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Abstract

Polyhydroxyalkanoates  (PHA)  are  bacterial  polyesters  usually  produced  from  costly  sugars  or

volatile  fatty acids (VFAs).  In this  work,  two processing waters  rich in  vegetable  proteins  and

reducing sugars, i.e. a mixture of saccharose and stachyose in Leguminous Processing Water (LPW)

and a mixture of glucose and fructose in Fruit Processing Water (FPW), were tested as growth

medium for PHA production in a two-stage fermentation with a unique marine bacterial species:

Halomonas i4786. In preliminary shake flask experiments, it was shown that the two media can

effectively support the bacterial growth and the accumulation of PHA (evaluated using Nile Red

staining). In batch cultivation mode in a 5-L fermentor, PHA productivities of 1.6 g.L-1 and 1.8 g.L-1

were further  achieved within  72h, in  LPW and FPW respectively.  Polymer  characterization  by

Differential  Scanning Calorimetry  and Steric  Exclusion  Chromatography indicated  that  the two

substrates  led  to  the  biosynthesis  of  polymers  with  different  chain  length, distribution  and

crystallinity.  To  summarize,  these  results  show  that  by-products  derived  from  local  agri-food

industry  can  be  used  as  a  user-adapted  and  cost-effective  source  to  produce  bio-sourced  and

biodegradable plastic materials.
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Processing  Water;  NR,  Nile  Red;  VFA,  volatile  fatty  acids;  DSC,  Differential  Scanning

Calorimetry; SEC, Steric Exclusion Chromatography; FI, Fluorescence intensity; CDW, Cell Dry

Weight.

• Introduction

In the general context of sustainable development, the formulation of bio-based and biodegradable

plastics has given rise to increasing interest. Throughout the world today, the development of bio-

based and biodegradable materials with controlled properties has been a subject of scientific and

industrial research. These materials tend to substitute synthetic plastics in many applications that

cause  huge  amount  of  waste,  like  as  for  example  packaging.  Among  these  bio-sourced  and

biodegradable polymers, the family of polyhydroxyalkanoates (PHA) is one of the most studied.

PHA are microbial polyesters produced by numerous bacteria in nature as intracellular reserve of

carbon or energy [1]. They are recognized as completely biosynthetic and biodegradable with zero

toxic waste and recyclable into organic waste. PHA are efficiently degraded in the environment

because many micro-organisms in the soil  are able to secrete  PHA depolymerase enzymes  that

hydrolyze the polymer ester bonds. Micro-organisms then metabolize these degradation products

into  water  and  carbon  dioxide  [2,3].  Moreover,  they  are  also  well  known for  presenting  good

biocompatibility, making them attractive as biomaterials.

Until to now, the major challenge is to reduce the cost of the biosynthesis process to make PHA

bio-plastics  economically  competitive  with  oil-derived  plastics.  For  this  purpose,  the  use  of

inexpensive and readily available sub-products or wastes as bacterial growth substrate feedstock is

focusing scientific and industrial interest regarding the subsequent deduction of the overall costs of

production [4]. Besides, a feed of waste resource is beneficial from a life-cycle perspective. During

the  last  decade,  various  waste  streams  from the  food or  agro-industry  have  been  found to  be

possible  substrates  in  the production  of  PHA due to  their  composition  of  more  or  less  readily

degradable organic molecules.  Thus,  a  whole range of non-edible  and waste  cooking oils  were

successfully converted into PHA by Cupriavidus necator or various strains of Pseudomonas [5-8].

Usually, the bio-produced PHA have a relative wide range of C4 to C16 monomers. The potential

of PHA production from dairy products, especially whey and whey hydrolysates, using common

PHA-producing  bacteria,  has  also  been  exploited  in  many  works  [9,10].  Molasses,  oils  or

lignocellulosic  raw  materials  have  been  described  as  others  possible  carbon-sources  for  the

fermentative production of bioplastics [11-16]. In many cases, pre-treatment steps of the waste, i.e.

filtration,  saponification  or  enzymatic  hydrolysis,  are  required  for  converting  the  residual

polysaccharides  or  lipids  into  fermentable  nutrients.  Table  1  summarizes  some  combinations

between different carbon sources and micro-organisms leading to PHA produced by pure culture from



waste raw materials.

