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Abstract:  

BACKGROUND & AIMS: Hereditary hemochromatosis is a heterogeneous group of genetic 

disorders characterized by parenchymal iron overload. It is caused by defective expression of liver 

hepcidin, the main regulator of iron homeostasis. Iron stimulates the gene encoding (HAMP) 

hepcidin via the BMP6 signaling to SMAD. Although several genetic factors have been found to 

cause late-onset hemochromatosis, many patients have unexplained signs of iron overload. We 

investigated BMP6 function in these individuals. 

METHODS: We sequenced the BMP6 gene in 70 consecutive patients with moderate increase in 

serum ferritin and liver iron who did not carry genetic variants associated with hemochromatosis. 

We searched for BMP6 mutations in relatives of 5 probands and in 200 healthy individuals 

(controls), as well as in two other independent cohorts of hyperferritinemia patients. 

We measured serum levels of hepcidin by liquid chromatography-tandem mass spectrometry and 

analyzed BMP6 in liver biopsies from patients by immunohistochemistry. The functions of mutant 

and normal BMP6 were assessed in transfected cells using immunofluorescence, real-time 

quantitative PCR, and immunoblot analyses. 

RESULTS: We identified 3 heterozygous missense mutations in BMP6 (p.Pro95Ser, p.Leu96Pro, 

and p.Gln113Glu) in 6 unrelated patients with unexplained iron overload (9% of our cohort). These 

mutations were detected in less than 1% of controls. The p.Leu96Pro was also found in 2 patients 

from the additional cohorts. Family studies indicated dominant transmission. Serum levels of 

hepcidin were inappropriately low in patients. A low level of BMP6, compared with controls, was 

found in a biopsy from 1 patient. In cell lines, the mutated residues in the BMP6 propeptide resulted 

in defective secretion of BMP6; reduced signaling via SMAD1, SMAD5, and SMAD8; and loss of 

hepcidin production. 

CONCLUSIONS: We identified 3 heterozygous missense mutations in BMP6 in patients with 

unexplained iron overload. These mutations lead to loss of signaling to SMAD proteins and reduced 

hepcidin production. These mutations might increase susceptibility to mild-to-moderate late onset 

iron overload.  

KEYWORDS: genetic analysis, bone morphogenetic protein, signal transduction, HH
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INTRODUCTION 

Hereditary hemochromatosis (HH) is an iron overload disorder reflecting mutations in different 

genes encoding proteins involved in the regulation of hepcidin production. Hepcidin acts as a 

negative regulator of duodenal iron intake [1] and iron recycling from spleen and liver macrophages 

[2,3]. HH is characterized by abnormal iron loading in parenchyma, leading to liver cirrhosis, 

cardiomyopathy, diabetes, hypogonadism and arthralgia [4,5] although only a few HH patients 

suffer from overt disease. Currently, the main therapeutic approach is a regular phlebotomy to 

remove excess iron [6].  

Hepcidin synthesis in the liver is controlled by serum iron levels and tissue iron stores through an 

“iron-sensing complex” comprising the integral proteins HFE, hemojuvelin (HJV) and the type 2-

transferrin receptor (TFR2). This complex acts through the bone morphogenetic protein 

(BMP)/SMAD1/5/8-signaling complex to induce hepcidin-encoding gene (HAMP) expression when 

too much iron is available [7]. Hepcidin synthesis is also induced by inflammatory signals such as 

IL-6 and plays a major role in the anemia of chronic diseases [8,9]. In contrast, HAMP gene is 

negatively regulated through the serine protease matriptase 2, which cleaves HJV and disrupts 

BMP/SMAD signaling [10-12]. In European Caucasian populations, HFE is responsible for the 

most common form of adult-onset HH, while HAMP, HJV and TFR2 genes are responsible for the 

rare (<1 %) early-onset subtypes of HH, showing the rapid and severe progression of iron 

overload[5,13]. In rare cases, dominant mutations in the iron exporter ferroportin (FPN) gene can 

also lead to an iron overload phenotype [14-17]. Nevertheless, there are many patients with iron 

overload in whom no causative mutation in the known hemochromatosis genes has been identified 

[18].  

BMPs belong to the TGF-β family and are involved in both osteogenic (bone and cartilage) and 

non-osteogenic developmental processes [19]. The BMP6 gene (6p24-p23) has seven exons, 

encoding a large precursor of 513 amino acids (aa), comprising an N-terminal signal peptide 

sequence, a prodomain for proper folding, and a C-terminal secreted mature peptide sequence of 

138 aa (Figure 1A). BMP6 is also a key regulator of hepcidin expression and iron metabolism [20-

22]. This protein cooperates with HJV to bind to BMP type I and type II receptors and induces the 

phosphorylation of SMAD 1/5/8 proteins, which subsequently interact with SMAD4. This complex 

translocates to the nucleus, where it binds the HAMP promoter and stimulates HAMP gene 

transcription. Recent studies have shown that Bmp6-deficient mice develop a severe iron overload 

[20,22], suggesting that BMP6 might be a candidate gene in patients with severe HH not 

attributable to HJV or HAMP genes [20,22]. However, because no BMP6 mutations have been 

reported, we postulated that, in humans, these mutations might be responsible for a mild late-onset 

phenotype rather than severe iron overload phenotype. Therefore, we analyzed the BMP6 gene in a 

series of 70 patients with primary mild to moderate iron overload in whom mutations in known HH 
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genes had been excluded. Identified BMP6 mutations were additionally found in two other 

independent cohorts of hyperferritinemia patients. 

