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Abstract Insecticides have long been used as the main meth-
od in limiting agricultural pests, but their widespread use has
resulted in environmental pollution, development of resis-
tances, and biodiversity reduction. The effects of insecticides
at low residual doses on both the targeted crop pest species
and beneficial insects have become a major concern. In par-
ticular, these low doses can induce unexpected positive
(hormetic) effects on pest insects, such as surges in population
growth exceeding what would have been observed without
pesticide application. Methomyl and chlorpyrifos are two in-
secticides commonly used to control the population levels of

the cotton leafworm Spodoptera littoralis, a major pest moth.
The aim of the present study was to examine the effects of
sublethal doses of these two pesticides, known to present a
residual activity and persistence in the environment, on the
moth physiology. Using a metabolomic approach, we showed
that sublethal doses of methomyl and chlorpyrifos have a sys-
temic effect on the treated insects. We also demonstrated a
behavioral disruption of S. littoralis larvae exposed to suble-
thal doses of methomyl, whereas no effects were observed for
the same doses of chlorpyrifos. Interestingly, we highlighted
that sublethal doses of both pesticides did not induce a change
in acetylcholinesterase activity in head of exposed larvae.

Keywords Spodoptera littoralis . Crop pest . Insecticide .

Sublethal doses .Methomyl . Chlorpyrifos .Olfaction . Insect
behavior

Introduction

Study of the effects of sublethal doses of neurotoxic chemicals
has been poorly investigated until now, and their mechanisms
of action are thus only partially understood. Yet, for several
years, the policy of many countries has been to reduce the use
of pesticides (Bellinder et al. 1994). Furthermore, it is well
known that many biotic (e.g., plant uptake, microbial, and
plant degradation) and abiotic (e.g., wind, volatilization,
chemical degradation, and dripping) processes can spatially
and temporally change the pesticide doses that an insect is
exposed to in the field. It is therefore urgent to determine if
environmentally relevant sublethal pesticide concentrations
could have a positive or negative effect on non-target and
target species. In a context of sustainable development, it also
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seems important to find new ways to assess the exposure of
terrestrial ecosystems to low doses of pesticides and, in par-
ticular, to find new biomarkers (molecular to behavioral ones)
for the survey of organisms living in these contaminated
environments.

Some studies have reported positive effects of pesticide
sublethal doses—also called hormetic effects—on population
growth and reproductive physiology in various insect species,
including in the cotton leafworm Spodoptera littoralis (review
in Cutler 2012; Tricoire-Leignel et al. 2012). However, dele-
terious impacts of low doses were also reported on fecundity,
longevity, and behavior (Ripper 1956; Haynes 1988; Stark
and Banks 2003; Dewer and Mahmoud 2014). While the ef-
fects of high doses were easy to determine because they are
usually associated with the mortality of the targeted species,
effects of low and sublethal doses were more difficult to ob-
serve and are thus relatively less well studied (Cutler 2012).

Among a variety of insecticides, organophosphorus and
carbamate compounds are widely used worldwide. Chlorpyr-
ifos and methomyl are currently the two most used insecti-
cides belonging to these pesticide families. Both of them cause
severe cholinergic poisoning in insects by inhibiting the en-
zyme acetylcholinesterase (AChE) that hydrolyzes the neuro-
transmitter acetylcholine. Overstimulation of the nervous sys-
tem leads to the insect’s death. Chlorpyrifos has a well-known
environmental persistence and can be found in all environ-
mental compartments (Delpuech et al. 1998). This pesticide
induces an irreversible inhibition of AChE that can be long
lasting even at low doses (Paudyal 2008; Carr et al. 1995).
Indeed, one study highlighted that a short term application
(i.e., 4 h) of chlorpyrifos at sublethal doses continued to inhibit
AChE for several days afterward (Carr et al. 1995). This effect
was also reported for non-targeted species such as wolf spiders
(Lycisidae) for which the AChE inhibition was observed
8 days after a 24- or 48-h exposure to chlorpyrifos (Van Erp
et al. 2002). Exposure of the parasitoid Aphytis melinus to
median lethal concentration (LC50) of chlorpyrifos reduced
longevity and depressed progeny production (Rosenheim and
Hoy 1988). As other carbamate insecticides, methomyl in-
duces a reversible AChE inhibition. Contrary to chlorpyrifos,
this product has a low persistence in the environment and a
high toxicity not only for pest insects but also for birds, aquat-
ic organisms, and beneficial arthropods such as bees (Van
Scoy et al. 2013). Its use is often recommended against pests
resistant to organophosphorus pesticides (WHO 1983). Few
studies have demonstrated effects of methomyl at sublethal
doses in insects: a stimulation of the fecundity was reported
in a susceptible strain of the diamondback moth Plutella
xylostella (Nemoto 1984), and a transitory growth reduction
was observed in larvae of the fall armyworm Spodoptera
frugiperda (Ross and Brown 1982).