PHA production from agri-food processing waters provides another alternative approach that has

been yet  scarcely investigated.  In  this  study,  two types  of  processing  waters  from leguminous

(LPW) and fruits (FPW) industries were identified as high potential waste streams based on the

criteria of abundance, local availability and high content of reducing sugars.

This paper describes: (i) the growth kinetics of a unique marine bacterium using LPW and FPW as

growth media for batch fermentation, (ii) the detection of PHA inside the biomass using the Nile

Red  staining,  (iii)  the  PHA  production  at  the  bioreactor  scale,  (iv)  the  physico-chemical

characteristics of the produced biopolymers.

• Materials and methods

• Chemicals

All the culture media components were purchased from Difco Laboratories (Detroit, MI) except the

saltwater (Instant Ocean, United Pet Group, Cincinnati, OH). Other chemicals used in this study

were analytical grade and obtained either from Sigma Chemical Co. (St. Louis, MO) or Thermo

Fisher Scientific Inc. (Waltham, MA).

• Bacterial strain

A moderately halophilic bacterial species belonging to the genus Halomonas and named H. i4786

was  used  to  evaluate  the  feasibility  of  PHA  production  using  agro-industry  effluents.  This

bacterium has been isolated from Brittany (France) coastal sea water and has been characterized as

a gram negative and non-spore forming PHA-producer under nitrogen limitation. The cells were

grown in marine broth and stored as glycerol stocks (20 % v/v) at -80°C until being used.

•  Agro-industrial by-products

The nutritional composition of the leguminous (LPW) and fruit (FPW) processing waters tested as

growth media for PHA production are displayed below (Table 2).

• Cultivation conditions for PHA production in flasks

One vial of stock culture was used to inoculate a 250-mL Erlenmeyer flask containing 100mL of

growing medium containing dehydrated LPW or FWP (20 g/L) as the sole carbon source in addition

with tryptone (8 g/L), yeast extract (2 g/L) and saltwater (11 g/L). Marine broth (glucose 10 g/L,

tryptone 1 g/L, yeast extract 0.5 g/L, saltwater 11 g/L), pH 7.5, was used as reference medium.

After 17h at 25°C with orbital shaking at 200 rpm, the cultivation broth was centrifuged (7500 rpm,



10 min).  The  bacterial  pellet  was  washed twice  with  PBS and then  suspended  in  100 mL of

production medium (glucose 20 g/L, tryptone 20 g/L, yeast extract 0.4 g/L, saltwater 11 g/L). The

fermentation was carried-out for 72 h during whom the broth was regularly sampled for analysis.

• Cultivation conditions for PHA production in a fermentor

The PHA production was performed in three separate stages: pre-culture, biomass production and

PHA accumulation. First, the bacterial cells were grown in a 2L Erlenmeyer flask containing 200

mL of marine broth medium. After 7h at 25°C and a 200 rpm orbital shaking, the pre-culture was

transferred to a 5L bioreactor (Biostat B plus, Sartorius, Germany) containing a final volume of 2L

of LPW or FPW growing medium.  During the process, the temperature was kept at  25 ± 1°C,

antifoam (a single drop) was added and the pH was maintained at 7.5 ± 0.1 using 1M HCl and 1M

NaOH. The agitation speed was set to 400rpm. Dissolved oxygen concentration was maintained

above 50% of air saturation pressure by adjusting the aeration rate. After 17h, the cultivation was

stopped and centrifuged at 7500 rpm at 4°C for 10 min and washed twice with PBS. The third stage

was performed by inoculating  2L of PHA production medium by the bacterial  cell  pellet.  The

incubation conditions were identical as that of the previous stage except that the agitation speed was

slowed down to 200 rpm.

