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Abstract 30 

The present review is an update of the previous one published in Proteomics 2015 Reviews special 31 

issue [1] covering the 2014-July 2015 period. It has been written on the bases of the publications that 32 

appeared in Proteomics journal during that period and the most relevant ones that have been published 33 

in other high-impact journals. Methodological advances and the contribution of the field to the 34 

knowledge of plant biology processes and its translation to agroforestry and environmental sectors 35 

will be discussed. This review has been organized in four blocks, with a starting general introduction 36 

(literature survey) followed by sections focusing on the methodology (in vitro, in vivo, wet and dry), 37 

proteomics integration with other approaches (systems biology and proteogenomics), biological 38 

information, and knowledge (cell communication, receptors and signaling), ending with a brief 39 

mention of some other biological and translational topics to which proteomics has made some 40 

contribution.  41 

 42 
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 56 

INTRODUCTION  57 

The topic of plant proteomics was reviewed in 2015 on the basis of the articles published in 58 

Proteomics journal (from now just Proteomics, written in italics) between 2001, when the first issue 59 

appeared, and May 2014 [1]. The present review is an update covering the January 2014-July 2015 60 

period in which methodological advances and the contribution of the field to the plant biology 61 

knowledge and its translation to agroforestry and environmental sectors will be discussed. It is not 62 

intended to be repetitive considering recent reviews but aiming to get to the reader for a deeper 63 

discussion of key topics. It was written to be included in the 2016 Proteomics Review Special Issue, 64 

since it is the last one of the series edited by Prof. Dunn, the editor in chief of Proteomics since it 65 

appeared and who recently retired. It is a matter of justice to recognize the enormous effort of Prof. 66 

Dunn in establishing and consolidating Proteomics as a leader journal as well as his scientific 67 

contribution to the field. The corresponding author, in particular, and the plant community, in general, 68 

should acknowledge the personal consideration and the support he always gave to us reflected, just as 69 

an example, in his input to the International Plant Proteomics Organization (INPPO; 70 

http://www.inppo.com/) society [2], even though plant studies are not within his field of investigation. 71 

He, better than nobody else, has been an actor, director, and observer of the evolution of Proteomic 72 

Science [3]. 73 

According to PubMed, during the period of 2014-July 2015 Proteomics published 600 papers 74 

distributed in 40 issues, either regular or special including Reviews 2014 and 2015 Tissue Proteomics 75 

and Imaging Mass Spectrometry, Top-Down Proteomics, Focus on Biomedical Research Trends, 76 

Proteomics in Chromatin Biology and Epigenetics, Proteogenomics, Signal Transduction, Proteomics 77 

Data Visualization, Plant-based Foods: Seed, Nutrition and Human Health, Virology meets 78 

http://www.inppo.com/


Proteomics, Views on Protein N-terminal Biology, and Protein Structure. These thematic issues 79 

perfectly represented the most recent technical advances, the frontier of knowledge in biology, and the 80 

interest in translational biomedicine. Of 592 papers published in Proteomics, 133 were selected for 81 

preparing this review as they dealt with plants (33 original papers, 16 reviews, and 1 meeting report, 82 

representing around 10 % of the total papers released by the journal) or presented the state of the art 83 

of the field from a biological, methodological or translational point of view.  84 

After a PubMed search the terms proteomics or proteome in the title/abstract returned 8553 85 

hits. Compared with the other –omics approaches, this figure was slightly or much higher than 86 

transcriptomics/transcriptome (7728) or metabolomics/metabolome (3064) searches, respectively. 87 

While looking for the combined use of the different omics approaches, PubMed provided 52 88 

proteomics, transcriptomics, and metabolomics reports, as well as 113 proteomics and 89 

transcriptomics, and 56 proteomics and metabolomics papers. The integration of the different –omics 90 

approaches will be discussed in a further section. 91 

In the surveyed period, plants continued to be underrepresented in the current proteomics 92 

literature, but significantly increasing, with 683 references in PubMed (almost 15% of the total) while 93 

for humans, just as a comparative example, the figure was 2795, with quite a few related to the study 94 

of cancer, as well as vascular and other diseases [4]. Despite the claimed general worry about food 95 

supply, environmental concerns, and climate change, these issues have not been properly reflected in 96 

research funding policy in most of the western countries and even less in developing nations. This 97 

issue is very well discussed by Donald Kennedy (President Emeritus at Stanford University, and a 98 

former editor-in-chief of Science) in Science’s editorial “Building Agricultural Research” [5]. Human 99 

welfare depends on well-connected health and food supply [6-8]. Famine is the major cause of 100 

mortality on a worldwide basis, and increasing nutritional value of primary crops would drastically 101 

reduce health problems in the less developed countries [9]. The situation seems to be changing, but 102 

very slowly; at HUPO (https://www.hupo.org/) or general proteomics meetings such as European 103 