MATERIALS and METHODS  

BMP6 gene 7 exons and flanking sequences were sequenced in 70 consecutive patients (51 males 

and 19 females) and 200 healthy controls (blood donors over 35 years old, 108 males and 92 

females). The patients were referred to the Department of Genetics in Bichat Hospital (Paris, 

France) between 2004 and 2011 for the screening of primary non-HFE hemochromatosis (see 

supplementary Table S1) and presented with high ferritinemia and elevated liver iron concentration 

(LIC > 36 mol/g as confirmed through Magnetic Resonance Imaging (MRI) analysis). Cases with 

hyperferritinemia of known origin were excluded: chronic or acute inflammatory syndrome, 

transfusions, cellular lysis, dysmetabolic syndrome, and excessive alcohol consumption. Genetic 

analyses had previously ruled out defects in HFE (C282Y homozygous, compound C282Y/H63D 

heterozygous), TFR2 and FPN genes. Serum hepcidin was measured in all samples with a 

previously validated LC-MSMS method [23]. 

All patients and healthy controls were Caucasians of western continental French descent, 

originating from the Ile de France region. Written informed consent was obtained for all 

participants, and this study was approved through the local ethical committees.  

The replication cohort consisted of a prospective nationwide study from 2011 to 2013. Inclusions 

criteria were persistent increase of serum iron and serum transferrin saturation (>50%) at two 

separate tests, and LIC > 100 mol/g. Exclusion criteria were HFE C282Y homozygous mutation, 

history of transfusion, bloodletting, hematological disease, or history of iron supplementation. 

Coding sequence of the genes HAMP, HJV, TFR2, HFE, SLC40A1 and BMP6 were sequenced. 

Serum hepcidin levels were determined with an enzyme immunoassay (Peninsula Laboratories, 

Bachem, San Carlos USA). 

The third cohort was added to expand the recruitment of BMP6 patients. It included 10 consecutive 

patients (seven Caucasians, two African and one Asian) referred to the Gastroenterology 

department of Louis Mourier Hospital (Colombes, France) for unexplained hyperferritinemia and 

elevated LIC. We performed targeted next-generation sequencing (NGS) workflow based on a 

custom AmpliSeq panel sequencing most prevalent genes involved in iron disorders on the Ion 

PGM™ Sequencer.  

DNA ANALYSIS 
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DNA was prepared from peripheral blood leukocytes using QIAamp DNA Blood Mini Kit 

(Qiagen). BMP6 gene 7 exons and flanking sequences were amplified by PCR. The two strands of 

PCR products were sequenced with use of the BigDye Terminator Cycle Sequencing Ready 

Reaction kit on an ABI PRISM 3130xl sequencer (Applied Biosystems). BMP6 sequencing primers 

(M13 tailed) are shown in supplementary Table S2. 

HAPLOTYPE ANALYSIS 

Haplotype analysis was performed with two microsatellite markers surrounding BMP6 gene 

(22_AC and 16_GT, supplementary Table S2). Polymerase chain reactions (PCRs) were performed 

using 20 ng of genomic DNA and the products were analyzed using the ABI Prism 3130 Genetic 

Analyzer and Gene Mapper analysis software v4.0 (Life technologies). 

BMP6 CONSTRUCTIONS AND MUTAGENESIS  

BMP6 (NM_001718) Human cDNA previously inserted in pCMV6-Entry (ORF Myc-DDK tagged) 

was purchased from OriGene (catalogue N°: RC212307, BMP6-WT). All BMP6-Mutations were 

performed using site-directed mutagenesis (Stratagene, La Jolla, CA, USA). For functional studies, 

Myc-DDK sequences were removed by introducing the initial stop codon TAA at the C-terminal 

tail of BMP6-WT and mutants cDNAs. For dimerization test studies, the coding sequence of the 

human BMP6 gene was amplified from a cloned full-length cDNA purchased from Open 

Biosystems (clone ID: clone ID: BC160106: 100064138). The PCR fragment was subcloned into 

the pcDNA3.1/V5-HIS-TOPO vector (V5-BMP6) according to the manufacturer’s instructions 

(Life Technologies, Cergy Pontoise, France). Primers sequences are shown in supplementary Table 

S2. 

