject to a proper account for the frequency dispersion of the fluid permittivity and limitations in feasible dimensions 

of plastic tubing and suspended structures. Note that in the reported study the tube parameters were not included in optimization 

which leaves space for further improvements. In particular, the use of tubes with thinner walls and/or rectangular cross-section 

may help one to increase the tuning range of microfluidic devices, thanks to a more compact arrangement of microfluidic channels. 
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