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ABSTRACT 

A series of Sb/Mn co-doped oxyfluoride silicate glasses were prepared via the melt-quenching 

method to explore red luminescent materials for potential applications in photosynthesis of 

green plants, and these glasses are investigated by means of luminescence decay curves, 

absorption, emission, and excitation spectra. We find that the as-prepared glasses are 

transparent in the visible region and can emit strong red light under ultraviolet, purple, and 

green light excitations. Furthermore, energy transfer from Sb3+ to Mn2+ ions occurs in Sb/Mn 

co-doped glasses. The results demonstrate that the as-prepared Sb/Mn co-doped oxyfluoride 

silicate glasses may serve as a potential candidate for developing glass greenhouse, which can 

enhance the utilization of solar energy for the photosynthesis of the green plants. 
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1. Introduction 

Photosynthesis is a process to convert light energy, normally from the sun, into chemical 

energy that can be later released to fuel the plants’ activities. In the solar spectrum, the energy 
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percentage of the ultraviolet (UV), visible, and infrared lights is about 7%, 50%, and 43%, 

respectively [1]. Generally, the green plants (chlorophylls) absorb more red light than other 

wavelengths for the photosynthesis. In addition, the green light can hardly be absorbed by the 

green plants for photosynthesis and the UV light is harmful to the growth of the plants. The 

lights absorbed by green plants for photosynthesis are only a very small portion in the whole 

solar spectrum [2,3]. Thus, to convert the UV and green lights into red light is a very 

promising and valuable work for the growth of the plants. At present, most greenhouses are 

made of the plastic materials, which have some drawbacks such as short lifetime, poor 

transparency, and instability. In recent years, the glass greenhouses are attracting more and 

more research attention due to the superior light transmittance, low production cost, and long 

service life compared to plastic greenhouses [2,3]. In particular, luminescent glasses can be 

used for the realization of solar spectrum modification, e.g., to convert the ultraviolet and 

green lights into the red light for photosynthesis. In other words, luminescent glasses are 

strongly expected to be an interesting and excellent alternative approach to fabricate 

greenhouses compared to traditional plastic materials.  

The oxyfluoride silicate glasses possess excellent chemical stability, good mechanical 

strength, high transparency for visible light, as well as low phonon energy environment for 

luminescence ions [4,5]. Sb and Mn are regarded as promising low-cost and 

environmental-friendly elements compared to rare earth. Additionally, Sb2O3 can also be used 

as a fining agent in glass melting. Based on above considerations, herein we fabricated a 

series of Sb-, and Mn-doped oxyfluoride silicate glasses for greenhouse application and the 

optical properties of the glasses are investigated. Although some preliminary works on the 



 

luminescent glasses or glass-ceramics for greenhouses have been reported [2,3], the Sb/Mn 

co-doped oxyfluoride silicate glasses have not been considered for photosynthesis 

applications yet.    

2. Experimental  

All the investigated glasses have the glass matrix (GM) composition of 

45SiO2-15Al2O3-10ZnO-20CaF2-10CaO (in mol.%). Samples GMS2 (doped with 2 mol.% Sb), 

GMM4 (doped with 4 mol.% Mn), GMS2M2 (co-doped with 2 mol.% Sb and 2 mol.% Mn), 

GMS2M4 (co-doped with 2 mol.% Sb and 4 mol.% Mn), and GMS2M6 (co-doped with 2 mol.% Sb 

and 6 mol.% Mn) were prepared by melt-quenching method. The chemicals SiO2, Al2O3, ZnO, CaF2, 

CaCO3, Sb2O3, and MnCO3 were used as raw materials and they are analytical grade reagents. The 

starting materials calculated based on the compositions of the as-designed samples were taken in an 

agate mortar and grounded well to obtain homogenous mixtures. The homogenous batches were put 

into corundum crucibles and melted in an electrical furnace at 1460°C for 1 hour in air atmosphere. 

After melting, the glass melts were quickly casted into a preheated stainless steel mould for quenching. 

To relieve the internal stress of these glasses, which is induced during the quenching process, the 

obtained glasses were annealed at 450 °C for 2 hours in air atmosphere, followed by natural cooling.  

The energy dispersive spectroscopy (EDS) was measured using an EDS detector attached 

on the Scanning Electron Microscope (SEM, Hitachi S-4800, Japan) to analyze the 

compositions of the glasses. The absorption spectra were recorded using a Lambda 1050 

UV/VIS/NIR spectrometer (PerkinElmer, USA). The excitation and emission spectra were 

measured using an FLS920 fluorescence spectrometer (Edinburgh Instruments Ltd., UK) 

using a 450 W Xe lamp (Xe900) as light source. The fluorescence decay curves were 



 

measured by using a standard storage digital oscilloscope and by exciting the samples at 266 

nm with a frequency-quadrupled Nd:YAG laser providing 6 ns laser pulses. All the 

measurements were performed at room temperature with the same experimental parameters. 