IMMUNOHISTOCHEMICAL TESTING  

Liver tissue samples were fixed in 10% formalin buffer, embedded in paraffin, sectioned, and 

stained with Perls' Prussian blue or with the primary anti-BMP6 (S-20) antibodies (1/50; Santa Cruz 

Biotechnology, inc. CliniSciences, Nanterre, France) diluted in PBS-1% BSA and 1% FCS. 

Immunohistochemistry was performed using an automated immunohistochemical stainer according 

to the manufacturer’s guidelines (streptavidin-peroxidase protocol, BenchMark, Ventana). 

CELL ANALYSES  

Opossum Kidney (OK) cells (ATCC®, LGC STANDARDS, Molsheim, France) were cultured in 

Eagle's Minimum Essential Medium (EMEM) (ATCC®, LGC STANDARDS, Molsheim, France) 

containing 10% fetal calf serum (FCS), 100 U/ml penicillin, and 100 g/ml streptomycin 

(Invitrogen-Gibco). HepG2 cells (ATCC®, LGC STANDARDS, Molsheim, France) were grown in 
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DMEM supplemented with 10% FBS, 100 U/mL penicillin, and 100 g/mL streptomycin. HuH7 

cells were cultured in DMEM with L-glutamine and 1 g/L glucose, supplemented with 10% heat 

decomplemented FBS, 100 U/mL penicillin, and 100 g/mL streptomycin (Invitrogen-Gibco). The 

human hepatocarcinoma cell line Hep3B (ATCC®, LGC STANDARDS, Molsheim, France) was 

grown in DMEM, 10% fetal calf serum, 100 U/mL penicillin, and 100 g/mL streptomycin 

(Invitrogen-Gibco). All cell lines were transfected using the X-tremGENE HP DNA Transfection 

Reagent (Roche Diagnostics, Mannheim, Germany), according to manufacturer’s instructions. 

Transfected culture were then washed and maintained in the serum-free medium until reaching 

confluence (1-2 days after transfection). 

Transfected OK cells were used to produce secreted forms of WT and mutated BMP6 proteins. The 

resulting conditioned medium was used to treat HepG2, Hep3B and HuH7 cells for an additional 24 

hours. Cells were then harvested and the cellular extract was used to quantify mRNAs or proteins 

levels. For SMAD signaling, HepG2 cells underwent early incubation (5 min to 90 min) with the 

conditioned medium and then they were immediately processed to evaluate the phosphorylation 

level of Smad1/5/8 by immunoblotting.

CONFOCAL MICROSCOPY 

Transfected and confluent OK were washed 3 times with PBS, fixed for 10 minutes at room 

temperature with 3% paraformaldehyde, washed again 3 times with PBS, incubated with 20 

mmol/L glycine for 10 minutes, and subsequently permeabilized for 30 min with PBS containing 

0.1% saponin. The actin staining was performed with Alexa Fluor 635 phalloidin (1/200, for 30 

minutes at room temperature). The BMP6-WT and mutated proteins staining was performed with 

anti-BMP6 or anti-DDK antibodies (OriGene, by CliniSciences, France, Nanterre). The coverslips 

were mounted by using DAKO-glycerol containing 2.5% 1,4-diazabicyclo- (2.2.2) octane (Sigma 

Aldrich, St Louis, MO) as a fading retardant. Confocal images were taken with a high-resolution 

confocal biophoton microscopy Leica SP8 (Saint Jorioz, France) equipped with 60x oil-immersion 

objectives. 

IMMUNOBLOTTING AND IMMUNOPRECIPITATION 

For protein cell extraction, cells were harvested by incubation during 60 min in ice-cold RIPA 

buffer (0.05 M Tris-HCl at pH 7.6, 0.15 M NaCl, 1% w/v Triton X-100, 0.1% SDS, 1mM EDTA) 

containing 1x protease inhibitor cocktail (Complete, Roche). The cell lysates were then centrifuged 

at 4°C x 12,000 g for 15 min to recover the protein pellet. For secreted proteins, the serum free-

supernatants were filtered through centrifugal filter unit (Amicon Ultra-4 centrifugal filters, 

Millipore, Paris, France) and concentrate samples were recovered and stored. Protein concentrations 

were measured by Bradford assay (Bio-Rad). For the immunoblot, the proteins (10 to 60 g) were 
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separated by electrophoresis on 10-12% SDS-polyacrylamide mini-gel and subsequently 

electrotransferred to nitrocellulose membranes (Mini Trans Blot Module, Bio-Rad). Loading and 

transfer efficiency were systematically checked by Ponceau red staining (ponceau S) of the 

membranes. The membranes were incubated overnight with primary antibodies (1:500 dilution for 

rabbit anti phospho-Smad1/5/8 (Millipore Paris, France) and 1:1000 dilutions for goat anti-BMP6. 