• Quantitative analysis

PHA  biosynthesis  was  evaluated  using  the  Nile  Red  (NR)  staining  procedure  adapted  from

Spiekermann  et al. [17]. NR, from a stock solution at 0.25 mg.mL-1 in DMSO, was added to the

accumulation medium at final concentration of 1 mg.L-1.  Fluorescence emitted from the stained

cells was recorded. 2 mL of the fermentation broth were collected, washed twice with PBS and

diluted to an optical density at 543 nm (OD543nm, l=0.4cm) of 0.15. Fluorescence emission spectra were

collected by using a SLM 8100 spectrofluorometer, at 20°C between 560 and 720 nm at the fixed

excitation wavelength of 543 nm. Spectra were then corrected by subtracting the contribution of the

buffer to the recorded spectra and normalized with the OD543 value.

The number of viable cells (CFU.mL-1) was determined by spread plating on marine agar plates of

100 µL of ten-fold serial dilutions of the culture broth. 

Cell  dry  weight  (CDW) was  determined  gravimetrically  after  centrifugation,  washing and  dry-

freezing of the cell pellet. CDW was expressed as g.L-1 of culture medium.

• PHA extraction and characterization 

PHA extraction and purification were performed as described by Chardron et al. (2010) [18]. PHA

was isolated from the lyophilized cells in an excess of dichloromethane (60 mL of solvent per g of



dry biomass) at 40°C for 24h. The polymer solution was filtered through a 0.45 µm cellulose nitrate

membrane to remove cell debris and concentrated by rotary evaporation. PHA were precipitated

twice into cold methanol (1:10, v/v) and dried in an oven at 50°C until a constant weight. The PHA

content (% w/w) is defined as the PHA to CDW percent ratio.

PHA molar  mass  distribution  was  determined  by Size  Exclusion  Chromatography  (SEC).  The

stationary phase was composed of three column from Polymer Labs: 2 x ResiPore and 1 x PL gel

Mixed C. The chloroform was used as eluent  at  a temperature of 45°C and a flow rate  of 0.8

ml.min-1. Detection system was composed of refractometer and a UV detector. The elution profiles

were analysed by the software Empower GPC module (Waters). Molecular mass calculations were

based on calibration curves obtained from polystyrene standards with molecular weights ranging

from 580 g.mol-1 up to  900 000 g.mol-1. The weight-average molecular  weight ()  and number-

average molecular weight () were determined using the software Empower GPC module (Waters).

The polydispersity index (Đ) is calculated as /.

Differential Scanning Calorimetry (DSC) analyses were performed by using a Mettler-Toledo DSC-

882  equipment  to  determine  PHAs  thermal  properties  such  as  glass  transition  (Tg),  melting

temperature (Tm), crystallization temperature (Tc), melting enthalpy (ΔHm) and crystalline ratio (Xc),

as previously described [19].

The composition of the polyesters produced was determined by gaz chromatography (GC). The

precipitate PHA was first subjected to methanolysis. Approximately 8 mg of precipitate was methyl

esterified (4 h at 100 °C) with a solution consisting of 1.7 ml of methanol, 0.3 ml of 98% sulphuric

acid and 2 ml of chloroform. After phase separation, the organic phase (bottom) was washed with

water (1 mL) and dried with anhydrous sodium sulphate. Samples were injected on a Perkin Elmer

Clarus 480 gas chromatograph equipped with a 30 m x 0.32 mm DB-5 (0.25mm film) column (HP)

with splitless injector and flame ionization detector (FID). The oven temperature was kept at 70°C

for 3 min followed by a ramp of 10°C/min to 240°C. It was held at this temperature for 10 min. The

nitrogen flow was 0.9 mL/min at 70°C.