These two insecticides were currently used to protect crops
against the polyphagous larval stages of S. littoralis (Miles

and Lysandrou 2002; Riskallah 1980). This noctuid moth is
a worldwide economically important pest of cotton, vegeta-
bles, and ornamental crops. Pesticide-resistant populations
cause severe problems in various countries, and the larvae
cause high levels of damages (Smagghe et al. 2002). In this
nocturnal insect, olfaction is the main sensory modality to
communicate with mating partners, localize trophic patches,
and oviposition sites, making this species a main pest insect
model to decipher the functioning of its olfactory system, from
genes to behavior (Bigot et al. 2012; Pottier et al. 2012; Party
et al. 2013). Several studies have focused on the impact of
sublethal doses of various pesticides on olfaction using pest
insects as models (Tricoire-Leignel et al. 2012) in order to
determinate if these products could act as info-disruptors by
modifying the chemical communication system and thus de-
crease reproduction chances in target insects (Lurling and
Scheffer 2007), or if they could act as hormetic factors by
enhancing reproduction (Cutler 2012). However, none of
these studies were conducted on S. littoralis. In addition, the
effect of methomyl at sublethal doses on olfaction has not
been studied yet in any insect species, whereas few data were
available for chlorpyrifos. It has been shown that
Trichogramma brassicae males exposed to chlorpyrifos at
LD20 or LD0.1 were less arrested by female sexual phero-
mones (review in Desneux et al. 2007), whereas at LD20, it
caused an increase in host searching in the parasitoid
Leptopilina heterotoma (review in Desneux et al. 2007).
These studies were restricted on adults.

In this context, the first step of this study was to determine
the sublethal doses of methomyl and chlorpyrifos in
S. littoralis larvae. To evaluate if these doses have indeed an
effect on the insect physiology, we use a metabolomic ap-
proach to compare the levels of several hemolymphatic
markers between control and treated larvae. In the second
step, we examined the effects of sublethal doses of these two
compounds on a vital olfactory-induced behavior (i.e., the
attraction of larvae by food odors) and measured in the head
of the corresponding larvae the AChE activity.

Materials and methods

Insect rearing and insecticide treatments

Spodoptera littoralis larvae were reared on a semi-artificial
diet (Hinks and Byers 1976) at 24 °C, 60–70 % relative hu-
midity, and a 16:8 light/dark cycle until emergence. Topical
applications of insecticides were performed on fourth larval
instars using a micro-applicator (Hamilton 10 μL syringe and
Hamilton dispenser). A range of concentrations of chlorpyri-
fos (45395, SIGMA PESTANAL, France) diluted in hexane,
or of methomyl (36159, SIGMAPESTANAL, France) diluted
in dimethyl succinate, were applied to the larval cuticle
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between the fifth and sixth segment (counting starting from the
first head segment). Control insects were treated using hexane
or dimethyl succinate, respectively. Forty insects were exposed
to each concentration of both compounds. Percentage of mor-
tality was determined 24 h after pesticide application and LD50

calculated by probit analysis. For further metabolic fingerprint-
ing and behavioral analyses, insects were exposed as described
previously but using two chosen sublethal doses for each pes-
ticide, i.e., 1/10 and 1/100 of the LD50 (noted LD50

1/10 and
LD50

1/100 afterward). These doses did not induce any mortality.