Immunoreactive bands were revealed by HRP-conjugated Secondary antibodies and with 

Amersham ECL. The quantification was represented as ratio of BMP6 protein level on the level of 

the 72 kDa band revealed by Ponceau R. We used this band that was systematically revealed in all 

our blots. 

For immunoprecipitation (IP) studies, OK cells were cotransfected with equal amounts of constructs 

expressing V5-tagged WT BMP6 (pcDNA3.1-V5, life technologie, invitrogen sarl, France, Cergy 

Pontoise) alone or along with WT BMP6 or Leu96Pro-BMP6. 2 days after transfection, both cell 

pellet and conditioned supernatant were incubated in lysis buffer. One mL aliquots of lysates (500 

g of proteins) were immunoprecipitated by incubation with 2 g of anti-DDK antibody, anti-V5 

antibody or an isotype IgG and 100 L of protein A-agarose overnight at 4 °C on a rocking 

platform. Proteins were processed for 10-12 % SDS-polyacrylamide page and the immunoblot. The 

membranes were incubated overnight with HRP-conjugated primary anti-V5-HRP antibody 

(1/5000, Life Technologie, invitrogen sarl, France, Cergy Pontoise) or with anti-DDK antibody and 

immunolabeling was detected directly using the ECL reagent (Amersham Biosciences).   

RNA EXTRACTION AND QUANTITATIVE REAL-TIME PCR 

Total RNA was isolated from cultured cells using RNA-PLUS
TM 

reagent (MP-Europe) according to 

the manufacturer’s recommendations. Complementary DNA was synthesized using oligo(dT) 

primer and Moloney Murine Leukaemia Virus reverse transcriptase (invitrogen sarl, France, Cergy 

Pontoise) as per the manufacturer’s instructions, using 2 g total RNA template per sample. 

Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) was performed with 

specific sets of primers and LightCycler 480 DNA SYBR Green I Master Mix applying (Roche 

Diagnostics, Mannheim, Germany) and run on a LightCycler 780 Instrument (Roche Diagnostics). 

HAMP and Id1 and BMP6 transcripts were amplified with specific primers (supplementary Table 

S1). In parallel, β2M transcripts were amplified with specific primers and detected in a similar 

manner to serve as an internal control. Standard curves for HAMP, Id1, BMP6 and β2M were 

generated from accurately determined dilutions of cDNA. Samples were analysed in duplicate for 

each experiment, and results are reported as the ratio of mean values for hepcidin or Id1 to β2M. 

STATISTICAL ANALYSIS  
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A two-tailed Student’s t-test and Chi-square test were used with a P value of < 0.05 determining 

statistical significance. 95% confidence intervals for the odds ratio were calculated. GraphPad 

InStat software (GraphPad Software, San Diego, CA) was used for statistical evaluation.

RESULTS 

Patient characteristics 

In a cohort of 70 patients with moderate unexplained iron overload, we found six individuals, five 

males and one female, carrying one heterozygous BMP6 mutation. The most relevant clinical and 

biological data of these patients are shown in Table 1. The patients were over 50 years of age (mean 

age 57.5, 50-65), with elevated serum ferritin, normal or high transferrin saturation and elevated 

LIC. Perl’s staining of the liver biopsies from patient 4 showed significant iron overload in both 

hepatocytes and Kupffer cells (Figure 1D). Five out of six patients were treated through 

phlebotomy, removing 1.5-5 g of total iron. Serum hepcidin was measured through LC-MSMS 

spectrometry. Although the results were not available for all patients, the patients with BMP6 

mutations had normal or only slightly elevated serum hepcidin levels, despite the presence of excess 

liver iron (Table 1). Family studies were performed for five patients (Figure 2) and additional 

carriers of a mutation were identified, some of them also showing moderate signs of iron overload 

(Patient II.2, Family 5). We also measured serum hepcidin in two young asymptomatic carriers 

available (III.1 and 2, family 1) who exhibited normal iron status. Their serum hepcidin levels were 

normal (data not shown). 

Altogether, these results suggested that these heterozygous BMP6 mutations conferred 

susceptibility to iron overload, although younger carriers were not iron overloaded and women 

appeared to be protected from iron overload. They also appeared to aggravate the iron load resulting 

from additional factors such as overweight (proband 4, LIC 230 mol/g) or moderate alcohol intake 

(proband 5, LIC 220 mol/g), two conditions known to lead to moderate iron excess (LIC<150 

mol/g [24]). 