3. Results and Discussion 

Since some raw materials, e.g., CaF2 and ZnO, can be volatile during the melting process, 

the final compositions of as-prepared glasses may deviate the nominal ones as designed. All 

the mentioned glasses in this paper have the identical glass matrix compositions. As an 

example, we carried out the composition analysis of sample GMS2 using EDS technique, as 

shown in Fig. 1. It can be seen that the content of F, Zn, and Sb decreased compared to the 

nominal compositions, indicating that these three elements were partially lost during 

preparing these glasses by melt quenching method.  

Fig. 2 shows the absorption spectra of samples GMS2, GMS2M2, GMS2M4, and 

GMS2M6 in the wavelength region of 200–800 nm. The samples present distinct absorption 

from 200 to 300 nm, which can be attributed to the partially forbidden electronic transition 1S0

3P1 of Sb3+ ions [6]. The absorption peaks at 415 nm shown in the inset are due to the 

electronic transition of 6A1g [4A1g ; 4Eg] of Mn2+ ions [7]. We can see that the glasses are 

highly transparent in the visible range and demonstrate intense absorption in the ultraviolet 

region, which indicates that the as-prepared glasses can efficiently absorb the ultraviolet light, 

and transmit the visible light. These optical features of the glasses are very helpful and 

effective for the protection, the growth and photosynthesis enhancement of the greenhouse 

plants.  

 In order to investigate the possibility of the Sb/Mn co-doped glass to convert the 



 

UV-purple-green lights into red light, we measured the excitation and emission spectra of 

sample GMS2M4, as shown in Fig. 3. The excitation spectrum monitored at 652 nm mainly 

contains four excitation bands. A broad excitation band at ~ 255 nm is due to the electronic 

transition of 1S0
3P1 of Sb3+. The additional three excitation bands peaking at ~ 353, 415, 

and 507 nm correspond to the electronic transitions from ground state 6A1g to excited states 

4T2d, [4A1g ; 4Eg], and 4T2g of Mn2+, respectively [8]. To further examine the potential 

application of the glass in greenhouse, we measured the emission spectra under the excitation 

of 255, 353, 415, and 507 nm, respectively, which correspond to the respective excitation 

peaks of sample GMS2M4. It can be seen that the shapes of the emission spectra under 

aforementioned excitation wavelengths are nearly the same except for the emission intensities. 

The emissions are attributed to the electronic transitions of 4T1g→6A1g of Mn2+ ions [9]. The 

energy ratios of the UV and green lights are ~ 7% and ~ 10% in the solar spectrum, which are 

waste for the photosynthesis of the green plants. Thus, it is very interesting to transfer the UV 

and green lights into the red light, which is helpful for photosynthesis. We can see in Fig. 3 

that the as-prepared glasses can effectively convert the UV and blue-green lights into red 

emission, implying that these materials can improve the utilization of the solar energy for 

photosynthesis of green plants.   

Fig. 4 shows the emission spectra of the Mn2+ single doped and Sb3+/Mn2+ co-doped 

glasses excited at 415 nm. The broad emission bands come from the electronic transitions of 

4T1g→6A1g of Mn2+ ions [10]. With the increasing of the Mn2+ ion concentration, the emission 

intensity increases firstly and then decreases, which could be due to the luminescence 

concentration quenching of Mn2+ caused by the cross-relaxation between Mn2+ ions. The 

red-shift of the emission peak of Mn2+ is also observed with increasing Mn2+ content. This 



 

phenomenon could be induced by the following aspect: increasing Mn2+ content results in the 

reduction of Mn2+ − Mn2+ distance, which leads to the enhancement of the interaction of Mn2+ 

− Mn2+. That is to say, the ligand field strength surrounding Mn2+ is enhanced, making the 

excited state of Mn2+ energetically closer to its ground state and finally gives a longer 

wavelength emission [11]. Comparing the emission spectra of samples GMM4 and GMS2M4, 

it is found that emission blue-shift occurs with the introduction of Sb3+ ions. The emission of 

transition metal Mn2+ ion corresponds to d-d transition, and its emission is sensitive to the 

surrounding environment [12]. The introduction of Sb3+ may lead to the variation of the local 

environment around Mn2+ ions, which might be the reason for emission blue-shift of sample 

GMS2M4.  

To further investigate the conversion of UV to red light via the as-prepared glasses, the 

emission spectra for samples GMS2, GMS2M2, GMS2M4, and GMS2M6 excited at 266 nm 

are illustrated in Fig. 5. It can be seen that these glasses present a broad emission band 

ranging from 350 to 505 nm, which can be assigned to the electronic transition of 3P1 → 1S0 of 

Sb3+. With the increase of the Mn2+ concentration, the intensity of the 350-505 nm emission 

from Sb3+ decrease, whereas the intensity of the 550-800 nm emission from Mn2+ increases 

firstly and then decreases (luminescence concentration quenching of Mn2+). This phenomenon 

indicates the energy transfer (ET) from Sb3+ to Mn2+ occurs. The ET from Sb3+ to Mn2+ can 

enhance the red emission intensity and cause the variety of emission color of the glasses.    