EuPA (http://www.eupa.org/) or Spanish SEProt (http://www2.cbm.uam.es/~seprot/), room for non-104 

human proteomics and groups interested in different type of organisms (microorganisms, plant, and 105 

https://www.hupo.org/
http://www.eupa.org/


animals) has been recently created, or is under discussion. The vision or sensations at the plant 106 

specific organization INPPO is that we are surviving within the field as a scientific ghetto. With no 107 

doubt, plant and human research can and should benefit from each other. Plants provide an almost 108 

unlimited experimental system and despite being far in evolution they share an important number of 109 

genes [10], with similar mechanisms of, for example, immunity [11], and host-pathogen interactions 110 

[12]. In addition, plants may be sources of drugs for disease treatment [13] and also of allergens [14, 111 

15]. Some more examples of common phenomena between plant and animals are totipotency, the 112 

property of the cells to be developmentally reprogrammed, the conceptual basis of the stem cell 113 

projects [16], and the involvement of telomeres and telomerases in senescence and aging [17].  114 

The topic of plant proteomics continues to be extensively reviewed, reflecting its expansion, 115 

relevance, and expectations; although we should assume by now that there is a long distance between 116 

expectations and realities, and that the full potential of proteomics is far, once again if compared with 117 

humans, from being fully exploited in plant biology research and crop science [18-20]. Here, in 118 

Proteomics, and also in other journals, much attention has been given to proteomics of plant stresses 119 

responses, the major topic in plant biology because of its implication in crop protection and 120 

biotechnological improvement [21-23]. Up to 15 plant proteomics reviews have been recently 121 

published in Proteomics, most of them in the Vol. 15, Iss. 5-6 (Reviews 2015) and 10 (Plant-based 122 

Foods: Seed, Nutrition and Human Health). Strikingly, the thematic issues covering the most recent 123 

technical novelties or the frontier in proteomics and biology knowledge have none or at most two 124 

plant papers per issue; it was the case of Tissue Proteomics and Imaging Mass Spectrometry (Vol.14, 125 

Iss. 7-8, one plant reference by Maciel et al., 2014 [24]), and OMICS Views on Protein N-terminal 126 

Biology (Vol. 15, Iss. 4; two plant original papers by Zhang et al., 2015 [25] and Venne et al., 2015 127 

[26]). The review by Walton et al. (2015) [27] on signaling, a topic later discussed, deserves special 128 

attention, and is one of the plant reviews we should not miss. Regarding plant reviews in other 129 

journals, at least 15 have appeared, with some of them covering topics that will be mentioned later, 130 

including software, database and repositories [28] PTMs [29, 30], and signaling [31].  131 



Recently, Jorrin-Novo (2015) [32] published an opinion article in which scientific standards 132 

and MIAPE were discussed in the context of proteomics work and publications. From his experience, 133 

the failure to meet proper scientific standards and those requested for a proteomics paper is the most 134 

obvious and immediate reason for rejection. As just a simple example, the general terminology 135 

employed in the literature included terms such as protein expression, when proteomics approaches 136 

actually determine abundance [1, 32]. Abundance is the result not only of gene expression 137 

(transcription and translation) but also of protein degradation and PTMs. 138 

The list of referenced papers did not pretend to be exhaustive, but limited, according to the 139 

author´s considerations, to those that presented some methodological, biological or translational 140 

novelties. Some of the revised papers fit in the general group of comparative analysis based on 2-DE 141 

coupled to MS analysis and they were not included. On the other hand, special attention was given to 142 

those using second to fourth generation techniques (labelling, gel-free, SRM/MRM [1]), those 143 

integrating classic and –omics approaches, or focused on PTMs and interactomics. Regarding the 144 

previous period reviewed, there have not been real novelties in the experimental (plant) system used, 145 

the biological process studied or the translational purpose pursued [1]. There is still a general need to 146 

go beyond the construction of a protein catalog accompanied by more speculation than real 147 

discussion, although better annotations and deeper knowledge is required in some cases.  148 