Metabolic fingerprinting

The hemolymph of larvae was sampled as described in Bigot
et al. (2012). Hemolymph from four larvae (40±10 μL) was
suspended in ethanol (400μl, purity 99.9%,MERCK, France).
Ten replicates were prepared for each experimental condition.
Samples were prepared as described in Khodayari et al. (2013),
with minor modifications. The samples were homogenized in
600 μL of methanol-chloroform (2:1) using a bead-beating
device (Retsch™ MM301, RetschGbmH, Haan, Germany).
Four hundredmicroliters of ice-cold ultrapure water was added,
and then aliquots (300 μL) of the upper aqueous phase contain-
ing polar metabolites were transferred to micro-tubes and vac-
uum-dried. Following derivatization (see (Khodayari et al.
2013) for the detailed experimental procedure), metabolites
were analyzed by gas chromatography–mass spectrometry
(GC-MS) (Figs. 1 and 2), which included a CTC CombiPal
autosampler (GERSTEL GmbH & Co.KG, Mülheim an der
Ruhr, Germany), a Trace GCUltra chromatograph, and a Trace
DSQII quadruple mass spectrometer (Thermo Fischer Scientif-
ic Inc., Waltham, MA, USA) (Khodayari et al. 2013). Fifty-
seven metabolites were analyzed (see supplementary data).
Peaks were accurately annotated using both mass spectra
(two specific ions) and retention times. Calibration curves were
set using samples consisting of 58 pure references. Metabolite
levels were quantified usingXCalibur v2.0.7 software (Thermo
Fisher Scientific Inc., Waltham, MA, USA).

Behavioral experiments

The ability of larvae to orient toward food odor was tested
using a four-choice olfactometer (Analytical Research Sys-
tems, Inc, Florida, USA). Each internal odor source adaptors
(OSA) with insect isolation trap was connected to the four
cardinal corners of the arena in order to send the airflow (with
or without odor) to the larvae placed on a fine mesh grid in the
center of the arena. The air flow was generated using an air
compressor (OLFM-4C-ADS, Analytical Research Systems,
Inc, Florida, USA), pulsed in each OSA at 200 ml/min and
regulated with a flow-meter. A vacuum flow evacuated odors
through the grid in the center of the arena.

For feeding stimulation, a piece of semi-artificial diet was
heated for 10 s in a microwave in order to increase the number
of volatiles emitted by the food and then placed immediately
in one of the four OSAs before air flow activation. The three
other OSAs without food corresponded to air flow controls.
The arena was cleaned regularly with 10 % TFD4 (Dutscher,
France) to eliminate odor residues. The location of the OSA
containing the food was changed between each test in order to
prevent any innate preferences for particular parts of the arena.
Analyses were performed under red light conditions (T=22±
1 °C, RH=70±10 %) and recorded over a 1-h period with a
CC infrared light-sensitive camera (QuickCam® Pro 9000).

For each experiment, ten larvae (fourth instar) were isolat-
ed, food deprived for 24 h, and then introduced into the central
starting zone (noted SZ) of the arena (see Figs. 3 and 4).
Larvae were considered as non-activated when staying in SZ
for the duration of the test. Movements of the activated larvae
were tracked individually in the four quadrants corresponding
to the four airflow stimulations. Each quadrant was divided in
two zones: a pre-zone (noted Z) and a target zone (noted C).
The quadrant corresponding to the odor stimulation was noted
(C0 and Z0), then the three control quadrants with air flow
alone were noted (C1 and Z1; C2 and Z2; C3 and Z3) follow-
ing the reverse rotation clockwise (see Figs. 3 and 4). Several
parameters were then measured: the time spent in the nine
designated sectors of the arena, the proportion of larvae
reaching the target, and the speed of each larva. As the insect
isolation trap connected to the OSA, insects entering the target
zone were not able to move out of this zone.

