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ABSTRACT. The range of molybdenum hydride complexes that are sought to participate in 

important catalytic hydrodenitrogenation process (HDN) of nitrogen containing polycyclic 

aromatic hydrocarbons were evaluated by DFT studies. The previously synthesized stable (η6-

quinoline)Mo(PMe3)3 complex 1N, in which molybdenum is bonded to the heterocyclic ring, was 

chosen as a model. The hydrogenation of the quinone heterocycle, which was postulated as the 

initial step in the overall HDN reaction, is found to occur via three consecutive steps of oxidative 

addition of dihydrogen to Mo in 1N. Successive transfers of hydrogen atoms from the metal to 

the heterocycle leads to the ultimate formation of the tetrahydrido molybdenum intermediate 

Mo(PMe3)4H4 13 and 2, 2, 3, 3-tetrahydroquinoline C9H11N 14. All the involved intermediates 

and transition states have been fully characterized by DFT. This computational modeling of the 

hydrogenation of quinoline, as a part of extended HDN catalytic processes, provides a 

fundamental understanding of such mechanisms.  

 

Introduction  

Transition metal complexes play decisive role in transformation of simple organic substances 

and generation of important innovative derivatives such as technological precursors, materials 

for science, new polymers and medicines.1 In recent years, the mechanisms of 

hydrodenitrogenation (HDN)2 and hydrodesulfurization (HDS)3 have gained considerable 

attention due to their relevance with respect to environmental aspects. Indeed, both processes are 

widely used in oil and coal industries to remove nitrogen- and sulfur-containing organic 

impurities in order to minimize subsequent pollution by NOx and SOx, respectively. A great 

variety of transition and main group metal catalysts have been explored for the optimization of 

HDN and HDS reactions whereas molybdenum complexes proved to be one of the most efficient 

catalysts.4 Typically, such reactions involve reversible σ- and/or π-coordination of an 
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heterocyclic organic molecule, followed by consecutive cycles of dihydrogen addition/hydride-

to-ligand transfer, to produce hydrogenated derivatives of the heterocyclic molecule which 

possesses weaker C-N (or C-S) bonding than its corresponding aromatic heterocycles with the 

tendency to abstract heteroatom-containing parts.5,6 For condensed aromatic systems, the metal 

moiety in these more or less stable complexes often undergoes so-called intra-molecular inter-

ring haptotropic rearrangements (IRHR), which can be degenerative η6 η6 or non-

degenerative η6 η5, η1 η5, or η1 η6.7 In the course of such rearrangements, the 

metal and its ancillary ligands move reversibly or irreversibly along the polyaromatic ligand 

from one ring to another one. Such reactions are considered to be plausible processes during the 

HDN/HDS reactions transferring hydrogen atoms both to carbocyclic and heterocyclic rings.  

Examples of haptotropic rearrangements for polyaromatic carbocyclic ligands, such as 

naphthalene, biphenyl, biphenylene, indene, fluorene, phenanthrene, anthracene,8 and more 

recently coranullene,9 coronene,10 fullerenes,11 carbon nanotubes,12 and graphenes,13 are quite 

abundant. However, related examples of rearrangements involving heterocyclic analogues are far 

less common. Earlier examples with group VI metals were proposed and then demonstrated by 

carbazole14 and dibenzothiophene15 complexes. Such complexes as well as other labile transition 

metal complexes could be considered as prospective catalysts of hydrogenation and HDN/HDS 

due to the reduced metal hapticity in the course of IRHR and, as a result, the ability to coordinate 

exogeneous additional organic molecule and dihydrogen for further transformations. For 

example, a series of rhodium complex with pentamethylcyclopentadienyl and cyclooctadiene 

ancillary ligands were already reported to catalyze the hydrogenation of quinoline16 to the 

corresponding fully hydrogenated derivatives by means of consecutive dihydrogen 

addition/hydride transfer cycles.17 
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Recently Parkin et al. reported the synthesis of a series of η6-quinoline, isoquinoline and 

quinoxaline (illustrated in Scheme 1 for quinoline) molybdenum complexes, as well as related 

η6- and η5-indolyl and carbazolyl molybdenym complexes.18,19,20 In these complexes, the metal 

can coordinate through a carbocyclic as well as an heterocyclic ring and undergoes series of σ, π 

η1 η6 and π, π η6 η6 inter-ring haptotropic rearrangements (IRHR), which can be 

induced both thermally and photochemically. Such complexes have very good prospects for 

HDN/HDS processes under molybdenum catalysis. 