Identification of BMP6 mutations 

The BMP6 mutations that we identified were located in exon 1: c.283C>T (p.Pro95Ser, one 

patient), c.287T>C (p.Leu96Pro, three patients), and c.337C>G (p.Gln113Glu, two patients). These 

three mutations were located in the propeptide domain and affected amino acids highly conserved 

throughout species (Figure 1 A-C). These three BMP6 mutations were also present in some 

individuals of European American Caucasian descent (39 out of 8000 alleles) found in the Exome 

Variant Server (http://evs.gs.washington.edu/EVS/, see supplementary Table S3), albeit at a nine 

times lower frequency than in our cohort of patients (6 out of 140 alleles, P<0.00001). Thus, BMP6 

mutations were highly associated with an iron overload phenotype in the studied patients (OR 9.62, 
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95 % CI 3.93, 23.52, P < 0.0001). In a conservative hypothesis, when all mutations found in the 

propeptide in EVS controls are taken into account (51 out of 8000 alleles, supplementary Table 

S3) the difference of frequency between patients and EVS controls remains highly significant 

(P<0.00001, OR 6.84, 95 % CI 2.84, 15.92,). We also sequenced BMP6 propeptide in 200 healthy 

French Caucasian controls and found solely one heterozygous synonymous coding mutation in one 

subject. The difference of frequency between patients and our 200 controls was also significant 

(P<0.05, OR 40.41, 95%CI 2.25, 727.23,). 

For the three patients with the p.Leu96Pro, based on the study of polymorphic SNPs in the BMP6

gene region we could not exclude a founder effect for p.Leu96Pro mutation. We therefore, 

performed haplotype analysis in families 2, 3, and 4 with two microsatellites markers surrounding 

BMP6 gene (see supplementary figure S1). We found that eight patients who carried the BMP6 

p.Leu96Pro mutation did not share a unique haplotype, consistent with the hypothesis of multiple 

independent mutational events. 

Replication cohort analysis 

Sixty two patients were initially included. Two of them were later excluded, one because of HFE 

p.Cys282Tyr homozygous mutation found at sequencing and one because of low serum transferrin 

saturation at inclusion. One patient (R1) had the p.Leu96Pro mutation (table 1). She presented 

metabolic syndrome with diabetes, porphyria cutanea tarda and the HFE p.His63Asp mutation. As 

in proband 4 and proband 5 of the first cohort, the presence of the BMP6 mutation seemed to 

exacerbate the liver iron overload (250 mol/g), over the level normally observed in metabolic 

syndrome [24]. Although one cannot rule out the possibility that p.His63Asp HFE mutation might 

contribute to the accumulation of excess iron in the liver, this mutation is not usually considered as 

pathogenic in the absence of the p.Cys282Tyr mutation [25]. One patient (R2) had the p.Gln113Glu 

mutation (table 1). He had no other comorbidities than moderate dyslipidemia and presented with 

elevated serum ferritin and serum transferrin saturation since three years. 

Additional cohort analysis 

Ten patients were initially included. We identified one Caucasian patient with only one 

heterozygous p.Leu96Pro BMP6 mutation without any modification in the other genes. We 

confirmed the presence of this mutation by Sanger sequencing and verified that HFE, HJV, TFR2, 

HAMP and SLC40A10 genes were not affected. The patient exhibited signs of moderated iron 

overload including elevated serum ferritin (968 g/L), transferrin saturation (52%) and LIC (95 

mol/g). Family history of this patient showed that his son also exhibited an unexplained 

hyperferritinemia. 
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Functional analysis of BMP6 mutations 

Because the mutations identified in the patients studied were all located in the propeptide region, 

we expected these mutations to alter BMP6 protein folding and/or secretion. When we analyzed the 

BMP6 staining in the liver biopsies obtained from patient 4, we observed reduced levels of BMP6 

protein in hepatocytes compared with control biopsies (Figure 3A), with apparent protein retention 

in the compartments surrounding the nucleus. We tried to measure the protein level of BMP6 in the 

serum of patients, but we found that circulating BMP6 was undetectable both in BMP6 patients and 

in healthy individuals confirming the accepted assumption of a local synthesis and an 

autocrin/paracrin effect of BMP6. Thus, we performed additional in-vitro studies to obtain further 

insight into the functional consequences of the BMP6 mutations. For the immunolocalization 

studies, we transfected OK cells with plasmids expressing the DDK-BMP6 fusion proteins and 

stained the transfected cells with either the BMP6 antibody (see supplementary figure S2), or an 

antibody against the DDK peptide (Figure 3B) to avoid detecting the endogenous BMP6 protein. 

BMP6-WT showed uniform labeling whereas the BMP6-mutants were primarily accumulated in 

cytosolic aggregates similar to that observed in the liver of patient 4, confirming the impairment of 

BMP6 secretion.  

Protein expression analysis of WT and mutated BMP6 was additionally performed by 

immunoblotting. OK cells were transfected with WT and mutant BMP6-expressing vectors. Equal 

mRNA levels of transfected BMP6-WT and mutants were observed, confirming equal transfection 

efficiency of the various constructs (Figure 4A). The level of the mature form of BMP6-mutants 

(Figure 4B) was significantly decreased compared with the WT in both cell extracts (C) and the 

secreted fractions (S). However, in contrast to BMP6-WT, the high molecular weight (HMW) form 

of BMP6-mutants was slightly accumulated in the (C) fractions (Figure 4 B-C), although total 

amount of BMP6 remained significantly reduced (Figure 4C). These data suggest that BMP6-

mutants are likely to be retained in quality control compartments and subsequently degraded.  