 149 

WET AND DRY METHODOLOGIES 150 

In vitro and in situ proteomics analysis 151 

 Proteomics is a discipline in expansion with continuous novelties and improvements in 152 

techniques, protocols, softwares and equipments [33, 34]. This is also true for quite standard and well 153 

stablished protocols in the early proteomics workflow stages prior to MS analysis, as it is important to 154 

optimize them to each experimental system (plant, organ, tissue, cell or subcellular fraction). Thus, 155 

improved protocols dealing with protein extraction [35], depletion [36, 37], fractionation [38], gel 156 
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staining [39], multiplexing [40], trypsin protein digestion [41] and sample preparation for shotgun 157 

analysis [42, 43] have recently been published.  158 

The use of different MS platforms in plant proteomics analysis was previously discussed [1], 159 

however it is important to mention that new ion fragmentation procedures as alternative to the current 160 

collision induced dissociation, CID, and electron transfer dissociation, ETD, such as 161 

photodissociation, have been claimed to produce enhanced sequence coverage and higher confidence 162 

in sequence assignment [44, 45]. 163 

One of the limitations of proteomics, when compared to genomic and transcriptomic analyses, 164 

is that proteins cannot be amplified as can DNA and therefore, optimized and efficient extraction 165 

methods must be developed. Thus, the very laborious and time consuming used protocols and the 166 

number of replicates (the three biological replicates performed as a rule are not enough to perform 167 

solid statistical analysis and get confident biological conclusions [46], it is recommended to perform 168 

at least 5 biological replicates to allow a reliable estimation of residual variance when more than two 169 

treatments are compared) are the main bottleneck that makes proteomics unpopular among plant 170 

biologists. The use of an appropriate extraction method is even more relevant for PTMs or 171 

interactomics studies that request fractionation steps. These issues have been addressed by Krahmer et 172 

al (2015) [47], who compared different alternatives for sample preparation compatible with large 173 

numbers of samples in phosphoproteomics analysis.  174 

Protein extraction is still challenging and constitutes a big difficulty in the analysis of specific 175 

proteins such as integral membrane proteins [48]. Integral membrane proteomics analyses involve 176 

complicated protocols that include membrane purification and protein extraction. In order to analyze 177 

the symbiosome integral membrane proteins, Clarke et al. (2015) [49] reported a protocol that 178 

included isolation of symbiosomes with three-step Percoll gradients and preparation of the membrane 179 

system by ultracentrifugation of the broken symbiosomes supernatant, followed by bicarbonate 180 

stripping and chloroform-methanol protein extraction prior to MS analysis. Although the excessive 181 

manipulation of the sample may interfere in the integral membrane protein analysis it has a great 182 
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value from a descriptive point of view. Once the protein is identified, the expression of the 183 

corresponding genes and the associated phenotype can be assessed by using complementary 184 

approaches. As an example, in order to understand intracellular protein trafficking (a hot topic in plant 185 

biochemistry), Heard et al. (2014) [50] enriched partially overlapping subsamples of endosomal 186 

proteomes associated with endomembrane from A. thaliana seedlings and used affinity purification of 187 

fluorescent fusion constructs for seven subcellular marker proteins in order to predict its precise or 188 

shared location, a strategy that resembles LOPIT [51]  189 

From the current literature it is clear that plant proteomics is moving from 2-DE/MS (still the 190 

bases of an important number of works published) to shotgun (bottom up gel free label free). Shotgun 191 

will be the dominant platform in the near future if accompanied by a powerful and potent MS analysis 192 

and equipment. It is simple and does not require much manipulation of the sample. The iTRAQ, quite 193 

popular among the Chinese groups, appeared as the third alternative, even though plant proteomicists 194 

did not pay much attention in the past to labelling techniques [52-55]. By using this technique, Pan et 195 

al. (2015) [56] have reported up to 13,706 and 12,124 proteins identified with a LTQ-Orbitrap hybrid 196 

mass spectrometer in Arabidopsis thaliana roots and leaves. Changes in abundance between plants 197 

supplied with different iron concentrations were observed for 886 proteins with only a low percentage 198 

of them showing good correlation with transcript levels.  199 

Whatever the employed platform, it is very important that it is validated, as a preliminary step, for 200 

the experimental system being analyzed, as for any analytical tool, in order to allow the determination 201 

of the number of proteins confidently identified and quantified. Serial dilution of the sample could be 202 

enough for validation purposes for those approaches based on label-free [57]. 203 