 

Scheme 1. Synthesis, hydrogenation and haptotropic rearrangements of η6-quinoline 

molybdenum complexes  

 

The ability of the molybdenum moiety to undergo IRHR between carbo- and heterocyclic rings 

for complexes of different hapticities was unambiguously demonstrated. Either ring could be 

potentially activated for subsequent catalytic hydrogenation depending on the reaction 

conditions. Thus, complex 1N with η6-coordination of molybdenum on heterocyclic ring reacts 

with dihydrogen under very mild conditions (80°C, and atmospheric pressure) to form ultimately 

the tetrahydrido molybdenum derivative Mo(PMe3)4H4 13 and the saturated heterocyclic 

molecule C9H11N 14. Some of the hydridic reactive intermediates that are believed to play 
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pivotal role in the overall catalytic HDN process were isolated and characterized by Parkin,18,19 

whereas other intermediates remained elusive. Alternative complex 1C with η6-coordination of 

molybdenum on the carbocyclic ring could also principally participate in hydrogenation and 

HDN processes, but it should be noted that partial or full hydrogenation of complex 1C was not 

reported and no experimental data on any hydrogenation product with hydrogen localization on 

carbocyclic ring have been reported.18,19 This could be explained by the fact that a carbocyclic 

ring of an heteropolycyclic ligand is harder to hydrogenate than an heterocyclic ring under the 

conditions of catalytic hydrogenation.7 Moreover, these data are in accordance with the fact that 

a carbocyclic analog of 1N, namely the naphthalene complex (η6-C10H8)Mo(PMe3)3, failed to 

react with dihydrogen, while the anthracene relative (η6-C14H10)Mo(PMe3)3 reacts somehow with 

dihydrogen but adds only one H2 molecule to Mo, forming an η4-dihydrido complex rather than 

further products with hydrogen transfer on carbocyclic ring. This phenomenon was called 

“anthacene effect”.21 

In this work, we investigate by the means of density functional theory (DFT) calculations the 

mechanism of the catalytic hydrogenation of a molybdenum complex, which is obviously a 

crucial part of the more complex HDN reaction under molybdenum catalysis. The quinoline 

complex 1N depicted in Scheme 1 was chosen initially as a model for our calculations because it 

easily hydrogenated, giving 14.  

Computational details 

 

DFT calculations were performed at the Joint Supercomputer Center (JSCC) (Moscow) with the 

use of the PRIRODA-04 program written by Laikov.22 The PBE functional23 was considered 

together with the TZV2p three-exponential basis set of Gaussian-type functions for valence 
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electrons22 (basis set specification: {3,1}/{5,1} for H, {3,3,2}/{5,5,2} for C, N, and P and 

{5,5,4}/{9,9,8} for Mo), associated with the SBK-JC relativistic pseudopotential24,25 for all core 

electrons. Such level of calculations, which is a good compromise between computational 

accuracy and calculation expenditures, was previously demonstrated to exhibit good results for 

geometry and energy parameters of transition metal complexes with polyaromatic ligands in 

general.15,26 Moreover, test calculations on both 1N and 1C provided optimized geometries which 

were very close to their X-ray structures18 (see Figure 1; additional computed data are presented 

in SI). Stationary points were identified by analyzing Hessians. Hapticities of the stationary and 

transition states were deduced from bond distances and bond orders. Stationary point energies 

(E) are given with corrections for zero-point vibrations. The thermodynamic functions (Gibbs 

energies, G) at 298.15 K were calculated using statistical rigid rotator–harmonic oscillator 

equations. The conjugation of the observed transition states with the corresponding potential 

energy surface minima was checked by constructing internal reaction coordinates (IRC).  

 

 

Figure 1. Calculated and X-ray18 structures of the complexes 1N and 1C  
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Results and Discussion 

The mechanism of hydrogenation of 1N (Scheme 1) was modeled starting from the pre-reaction 

van der Waals complex of 1N with a dihydrogen molecule, labeled 1-N (1N = 1N....H2). The 

schematic energy diagram of this multistep process into the post-reaction complex 12-N, 

including all intermediates and transition states is presented in Figure 2. Conventional schematic 

description of the stable complexes 1N-12-N structures are presented in Scheme 2 and their 3D 

geometries in Figure 3. The 3D geometries of the associated transition states are shown in Figure 