• Results

• Bacterial growth

For an efficient and maximized PHA biosynthesis, the growing medium must be optimized as it is

known to affect both the specific growth rates (µ) and the biomass yields. Accordingly, the LPW

and FPW growing media were tested for their potential to support the bacterial growth in the PHA

production process by  Halomonas i4786 in comparison with the conventional marine broth. As

displayed  in  Fig.  1,  the  stationary phase was reached within  10 hours  of  culture  whatever  the



growing medium. The total biomass obtained in the three cultures was only slightly different: 1.4

108 and 7.2 108 CFU.mL-1  for FPW and LPW growth media respectively as compared to 3.0 108

CFU.mL-1 in marine broth containing 10 g.L-1  glucose.  Such result  assesses the capacity of the

bacteria to metabolize the reducing sugars that are contained in the processing waters. Besides, the

specific growth rates of 0.82 h-1 in FPW and 2.22 h-1 in LPW indicate that these media allowed the

culture to develop about 1.3 to 3.6 times more rapidly than in marine broth (µ = 0.61 h-1).

• PHA accumulation in shake flasks

Previously,  Halomonas i4786 was  identified  as  a  P(3-HB)  bacterial  producer  under  nitrogen

limitation [20]. In order to assess if Halomonas i4786 was able to accumulate PHA after a growth

phase on agro-industrial substrates, the Nile Red staining procedure was employed as described in

section 2.6. As shown in Fig. 2, the three fluorescence emission spectra,  recorded after  72h of

cultivation, exhibit a same emission band centred at 592 nm. However the maximal fluorescence

intensity (FI) was lower with the culture that was first grown on marine broth (FI = 0.56) than those

grown on LPW (FI = 0.85) and FLW (FI = 1.26). Besides, PHA production seems to be more

important in the latter case.

• PHA production in bioreactor

PHA production at the bioreactor scale was then carried-out with a working volume of 2L. As

shown in Table 3, and in accordance with the growth curves displayed in Fig.1, the highest cell

density  was obtained with LPW as growing medium.  However,  the latter  contained the lowest

amount of PHA. This result confirms those obtained in shake flasks experiments. 

The characteristics of the PHA produced by Halomonas i4786 in the different production conditions

are listed in Table 4 and Table 5. As it can be shown, despite rather similar molar masses comprised

between 5.105 and 7.105 g.mol-1,  the weight average molecular  weight  and the number average

molecular weight are higher for PHA produced on LPW than for PHA produced from FPW. The

difference is more pronounced for  values (644 500 g.mol -1 and 518 000 g.mol-1 for LPW and FPW

respectively) than for  values (677 500 g.mol-1 and 588 000 g.mol-1 for LPW and FPW respectively)

leading to a less uniform distribution for FPW samples compared to LPW ones which have a rather

narrow distribution (1.14 and 1.05 for FPW and LPW respectively). This can also be noticed on

SEC chromatograms of each PHA represented on Fig. 3. Compared to LPW (dashed line), the FPW

sample (solid line) gives a narrow peak shifted to higher elution volumes, which correspond to a

less uniform distribution and lower molar masses, respectively.

DSC experiments were also performed to characterize the PHA thermo-induced transitions which

allow  to  investigate  the  physical  PHA  behaviours  in  relation  to  their  structural  features.  The



corresponding  parameters  are  displayed  in  Table  5.  The  melting  temperatures  (Tm),  the  glass

transition temperatures (Tg) and the melting enthalpy (or crystallinity) of the two produced PHA are

relatively dependant to the nature of the culture medium. All these recovered parameters indicate

that the thermal behaviours of these PHA differ which could arise either from distinct molar masses

distribution,  i.e.  chain length  distribution as  indicated  by the SEC characterization  and/or  from

distinct  levels  of  chain  ramifications.  The  thermal  characteristics  of  PHA copolymers  strongly

depend on the type, content and distribution of comonomer units comprising the polymer chains, as

well  as the average molecular  weight and molecular  weight distribution.  The glass transition is

influenced by the size of the side group and generally, the observed relationship suggests that an

increase in the alkyl chain size of the side group causes steric hindrance and results in a decrease in