 204 

Fourth generation in vitro proteomics, SRM, MRM, or mass-western, sustain hypothesis driven 205 

protein analysis. In the surveyed period just one paper, by Rogniaux et al. (2015) [58] was published 206 

in Proteomics reporting the use of targeted approach for determining the relative abundance of 207 

allergens in several wheat varieties, and showing the potential of the technique for translational, and 208 

food traceability, purposes. Although the use of these techniques in plants is still limited, targeted 209 
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proteomics is the way to go for validation of the candidate proteins identified in 2-DE or shotgun 210 

analyses. It is certainly a more appropriate follow-up study when compared to qRT-PCR analysis 211 

frequently reported in proteomics publications. 212 

Imaging has opened new possibilities for in vivo or in situ proteomics analysis and integration 213 

with cellular biology techniques [59], giving, at the same time, the possibility of proteomics analysis 214 

at the cellular level [60]. It is a more or less well stablished technique for metabolomics analysis [61] 215 

but under development for proteins [62] and plant tissue samples. The technique has been the focus of 216 

the Proteomics Tissue Proteomics and Imaging Mass Spectrometry special issue (Vol. 14, Iss. 7-8), in 217 

which, two plant studies were reported. Maciel et al. (2014) [24] used the laser ablation imaging 218 

technique to evaluate the distribution of selenium and sulfur in leaves of transgenic and non-219 

transgenic A. thaliana. One of the limitations of imaging studies is the processing of high amounts of 220 

datasets, and therefore attention has been given to data processing methods, as discussed by 221 

Wijetunge et al. [63] and Franceschi and Wehrens (2014) [64]. 222 

 223 

In silico analysis and data interpretation: software, databases and repositories 224 

Proteomics, as any –omics approach, generates from hundreds to thousands of identified 225 

products, being impossible to analyze and interpret all the data in a classic, mind based, manner [65]. 226 

The high amount of data generated and the costs of the analysis are the main reasons for the low 227 

number of samples and biological replicates analyzed. Protein profiling requires software and 228 

algorithms for protein identification, quantitation, functional and structural characterization, location, 229 

interaction, networks, integration, visualization and deposition in databases and repositories. These 230 

softwares are continuously created, improved and updated [66-69]. Recently, Sakata and Komatsu 231 

(2014) [28] have surveyed and reviewed plant proteomics databases and websites as well as recent 232 

technologies related to data collection and annotation. 233 

The use of most algorithms and softwares is far from the current capacity of most plant 234 

biochemists working with proteomics. This is the reason why the dry part of the work is in the hands 235 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Sakata%20K%5BAuthor%5D&cauthor=true&cauthor_uid=24136512
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sakata%20K%5BAuthor%5D&cauthor=true&cauthor_uid=24136512
http://www.ncbi.nlm.nih.gov/pubmed/?term=Komatsu%20S%5BAuthor%5D&cauthor=true&cauthor_uid=24136512
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of mass spectrometrists or bioinformaticians usually with no expertise in plant biology. This results 236 

in, more often than would be advisable, a blind acceptance of the computer provided data without a 237 

minimum rationale and critical evaluation of the data confidence, making it difficult to conclude from 238 

a biological point of view. The quite dynamic character of the proteomes and the fixed film provided 239 

by our experiments makes most interpretations speculative. The situation for a standard plant 240 

biochemist is even worse considering the number of algorithms that is continuously appearing [70]. 241 

Which one, what for, how to use them and translate to a biological discussion could be hell for most 242 

of us [71, 72]. In this regard, Proteomics a special issue, Proteomics Data Visualization (17, 10). In 243 

this and other regular issues a number of reviews discussing these questions have appeared [73-78]  244 