Excitation spectra (λem = 661 nm) of samples GMM4 and GMS2M4 and emission spectra 

of samples GMS2 ( λex = 266 nm) and GMM4 (λex = 415 nm) are presented in Fig. 6. The 

emission spectrum of sample GMS2 (λex = 266 nm) gives a broader emission band related to 

the 3P1
1S0 transition of Sb3+. It should be noted that there is a significant overlap between 

the emission spectrum of Sb3+ doped glass GMS2 and the excitation spectrum of Mn2+ doped 

glass GMM4 in the range of 350 to 640 nm. Therefore, it is expected that the ET process can 



 

efficiently occur from Sb3+ to Mn2+. In order to further clarify this, the excitation spectrum of 

sample GMS2M4 monitored at 661 nm is also included in Fig. 6. A broad excitation band at ~ 

261 nm exists for sample GMS2M4 compared to GMM4, which further confirms the ET 

process of Sb3+ to Mn2+. It is known that the transition metal Mn2+ can provide a broad 

emission band corresponding to d-d transition. Since the absorption and emission of Mn2+ are 

weak due to the spin- and parity-forbidden d-d transition of Mn2+ [13], herein, we employ 

Sb3+ as efficient sensitizing ions to enhance the luminescence of Mn2+ by means of ET.  

To further evaluate the energy transfer from Sb3+ to Mn2+ in the as-prepared glasses, the 

decay curves of emission of Sb3+ were measured with excitation at 266 nm and monitoring at 

408 nm for samples GMS2, GMS2M2, GMS2M4 and GMS2M6, as shown in Fig. 7. The 

decay processes of these four samples are characterized by average lifetime , which can be 

derived from: 
00

)(/)( dttIdtttI , where I(t) stands for the intensity at time t [14,15]. 

The calculated lifetimes are 4.53, 3.55, 2.71, and 2.45 s for samples GMS2, GMS2M2, 

GMS2M4 and GMS2M6, respectively. ET efficiency ( ET) can be calculated by the following 

equation, ET = 1- / 0,  where  and 0 are the lifetimes of Sb3+ in the presence and absence 

of Mn2+, respectively [16].The calculated ET efficiencies are 21.6, 40.2, and 45.9% for 

samples GMS2M2, GMS2M4, and GMS2M6, respectively. The decay times and ET 

efficiency indicate the ET process from Sb3+ to neighboring Mn2+ in the Sb/Mn co-doped 

glasses, which is very efficient. 

4. Conclusions 

In summary, Sb-and Mn- doped oxyfluoride silicate glasses were synthesized by melt 

quenching method. We find that the as-prepared glasses demonstrate high transparency in the 

visible light range and intense absorption in the ultraviolet region. We use the Sb/Mn 



 

co-doped glasses as light converter to successfully transfer the ultraviolet and green lights into 

the red light, which could be efficiently absorbed by green plants for their photosynthesis. 

Additionally, energy transfer from Sb3+ to Mn2+ occurs in the glasses. Our investigation 

shows that Sb/Mn co-doped glasses may be used for the fabrication of greenhouses in the 

future for enhancing the photosynthesis of the green plants.  
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Figure Captions 

Fig. 1. EDS spectrum of sample GMS2. The inset shows the comparison of the nominal and 

EDS measured element content.  

Fig. 2. Absorption spectra of the glasses. The inset shows the enlarged absorption spectra in 

the range of 360-500 nm. 

Fig. 3. Excitation and emission spectra of sample GMS2M4. The electronic transitions, 

excitation (λex) and the monitored (λem) wavelengths are explicitly indicated in the 

figure. 

Fig. 4. Emission spectra of glasses excited at 415 nm. 

Fig. 5. Emission spectra of glasses under 266 nm excitation.  

Fig. 6. Excitation spectra of samples GMM4 and GMS2M4 monitored at 661 nm; Emission 

spectra of samples GMS2 and GMM4 excited at 266 and 415 nm, respectively.  

Fig. 7. Luminescence decay curves of samples GMS2, GMS2M2, GMS2M4 and GMS2M6, 

which were obtained using the excitation wavelength of 266 nm and monitoring the 

emission at 408 nm. 

 

 

 

 

 

 

 



 

 

Fig. 1. EDS spectrum of sample GMS2. The inset shows the comparison of the nominal and 

EDS measured element content. 

 

 

 

Fig. 2. Absorption spectra of the glasses. The inset shows the enlarged absorption spectra in 

the range of 360-500 nm. 

 



 

 

Fig. 3. Excitation and emission spectra of sample GMS2M4. The electronic transitions, 

excitation (λex) and the monitored (λem) wavelengths are explicitly indicated in the 

figure. 

 
 
 
 

 

Fig. 4. Emission spectra of glasses excited at 415 nm. 

 



 

 

Fig. 5. Emission spectra of glasses under 266 nm excitation. 
 
 
 
 
 
 
 
 
 

 

Fig. 6. Excitation spectra of samples GMM4 and GMS2M4 monitored at 661 nm; Emission 
spectra of samples GMS2 and GMM4 excited at 266 and 415 nm, respectively. 



 

 

Fig. 7. Luminescence decay curves of samples GMS2, GMS2M2, GMS2M4 and GMS2M6, 

which were obtained using the excitation wavelength of 266 nm and monitoring the 

emission at 408 nm. 

 
 

 