Tg, mainly due to an increase in the free volume [21]. The higher of alkyl chain length, the lower

the Tg of the PHA. The Tg values in Table 5 clearly shows the pronounced depression, indicating the

enhanced local segmented mobility of polymer chains. The crystallinity of PHA copolymers is also

greatly affected by the type of comonomer as previously shown by Noda et al. [22]. However, GC

analyses were performed on LPW and FPW PHA and both chromatograms were similar: each PHA

is  mainly  composed  of  polyhydroxybutyrate  (PHB).  Then,  the  polymer  composition  cannot  be

responsible for the differences observed for Tg, Tm and crystallinity. Nevertheless, the significant

differences in the dispersity between that of PHA produced using LPW (Đ = 1.05) and that of PHA

obtained from FPW (Đ = 1.14) could explain the higher crystallinity for the second one. Indeed, this

suggests  an  enhanced  local  mobility  of  the  polymer  chains  in  the  presence  of  smaller  chains,

inducing an increase in the crystallinity degree. The small difference in melting temperatures could

be attributed to the difference of the crystallinity degree which is significantly higher for PHA

produced from fruit process water (Tm = 172.4°C for 68.3% of crystallinity),  compared to PHA

obtained using LPW (Tm = 166.9°C for 46.9% of crystallinity).

• Discussion

World production of plastic materials was in excess of 300 million tons in 2013. Traditional plastics

(petrol-polymers) are produced using mineral oils (fossil-based) whose extraction and production

are environmentally damaging. Furthermore, once produced, petrol-polymers are persistent in the

environment.  For example,  the average petro-polymer  shopping bag lasts  between 100 and 400

years before biodegrading. However, bio-based and biodegradable polymer alternatives exist.

Biodegradable polymers are greatly needed by industry to reduce environmental impact of the very

large  world  production  of  plastic  materials.  Bio-sourced,  recyclable  biopolymers  constitute  a

promising  alternative  providing their  biosynthesis  at  an  industrial  scale  is  cost  effective.  Cost-

effectiveness  and economic  scalability  is  necessary to  ensure the use of  bio-sourced recyclable



polymers  will  not be restricted to high value added products.  To realize the full  environmental

benefit bio-sourced recyclable polymers must become mainstream, replacing petro-polymers on an

industrial scale.

Hence, this study aimed at demonstrating the feasibility of producing, firstly at a laboratory scale,

PHA polymers from culture media which are enriched with agro-industries’ by-products. Such an

approach aims at both significantly reduce the polymer’s production cost per ton and the carbon

footprint  of  agro-industries.  The  comparative  study  performed  here  demonstrates  that  agro-

industries’ by-products efficiently offer an alternative to an expensive conventional culture medium,

the marine broth, for PHA production, especially by replacing glucose by agro-industry effluents.

Regarding firstly the biomass production formed after 12 hours of culture, it varies more or less

within a log as compared to the marine broth reference medium. Besides it is observed that the lag

time, related to the time necessary for the cell’s metabolic adaptation, is only increased by two

hours. This is of weak consequence in an industrial  context since the bacterial  cells are usually

grown on a continuous batch mode.  Hence,  it  can be concluded that  sufficient  biomass can be

produced  from media  based  on agro-industries’  by-products.  Special  attention  was  paid  to  the

culture second stage since it is critical for initiating PHA biosynthesis, the experimental conditions

for  starving  cells  being  not  straightforward  to  determine.  The  results  at  hand  show  that  such

alternative media yield PHA relative (to cell dry mass) contents above 50% and reach up nearly

80% for the FPW. This finding may arise either from the larger sugar amounts in this medium as

compared to the leguminous one, and/or from the fact that fructose is more readily metabolized in

the growing phase and further incorporated in PHA units than glucose during the starving stage.