4 and additional computed data are provided in the SI. The process occurs via consecutive 

dihydrogen addition/hydride transfer steps to yield the final σ-complex 12-N which decomposes 

without any activation barrier into Mo(PMe3)4H4 (13) and 2, 2, 3, 3-tetrahydroquinoline C9H11N, 

14. The free Gibbs energy of 13 + 14 is lower than that of 12-N by 4.4. kcal/mol. Thus, the 

reaction of full hydrogenation of 1N into 13 + 14 is exothermic (∆∆G = -9.7 kcal/mol). Similar 

mechanistic and thermodynamic results were previously observed for the hydrogenation of 

pyridine on a molybdenum(III) phosphide surface.27 

 

Figure 2. Computed energy diagram for the 1N hydrogenation process. 
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Table 1. Stationary states energies, E (a.u.), ∆E (kcal/mol) and ∆G (kcal/mol) for the 
hydrogenation process of in 1N.a 

Structure E ∆E ∆G 

1-N -221.305646 0 0 

TS1-N -221.266677 24.5 30.4 

2-N -221.314831 -5.8 0.1 

TS2-N -221.282729 14.4 20.6 

3-N -221.312854 -4.5 4.0 

4-N -222.479606 -4.5 4.0 

TS3-N -222.450713 13.6 26.8 

5-N -222.489090 -10.5 7.5 

TS4-N -222.480408 -5.0 11.1 

6-N -222.492068 -12.3 5.1 

7-N -223.660900 -12.3 5.1 

TS5-N -223.650260 -5.6 17.2 

8-N -223.673569 -20.2 5.8 

TS6-N -223.651179 -6.2 17.9 

9-N -223.662892 -13.5 13.9 

10-N -224.823146 -13.5 13.9 

TS7-N -224.818938 -10.9 20.3 

11-N -224.837256 -22.4 13.4 

TS8-N -224.822544 -13.1 20.4 

12-N -224.866945 -41.0 -5.3 

a 1-N→→→→3-N: first H2 addition process; 4-N→→→→6-N: second H2 addition process;  7-N→→→→9-N: third H2 addition process; 
10-N→→→→12-N: fourth H2 addition process. To obtain a correct diagram with increasing the number of H2 molecules 
along the course of the hydrogenation process, relative energies were corrected in such a manner that the last 
structure of the previous hydrogenation step and the first structure of the next step are consider as having same 
relative energies. 
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Scheme 2. Conventional schematic description of the energy minima involved in the mechanism 
of Figure 2 ([Mo] = Mo(PMe3)3) . 
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Figure 3. Optimized 3D geometries of the stable species involved in the hydrogenation process 
of 1N (Note that structures of 3-N and 4-N, 6-N and 7-N, 9-N and 10-N differ from each other 
by the addition of one H2 molecule to the formers, thus forming pre-reaction van der Waals 
complexes 4-N, 7-N and 10-N, respectively; see also Figure 2). 
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Figure 4. Optimized 3D geometries of the transition states involved in the hydrogenation process 
of 1N (see Figure 2). 

 

In the first stage one molecule of H2 adds to complex 1N via a Kubas-type transition state TS1-N 

with an activation barrier ∆G=30.4 kcal/mol. The dihydrogen character of TS1-N is evidenced by 
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the Mo-H distances of 2.382Å and 2.889Å and the only slightly elongated H-H distance 0.780Å 

which compares well with similar values in other dihydrogen complexes on the basis of DFT and 

X-ray.28 TS1-N leads to the dihydride intermediate 2-N, with Mo-H and H-H distances of 1.731Å 

and 1.859Å, respectively. These distances are similar to those found in other dihydride complexes 

both from experimental or theoretical analyses.28 In order to maintain its 18-electron 

configuration, the molybdenum atom in 2-N is shifted towards tetrahapto configuration of the 

heterocycle which, as a result, is now bent (torsion angle between two planes 147o).  

Unsurprisingly, this partial quinoline decoordination is largely preferred over PMe3 dissociation. 