Because BMP6 induces phosphorylation of SMAD1/5/8 proteins, we examined whether this 

pathway was affected through BMP6 mutations. When HepG2 cells were incubated with 

conditioned media derived from OK cells previously transfected with BMP6-expressing plasmids, 

we observed the induction of a rapid phosphorylation by BMP6-WT treatment, with a maximum 

after 1 hour (Figure 5A). However, the kinetics of SMAD1/5/8 activation was not altered with the 

p.Leu96Pro mutant, although the extent of the phosphorylation was reduced compared with BMP6-

WT. Furthermore, conditioned medium from cells transfected with the p.Leu96Pro-mutant induced 
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only a 10-fold increase in HAMP mRNA, differing significantly from the 50-fold increase induced 

with the WT protein (Figure 5B). The expression of the Id1 gene, another BMP6 target, in the same 

samples was identical to that of HAMP, confirming the reduced functional activity of the BMP6 

mutants (Figure 5B). Similar data were obtained for p.Pro95Ser and p.Gln113Glu BMP6 mutants 

(Supplementary Figure S3). These data were additionally confirmed in two other hepatocyte cell 

lines Hep3B (Figure 5C) and HuH7 (Supplementary Figure S3).  

Furthermore, because BMP6 assembles as a dimer and patients carrying mutations are 

heterozygotes, we co-expressed BMP6-WT and the p.Leu96Pro-mutant in HepG2 cells. The 

mutated protein co-expressed with BMP6-WT failed to induce hepcidin production to the same 

extent as the mutated protein alone compared with BMP6-WT alone (Figure 6A), suggesting a 

dominant-negative mechanism. Therefore, we investigated whether BMP6 mutants interact with 

BMP6-WT. We co-transfected OK cells with constructs expressing V5-BMP6 along with BMP6-

WT (DDK-WT) or with pLeu96Pro-BMP6 (DDK-M). Immunoprecipitation (IP) and Western 

blotting were then performed as described in methods. Figure 6B clearly showed that similarly to 

BMP6-WT, pull-down of DDK-M using anti-DDK antibody results in co-precipitation of V5-

BMP6. Co-IP controls confirming specificity of the interaction between WT and mutanted-BMP6 

proteins (including isotype IgG control and cells in which only V5-BMP6 was transfected and then 

anti-DDK immunoprecipitation was performed) are shown in Supplementary Figure S4. These 

results suggest that despite the mutation, BMP6 mutants conserved their ability to form 

heterodimers with BMP6-WT. Thus, we hypothesized that BMP6 mutations may lead to 

intracellular retention of WT/mutant heterodimer proteins. Taken together, these data suggested that 

BMP6 propeptide mutations might reduce BMP6 secretion, thereby leading to impaired hepcidin 

production in the liver.  

DISCUSSION 

In the present study, we report for the first time that heterozygous BMP6 defects in humans can lead 

to a mild to moderate late-onset iron overload phenotype, showing both elevated serum ferritin 

levels and increased liver iron stores. These observations differed from those in mice, where 

homozygous Bmp6 inactivation induced severe iron overload [20,22]. However, in the present 

study, the patients were heterozygous for the BMP6 defect, and the mutation induced a change in 

the propeptide region that did not fully inactivate the protein. This new BMP6-related disorder 

resembled classical hemochromatosis in several respects: there were more affected males than 

females, iron excess was present only in carriers of BMP6 mutations aged 50 years and over, and 

the extra iron load was efficiently removed by therapeutic phlebotomies. However, this disorder 

also differed from classical hemochromatosis in that transferrin saturation was not consistently 

increased, and the patients did not exhibit clinical symptoms of iron overload and were 
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heterozygotes for the causing mutations. We propose that a dominant-negative effect of the mutated 

allele on the processing of the BMP6-WT (as suggested by data in Figure 6) might be sufficient to 

favor iron overload. Indeed, the mature BMP6 protein requires the formation of heteroligomeric 

complexes with the cleaved propeptide for optimal secretion and trafficking within the cell 

[19,26,27]. The results of the in vitro studies showed that BMP6 proteins mutated in the propeptide 

exhibited impaired secretion with intracellular retention leading to the diminished activation of 

downstream effectors. These data are consistent with reports showing that most of TGF-β1 gene 

mutations responsible for autosomal-dominant Camurati-Engelmann disease (MIM 131300) are 

located in the propeptide domain, leading to the intracellular retention and impaired secretion of the 

mutated protein[28]. Notably, the appropriate secretion and activation of BMPs also requires the 

formation of homodimers or heterodimers with other BMPs [19,29,30]. Thus, it is possible that 

other mechanisms, such as impaired dimer formation with BMPs or diminished BMP activation 

contribute to the reduced activity of BMP6 mutants.  