Indeed, 50% of sugars are saccharose in the leguminous effluent and fructose in fruit ones.

On a methodological  point  of view,  we also demonstrate  that  the Nile  Red emission  spectrum

incorporated in PHA granules is correlated to the global amount of the PHA content  [20]. This

technique was previously designed in our laboratory but the strict correlation with the fluorescence

intensity at 543exc/592em was not yet demonstrated. This value is easily determined and can thus

provide an effective tool for monitoring, in real time, the actual PHA production allowing thereby

supplying valuable information for the decision-making support of the bio-fermentation process.

Preliminary experiments were achieved to investigate the physicochemical properties of the PHA

produced in these challenging culture media. One observe that PHA synthesized from bacterial cells

grown with the leguminous effluent exhibit a rather uniform distribution (Đ = 1.05) in opposite to

those synthesized with fruit ones which are less uniform as suggested by the calculated Đ value of

1.14. This structural diversity likely warrant for the observed thermal behaviours of PHA produced

from cells  grown in  these  two  media.  Though  glass  transitions  are  observed  at  near  sub-zero

temperatures and melting temperatures are close to 170°C for both productions, melting enthalpies



and  crystallinities  both  vary.  Considering  that  both  samples  are  only  composed  of

polyhydroxybutyrate,  such  distinct  thermal  properties  may  arise  from  distinct  chain  lengths

distributions. Further structural and rheological studies are needed to obtain closer insights on these

properties. Here, the relevant point is that these observed behaviours do differ. In the framework of

green  processes,  it  is  of  utmost  importance  that  structural  PHA  diversity  can  be  achieved  by

purposely choosing the carbon and nitrogen sources to feed a unique bacterial strain. This limits the

need for complex genetic modifications and enzymatic engineering. In other words, from a unique

strain, distinct PHA can be synthesized which necessarily will exhibit distinct properties. Hence, it

comes at hand to set a specific effluent for cell growth in order to get desired mechanical properties

according to the desired plastic material fate, including use and life duration.
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Table 1. PHA produced by pure culture from waste raw materials.

Carbon source Organism PHA
concentration

(g/L)

Reference

Sugar cane Bacillus SA 5.80 [12]
Bagasse C.necator 3.90 [13]
Wheat Bran
Whey
Canola oil

Halomonas boliviensis
Methylobacterium sp 
W. Eutropha 

4.00
6.12

18.27

[14]
[15]
[16]

Table 2. Agro-industrial substrates composition (in g per 100g).

LPW FPW
Protein 10.9 1.6
Carbohydrates 64.9 94.4
     Glucose 0.3 20.4
     Saccharose 28.0 nd
     Stachyose 17.2 nd
     Fructose nd 46.8
Ashes 20.0 4
     Calcium 0.1 0.5
     Sodium 2.2 0.1
     Potassium 6.2 2.1
Humidity 4.2 -
C/N molar ratio 22.9 371.7

nd: non determined

Table 3. Production of PHA by Halomonas i4786 depending on the growing medium type. The PHA content
was defined as the percent ratio of PHA concentration to CDW.

Growing medium CDW (g.L-1) PHA concentration (g.L-1) PHA content (%)
LPW 2.8 1.56 55
FPW 2.3 1.79 78

 

Table 4. PHA dispersity parameters.

Growing medium (g/mol)   (g/mol) Đ

LPW 644 500 677 500 1.05
FPW 518 000 588 000 1.14



Table 5. Thermal parameters recovered from DSC experiments. Refer to §2.7 for thermodynamic parameters
identification.

Tg (°C) Tm  (°C) Tc  (°C) ΔHm (J.g-1) Χc (%)
LPW -0.2 166.9 61.0 68.5 46.9
FPW -5 172.4 63.8 99.7 68.3