The integration of disseminated data through databases is a pursued objective that will benefit 245 

the scientific community. In this direction, The BioMart Community Portal (www.biomart.org) is a 246 

good example the plant community should follow [79]. It includes over 800 different biological 247 

datasets spanning genomics, proteomics, model organisms, cancer data, ontology information and 248 

more. 249 

 250 

PROTEOMICS INTEGRATION WITH OTHER –OMICS   251 

Within the –omics approaches, the advantage, if so, of proteomics, and also metabolomics, is 252 

that the information provided is closer to the phenotype [80]. On the other hand, it is much more 253 

complicate at the methodological level (i.e. genomics and transcriptomics are favored by PCR and 254 

well established microarray techniques). At the molecular level, the phenotype is the result of gene 255 

expression through transcriptional and translational events and gene products and metabolites 256 

interaction, so proteins are just part of the story. As previously discussed [1], proteomics has 257 

limitations, the more relevant being proteome coverage, quantitation, identification in orphan 258 

organisms, PTM, and interactomics. Protein identification and quantification cannot always be as 259 

confident as we wish because of the organism, experimental design, and the employed techniques and 260 

http://www.biomart.org/
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protocols, making our data interpretation conservative or speculative. In comparative proteomics, the 261 

high variability in the protein profile among biological samples and the low number of biological 262 

replicates employed in most studies hinder the biological interpretation. Thus, it is not easy to stablish 263 

protein abundance ranges in normal (control) samples, as it has been shown by Higdon et al. (2015) 264 

[81]. These authors used data from two human proteome studies featured in Nature, and found that 265 

protein abundance among biological replicates varied by ±4- to 10-fold for most proteins, with 266 

coefficient of variation (CV) in between 62 and 117 %. To control or reduce this CV, it is 267 

recommended to compare proteins identified with at least 3 or more unique peptides and normalize 268 

abundances against housekeeping proteins with low variability. 269 

Just by itself, and more than generating a list or catalog of protein species, proteomics can 270 

provide real biological knowledge; however it would require, first, the use of a model systems, in 271 

plants mostly A. thaliana, with a good collection of mutants for reverse and functional genetics 272 

studies and, second, an appropriate experimental system, as for example cell suspensions. A good 273 

example of this is the paper published by Smith et al. (2015) [82] in which signal transduction 274 

pathways mediating plant programmed cell death was studied. By using isobaric-tagged relative and 275 

absolute quantitation of proteins present in the extracellular matrix, 33 proteins were identified as 276 

putative cell-death regulatory proteins. One of these proteins, the CYCLASE 1, which had previously 277 

no known function, was a negative regulator of cell death in Arabidopsis.  278 

The integration of the different –omics, in the direction of systems biology, is far from being a 279 

reality or was only possible for a reduced number of research groups or through large international 280 

consortia [83]. Systems biology, wide genomic approaches, and the recently coined proteogenomics, 281 

in combination with image phenotyping, classical molecular, physiological and cell biology 282 

approaches [84, 85] will get us to a deeper and better rather than to a partial and biased knowledge of 283 

the biological systems. This knowledge is highly relevant for crop improvement aiming at 284 

productivity yield increases and survival under extreme environmental conditions through classical, 285 

molecular marker assisted, and biotechnological breeding [11, 86-88]  286 
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Combined proteomics and transcriptomics analysis has been used in the study of the maize 287 

response to waterlogging and resulted, in general, in good correlations between both data [54]. But 288 

this is not necessarily the rule and it depends on the gene or gene groups, being the consequence of 289 

transcriptional, posttranscriptional, translational and posttranslational events. Abundance of both 290 

molecules depends not only on their synthesis but also on their stability and degradation. It is also 291 

known that different mRNAs possess different translational efficacy [89]. 292 

At least one paper, by Gupta et al. (2015) [90], has been published in which integrated 293 

proteomics and metabolomics have been employed as experimental approaches. They analyzed 294 

differences between soybean lines with different color in the seed coat. Differences in flavonoids, 295 

which provide the molecular basis of the color, were correlated with levels in pathway-related 296 

enzymes. Finally, there are not many papers in which the combined use of the three -omics 297 

approaches are reported. In the surveyed period, two papers dealt with the detection of unintended 298 

effects in transgenic maize [91, 92]. 299 

In any case, single and easy multi-omics approach experiments can be always performed and 300 

the preliminary steps of the workflow should be evaluated as one of the limitations is just preparative. 301 