Two other lines of evidence support the implication of these BMP6-propetide mutations in 

defective iron signaling and lack of hepcidin response. First, our in vitro experiments showed that 

the amount of BMP6 secreted in the culture medium of cells transfected with mutated BMP6 was 

not sufficient to fully activate the SMAD1/5/8 signaling pathway and therefore only partially 

induced hepcidin synthesis (Figure 5 and Supplementary Figure S4). Second, we also observed 

normal or slightly elevated serum hepcidin levels in BMP6 patients, which were inappropriately 

low considering the patient iron load. These results are similar to those of previous studies showing 

the presence of normal or only slightly elevated serum hepcidin levels in HFE-HH patients, despite 

the presence of excess liver iron[31-33]. Interestingly, the level of SMAD phosphorylation has also 

been reported to be inappropriately low in HFE hepatocytes[34]. Together with previously 

published data, these results highlight the importance of the BMP pathway in iron signaling and 

hepcidin response in humans. Indeed, a significant association has already been detected between 

serum ferritin level and a common single-nucleotide polymorphism in the BMP2 genic region in 

HFE patients[35] and a mutation in the BMP-response element of the HAMP promoter has been 

observed in patients with HH[36].  

In conclusion, the results of the present study show that these propeptide BMP6 mutations are 

responsible for inappropriate hepcidin response and mild to moderate iron overload in some patients 

with so-called unexplained hyperferritinemia. We propose that BMP6 is a new susceptibility gene 

for iron overload in Caucasians and speculate that it could be the principal susceptibility gene in 

other ethnic groups where HFE mutations are rarely present
25

. Indeed, several rare BMP6 missense 

variants present in African American control populations from the Exome Variant Server are likely 

deleterious. Nevertheless, additional studies with larger cohorts are required to assess the exact 
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frequency of BMP6-related iron overload. In addition, the presence of BMP6 variants in the general 

population, albeit at a low frequency, opens up the possibility that BMP6 could also act as a 

modifier gene of HFE-related hemochromatosis where the degree of iron overload is highly 

variable[4,5,13] or could aggravate the accumulation of excess iron in common diseases such as 

metabolic syndrome or alcoholism. 
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FIGURE LEGENDS 

Figure 1. BMP6 Mutations and iron overload in a liver biopsy of a patient with the 

p.Leu96Pro mutation. A: schematic representation of the BMP6 protein. The three mutated 

residues identified in patients are located in the propeptide domain. B: sequence alignment of 

amino-acids 90 to 138 showing that the mutated residues (in red) are highly conserved between 

species. C: chromatogram of the nucleotide sequence within exon 1 of BMP6 gene with nucleotides 

indicated above the curves. D: Perl’s staining of the liver biopsy sections of patient 4 (p.Leu96Pro 

mutation). Significant iron overload was observed in both hepatocytes (H) and Kupffer cells (K). 

the scale bars: 30 m. 

Figure 2. Family studies and pedigrees of each of the five probands with BMP6 mutation.  

Pedigrees were drawn for each proband. Squares indicate male family members, circles female 

family members, black symbols probands and carriers with biological signs of iron overload, white 

symbols with black line asymptomatic mutation carriers and white symbols non carriers; slashes 

indicate deceased family members. Arrows indicate the proband. Biological data of family 

members are shown in rectangular boxes, when available. A: age, I: serum iron (10-30 M), F: 

serum ferritin (F 5-105, M 30-300 g/L), TS; transferrin saturation (20-45%), LIC: MRI hepatic 

iron (N<36 mol/g). ND not determined. 

Figure 3. Intracellular location of missfolded BMP6 mutants:  

A: BMP6 protein expression in the liver biopsies of patient 4 (lower panel) and a healthy control 

(upper panel). Arrows indicate apparent cytosolic aggregates of mutated BMP6 protein. B: 

subcellular location of BMP6-WT and mutants in OK cells transfected with the corresponding 

plasmid expressing the DDK-tagged fusion protein. These cells were subsequently fixed and DDK-

BMP6 proteins were immunostained with anti-DDK antibody (green). The actin and nucleus were 

stained with Alexa Fluor 635 phalloidin (red) and Hoechst dye (blue) respectively. The images 

show the abnormal accumulation of the p.Leu96Pro mutant protein in intracellular compartments. 

The scale bars: 100 m and 30 m for biopsies and confocal images respectively. 

Figure 4. mRNA and protein level of expressed BMP6-WT and mutants. 