The next step consists in the shifting of one of the metal-bonded hydrogens onto the nitrogen 

atom, leading to the formation of 3-N. Formally, this is a simple proton transfer associated with a 

formal 2-electron reduction of the metal (Scheme 2), and therefore the 18-electron configuration 

of the metal is maintained. The formation of 3-N proceeds with an activation barrier ∆G=20.6 

kcal/mol through the transition state TS2-N, in which one hydrogen keeps bonded the metal and 

the second one occupies a bridging position between Mo and N (N-H=1.443Å, Mo-H=1.805Å, 

Mo-N=2.336Å, Mo-N-H=64.4o). The terminal M-H bond distance in TS2-N is 1.744 Å, in good 

agreement with comparable distance in dihydride complexes.28 

The addition of the second H2 molecule proceeds into two steps. In the first one, the Kubas-type 

intermediate 5-N is formed (H-H=0.890 Å, Mo-H=1.828 Å and 1.832 Å) through the transition 

state TS3-N. In 5-N the metal is bonded to only three atoms of the heterocycle (C1, C2 and C3) 

whereas it was bonded to four atoms (N, C1, C2 and C3) in 3-N (see atom numbering in Figure 

1). The corresponding Mo-C distances are 2.327 Å, 2.193 Å and 2.401 Å, for C1, C2 and C3, 

respectively. In such a trihapto coordination, a 6-membered aromatic cycle cannot provide to the 

metal with more than 2 electrons, so that the bonding is best described with the two limit structure 

shown in Scheme 2. Hence, 5-N is, as well as 3-N, an 18-electron Mo0 complex. The following 
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step consists in the migration of one of the H2-coordinated atom onto C3 (formally a hydride 

transfer associated with a 2-electron oxidation of the metal (Scheme 2)), leading to the formation 

of the MoII dihydrido complex 6-N in which the heterocycle is now η2-coordinated to the metal 

through C1 and C2, with Mo-C distances of 2.322 Å and 2.185 Å, respectively. Interestingly, the 

newly built C3-H bond in 6-N (C-H = 1.180 Å) makes an agostic bond to Mo (Mo-H = 2.014 Å; 

Mo-C3 = 2.533 Å), allowing the MoII center to maintain its 18-electron configuration.  

In the following stage, a third entering H2 molecule easily displaces the weak agostic bond in 6-N, 

and oxidatively adds to the metal, leading to the 18-electron MoIV complex 8-N, which, similarly 

as in the formation of 6-N from 5-N, transfers one hydride atom on the heterocycle (onto C1), 

leading to an η1-coordination of quinoline (Mo-C2 = 2.294 Å). The resulting trihydrido MoIV 9-N 

complex maintains its 18-electron configuration through the building of an agostic C1-H bond 

(Mo-H = 1.961 Å, Mo-C1 = 2.516 Å and C1-H = 1.194 Å). The addition of the fourth H2 

molecule proceeds in a more or less similar way as the third one: formation of the 18-electron 

Kubas-type MoIV complex 11-N from displacement of the C-H agostic bond, followed by 

hydrogen migration onto the heterocycle leading to the formation of the tetrahydro complex 11-N. 

Noteworthy, this last step is accompanied with an haptotropic η1, η1 rearrangement (TS8-N→→→→12-

N) via an Mo [1,3]-shift from C2 to N. This transition is mainly responsible for the overall 

exothermic effect of the whole heterocyclic ring hydrogenation process of 1N. 

The highest activation barrier of the whole process from 1N to 13 + 14 (Figure 2) occurs for the 

first H2 addition process (formation of transition state TS1-N with ∆G=30.4 kcal/mol) which is 

similar to the value associated with IRHR of chromium tricarbonyl on monosubstituted 

naphthalenes (∆G=30 kcal/mol).7 Interestingly, our investigated hydrogenation reaction proceeds 

at similar temperatures (80o-90oC) as IRHR in naphthalene complexes.15 This means that in the 
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course of the hydrogenation process, different ηn,ηn-IRHR could occur when the organometallic 

moiety migrates from the intact or partially hydrogenated heterocyclic ring to the carbocyclic ring, 

leading incidentally to a possible hydrogenation of the carbocyclic ring. However, this process 

usually occurs in much harder experimental conditions than the hydrogenation of the heterocyclic 

ring.7 

Conclusions 

In conclusion, we have unambiguously shown that the hydrogenation of a quinoline ligand 

coordinated to molybdenum via its heterocyclic ring is possible. The mechanism proceeds by 

consecutive steps of oxidative hydrogen addition, hydride metal-to-carbon/nitrogen transfer, 

accompanied by a change of the metal-ligand coordination mode. After the fourth hydrogenation 

step, the free tetrahydroquinoline molecule 12 stays η1-coordinated to molybdenum.  This type 

of mechanism is very likely to be relevant in the ultimate hydrodenitrogenation process of 

quinoline or related nitrogen-containing ligands by molybdenum-based organometallic catalysts 

through the initial formation of an η6-complex.  
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