In order to make confident data comparison or validation, these preparations should come from the 302 

same sample. Independent experiments or extractions can originate artefacts or biases, mostly coming 303 

from the inherent biological variability. In this direction, recent workflows aimed to extract 304 

biomolecules (DNA, RNAs, proteins, and metabolites) have been developed [93]. Despite dedicated 305 

workflows showed their efficiency, combined protocols demonstrated their performance in isolating 306 

biomolecules suitable to be processed by high-throughput pipelines (gel free label free proteomics, 307 

high-throughput metabolomics analyses and next generation sequencing transcriptomic analyses of 308 

messenger or regulatory RNAs) while avoiding biases related to the use of not exactly the same 309 

sample for the different -omics level analyses. The full overlapping of the datasets makes it easier to 310 

interpret and analyze the data when performing a Systems Biology-based integrative approach. 311 
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Proteogenomics is a relatively new and emerging field at the intersection of genomics and 312 

proteomics, being part of the wide genomics approaches. Although it may have multiple derivations 313 

(RNA and protein correlation studies, proteomics and data validation, gene sequence analysis, among 314 

others), in the simplest way it can be understood as the use of proteomics data and protein MS derived 315 

sequences to improve gene sequence annotations [94-96]. From the proteomics perspective it has an 316 

important feedback as correct sequence annotation will increase the number and confidence of the 317 

protein identification [97], favoring, at the same time the studies of non-model organisms [98]. It will 318 

also go deeper into the knowledge of posttranscriptional and translational events giving rise to the 319 

different gene products, protein species or proteoforms [99].  320 

The topic has been deeply reviewed in Proteomics (Proteogenomics special issue; Vol. 14, 321 

Iss. 23-24). Proteogenomic experiments and prediction tools will differ between genome-sequenced 322 

and –unsequenced, as well as eukaryotic or prokaryotic organisms [95, 100].  323 

 324 

FROM PROTEOMICS TO BIOLOGY  325 

Cell communication, receptors, and signaling pathways, are good examples of how 326 

proteomics can contribute to biological knowledge and be used for translational purposes. This topic 327 

has been well presented in a recent, excellent review, by Walton et al. (2015) [27]. Signaling is a hot 328 

topic of great relevance in biology mainly approached by using functional and reverse genetics. It is 329 

quite challenging as it deals with minor and recalcitrant, membrane bound, proteins, PTMs and 330 

interactions, whose investigation requires integration with classic, transcriptomics and metabolomics 331 

approaches. In the recent literature surveyed in the reviewed period, this topic is well covered with 332 

both review papers and original contributions. Some other topics are also of interest but are somehow 333 

related to this or are less represented in the most recent literature. This is the case of plant 334 

developmental processes, plant-pathogen interactions and responses to other biotic stresses [101-104]. 335 

Plants chemically communicate and interact with their biotic and abiotic surroundings, 336 

responding and adapting its biology to it. They also complete their developmental program (from seed 337 
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germination to seed production through vegetative and reproductive phases) in coordination with 338 

seasonal changes noticed mainly as variations in light, temperature and water availability. There are 339 

also daily changes associated to a circadian clock timed by, among other factors, light regimes. The 340 

integration of environmental responses with development is crucial for plant survival, growth, and 341 

from an agronomic point of view, productivity. Plants, as sessile organisms, are very versatile, and 342 

their genome expression and metabolism is continuously reprogrammed in response to physico-343 

chemical and biological stimuli. Despite the high number of specialized organs, tissues and cell types 344 

within a plant, all of them respond coordinately, implicating in good intercellular connexion systems 345 

with chemical messages between receptor and effector cells. At the individual cell level, gene 346 

expression changes are mediated by receptors, intracellular and interorganule signals, and signal 347 

transduction pathways resulting in changes in gene expression through transcriptional, translational 348 

and posttranslational events. Quite a number of molecules are known that act as external or internal 349 

chemical signals, including phytohormones, and those from microorganisms (symbionts, parasites or 350 

pathogens) [101, 103-106]. On the other side, receptors and signal transduction pathways and their 351 

components are starting to be characterized [31, 107].  352 

Proteomics is contributing to the above processes through descriptive, comparative, PTMs, 353 

and interaction studies. Walton et al. (2015) [26] updated the contribution in these areas and the 354 

different strategies employed in dissecting plant hormone signaling. Some following papers dealing 355 

with PTMs and interactomics related to cell signaling are highlighted. Others, using descriptive or 356 

comparative proteomics approaches have been skipped from this review.  357 

Protein phosphorylation is the most common mechanism of signal and because of that 358 

phosphoproteomics is the immediate strategy to be employed. Silva-Sanchez et al., (2015) [108], and 359 