OK cells were transfected with BMP6 constructs and then the cell extracts (C) and/or supernatants 

(S) were prepared to assess the expression of BMP6-mRNA and/or protein respectively. A: showed 

the mRNA level of BMP6-WT (WT) and mutants (p.Pro95Ser, p.Leu96Pro, p.Gln113Glu). The 

data were normalized to 1 g of total RNA and reported as the mean ± sem (n=3 in each 

experience). B: Representative images of the abundance of BMP6-WT (1), p.Pro95Ser (2), 

p.Gln113Glu (3), and p.Leu96Pro (4) proteins detected through immunoblotting. The amount of the 
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protein loading was systematically visualized through Ponceau red staining (Ponceau S). C: 

Summarizes the quantifications of the ratio of BMP6 signals on a 72 kDa protein of Ponceau S. The 

amount of mature BMP6-mutants (expected molecular weight 18-23 kDa according to the extent of 

N-linked glycosylation) is reduced both in (C) and (S), as compared to BMP6-WT. However, the 

amount of the high molecular weight propeptide (HMW, Predicted at 57 kDa) is increased in (C). 

The data are mean ± sem (n=4 experiences).  *P < 0.05, **P < 0.01, ***P < 0.001.  

Figure 5. Functional studies of BMP6 mutations in-vitro.

A: Induction of SMAD1/5/8 signaling. OK cells were transfected with plasmids expressing BMP6-

WT (WT) or the p.Leu96Pro-mutant (M). The supernatants were used as conditioned medium to 

treat confluent HepG2 cells. The kinetics was established for 5-90 min, and the level of SMAD 

phosphorylation was evaluated through immunoblotting using anti-pSmad1/5/8 antibody (pSMAD). 

The amount of the protein loading was controlled through actin staining. Left panel shows 

representative immunot blot and right panel shows the quantification. B and C: Induction of HAMP

and Id1 mRNA-expression. OK cells were transfected with BMP6-WT or mutants. The conditioned 

medium was used to treat confluent HepG2 cells (B) or Hep3B (C) for 24 h. The mRNA levels 

were determined through RT-qPCR. The data were normalized to the levels of β2-microglobulin 

( 2M) mRNA and reported as the mean ± sem (n=3 in each experience). *P < 0.05, **P < 0.01, 

***P < 0.001, ns: not significant.  

Figure 6. Protein dimerization between BMP6-WT and mutants.  

A: the effect of BMP6-WT (WT) or pLeu96Pro-mutant (M) alone on HAMP mRNA induction was 

compared to the effect of a combination of half the amount of each vector (WT+M, mimicking 

heterozygosity). Samples were analyzed in duplicate and reported as ratio of mean values for 

HAMP. Results are reported as the mean ± sem (n=3 in each experiment). B: heterodimerization of 

BMP6-WT and M was explored by co-immunoprecipitation followed by Western blot analysis as 

described in methods. OK cells were transfected with the indicated plasmids and cell extracts (C) 

and conditioned medium (S) were immunoprecipitated with anti-DDK (IP:DDK). The Western 

blots were revealed by anti-V5-BMP6. Input blot (Input: DDK, 10% input) was also performed to 

ensure expression of DDK-proteins and V5-proteins in samples used for IP. The results showed 

association between BMP6-WT and pLeu96Pro-mutant monomers suggesting dominant-negative 

effect of BMP6 mutations. 
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Table 1: Clinical and biological data of the patients with BMP6 mutations 

* Liver iron concentration (LIC) was determined by MRI; normal value  < 36 mol/g.  Normal values: serum ferritin F 5-105, M 30-300 g/L, % Tf saturation 

20-45, serum hepcidin measured by LCMSM N < 19 g/L, serum hepcidin measured by ELISA N: 4 – 30 g/L.  

Initial cohort Replication cohort 
BMP6 Mutation p.Pro95Ser p.Leu96Pro p.Gln113Glu p.Leu96Pro p.Gln113Glu

(1 proband) (3 probands) (2 probands) (R1) (R2)

Gender M M F M M M F M

Weight (kg)/Height (m) 73/1.73 68/1.73 55/1.64 106/1.73 89/1.71 71/1.78 83/1.5 78/1.71

Age at diagnosis (y) 56 58 56 46 53 52 77 60

Transferrin saturation (%) 26 38 40 99 92 41 70 51

LIC*( mol/g) 170 55 70 230 220 200 250 160

Serum ferritin ( g/L)

before/after phlebotomies

900/55 700/150 481/148 4000/680 2358/808 800/117 1430/nd 830/nd

Serum hepcidin by LCMSMS 

( g/L)

before/after phlebotomies

nd/16.4 32.9/nd nd/7.6 30.6/nd 31.9/16.9 25/nd

Serum hepcidin by ELISA 

( g/L)

before/after phlebotomies 

  38/nd 62/nd

Phlebotomies (mL)/iron 

removed (g)

nd 10x300 /1.5 10x250/1.2

5

20x500/5 8x500/2 14x500 /3.5 nd nd

Clinical symptoms, other factors Arthralgia none none none Alcohol Arthralgia Diabetes, porphyria 

cutanea tarda

dyslipidemia
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