Li et al., (2015) [29] have summarized the current methodologies used in extracting, enriching, and 360 

fractionating phosphoproteins, and in their MS analyses for identification, quantitation, and 361 

phosphorylation site mapping, conclude on cross-talk between different PTMs (phosphorylation, 362 

glycosylation, and redox modifications) and data validation. They provided a list of phosphoproteins, 363 
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softwares and databases. As an alternative to the current protocols, Han et al. (2015) [109] have 364 

proposed a faster workflow analysis in the case of sample amount limitation that increases coverage; 365 

it included integrated multistep enzymatic digestion, phosphopeptide enrichment and database search 366 

(iMEED). In an attempt to elucidate post-translational processes mediating circadian events, 367 

Choudhary et al. (2015) [110] performed a phosphoprotein analysis employing TiO2 phosphopeptide 368 

and MS analysis. They identified 1586 phosphopeptides on 1080 protein groups, out of which 102 369 

changed in abundance, including clock proteins (ELF4, PRR3), transcription factors and kinases.  By 370 

using isotope-assisted quantitative phosphoproteomics, Minkoff et al. (2015) [111] carried out a 371 

comparative phosphoproteomics study between wild and mutant ABA-insensitive A. thaliana plants. 372 

Multiple changes occurred as early as 5 minutes after ABA treatment, with a reduction of the 373 

phosphorylation events in the mutant.  374 

Reactive oxygen species overproduction is a typical plant response to oxidative stress, these 375 

species acting as signals and causing protein redox state changes [30, 112, 113]. The reversible PTM 376 

methionine oxidation was studied in A. thaliana plants by Jacques et al. (2015) [114] using wild and 377 

catalase-2 knock-out mutants. Over 500 sites of oxidation in 400 proteins were reported. They showed 378 

that the activity of two specific glutathione-S-transferases was significantly reduced upon oxidation. 379 

Konert et al. (2015) [115] have gone deeper into the mechanism of ROS signaling and metabolic 380 

adjustment in A. thaliana. By using genetic, biochemical, and a combination of MS data-dependent 381 

acquisition and SRM, they showed how protein phosphatase 2A, through its regulatory B´ γ subunit, 382 

interact with a cytosolic aconitase and control mitochondrial alternative oxidases. 383 

Interactomics is the most challenging and less developed proteomics approach, but the most 384 

concluding one in order to probe in vitro and in situ better than in silico interactions between proteins 385 

and proteins and DNA, RNA or metabolites. It will help in developing models from networks 386 

mediating receptor capture of signals and gene expression changes. The standard proteomics analysis 387 

involves the capture of protein partners (affinity purification or immunoprecipitation) coupled to MS 388 

analysis. Other published approaches included in vivo cross-linking with para-formaldehyde and 389 
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immunoaffinity purification of cross-linked protein. It has been used by Obermeyer et al., (2014) 390 

[116] in the search for H(+) ATPase complexes in lily pollen. These techniques require high amount 391 

of sample and involve excessive manipulation, being subjected to biases or false positives. Microarray 392 

technology will be, with no doubt, the future for more feasible experiments in which dynamic 393 

interactions could be observed through time course experiments [117]. As an alternative, the parallel 394 

analysis of genomic, transcriptomics, and proteomics experiments could be performed [118]. 395 

 396 

Some missed relevant papers  397 

Last but not least in the surveyed period are the publications covering topics that deserve to be 398 

mentioned in a general plant proteomics review, either because they report on technical innovations or 399 

novel applications to the plant biology research. As we did not intend to be exhaustive, and due to 400 

space limitation, we will just mention them.   401 

Such is the case of the top-down proteomics [45, 119-121], N-acetylome [122], degradation 402 

of proteins with N-termini containing basic amino acids (the Arg/N-end rule) [25], and single cell 403 

type proteomics analysis. Plant organs are complex in terms of the different types of tissues and cells 404 

that are formed, with each one having its own proteome signature. Thus, for comparative proteomics 405 

purposes it is possible that only a discrete number of cells respond to the experimental variable under 406 

study and if so, by extracting the whole organ we might be diluting the response. In order to decipher 407 

single proteome analysis new methodologies should be developed [86]. Up to now the laser 408 

microdissection [123] has been applied, however it has been of very limited use with plants. What is 409 

close to be a technical reality for transcriptomics looks impossible for proteomics [124]. 410 
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