AChE extraction and assays

AChE was extracted from the head removed from anesthe-
tized adults of S. littoralis. For each sample, 5 heads were
weighted, and extraction buffer (10 mM NaCl and 40 mM
sodium phosphate pH 7.4 containing 1 % (w/v) Triton
X-100, 2 μg/mL antipain, leupeptin, and pepstatin A, 25
units/mL aprotinin, and 0.1 mg/mL soybean trypsin inhibitor
as protease inhibitors[1]) was added to obtain 10 % (w/v)
extract. Tissues were homogenized using a high-speed ho-
mogenizer Tissue Lyser II (Qiagen®), for 5 periods of 10 s
with oscillation frequencies of 30 Hz at 30 s intervals. This
procedure was performed twice with 10 min interval before
the extraction product was centrifuged for 20 min at 15,000g.
Supernatants were removed for analysis. All of the extraction
procedure and sample conservation were performed at 4 °C.
For each sample, AChE assay was performed in triplicate with
10 μl of enzyme extract. The final concentrations of the re-
agents in the reactionmediumwere 0.3 mMAcSCh.I, 1.5 mM
DTNB, and 100 mM sodium phosphate buffer at pH 7.0,
following the method of Ellman et al. (1961) modified by
Be l z u n c e s e t a l . ( 1 98 8 ) . AChE a c t i v i t y wa s
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spectrophotometrically measured at 412 nm for 15 min using
a TECAN infinite® F500 plate reader.

Statistical analyses

Lethal doses for 50 % of the population (LD50) were comput-
ed using probit analyses with an α risk of 0.05 (MINITAB
Inc., State College, PA, USA). Comparisons of behavioral
experiments were analyzed using a Kruskal–Wallis one-way
analysis of variance. For metabolic variations and AChE ac-
tivity, we performed a one-way ANOVA to compare the treat-
ments (i.e., the control group and the two treated groups) for
each pesticide. We used the ImPerm package in R 3.2 to com-
pute the p values through a permutation procedure, which
allows us to use ANOVAwithout the need of having normal
data (Venables and Ripley 2000). These statistical analyses
were conducted using Minitab™ 13 statistical software

(MINITAB Inc., State College, PA, USA), STATISTICA
(StatSoft Enterprise, USA), and R software.

Results

LD determination

The chlorpyrifos andmethomyl doses that yielded 50%mortality
in fourth larval instar S. littoralis following dorsal topical appli-
cation were 0.31±0.061 μg and 0.057±0.0053 μg, respectively.

Sublethal dose effects on hemolymphatic metabolite
concentrations

LD50
1/10 and LD50

1/100 of chlorpyrifos and methomyl
were used to determine their potential systemic effects

0

20

40

60

80

100

120

140

CH-CS

CH-C100

CH-C10

0

0.2

0.4

0.6

0.8

1

1.2

Adonitol Arabinose Arabitol Erythritol Fructose Galac�col Glycerate Glycerol Inositol Phosphoric
Acid

Ribose Sorbitol Xylitol

**

***

**

* *

*

**
***

**

*

**

nmol/μl hemolymph

Hexane (control)

Chlorpyrifos, LD50
1/100

Chlorpyrifos, LD50
1/10

* *

*

Fig. 1 Metabolite contents of hemolymph from chlorpyrifos-treated
S. littoralis fourth instar larvae. Twenty-four hours following dorsal
topical application of chlorpyrifos at LC50

1/10 and LC50
1/100, and

hemolymphs of four larvae were collected, pooled, and analyzed by
GC-MS. Metabolite contents (nmoles μL−1 of hemolymph) were
expressed as means±SE (N=10 replicates for each experimental

condition). Single asterisk indicates a significant difference (p<0.05)
between control and pesticide treated, double and triple asterisk
indicates more significant differences (p<0.01; p<0.0001, respectively).
Dotted squares highlight metabolites that present significant differences
between control and treated larvae and specific to chlorpyrifos treatment
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on larvae. Fifty-seven metabolites were quantified in the
hemolymph of the larvae 24 h after application of the two
pesticides (Tables S1, S2, S3) and compared to the corre-
sponding controls (Figs. 1 and 2). Among them, twenty-
seven metabolites were not detected or not quantified be-
cause they were under the threshold detection level
(Table S3). Compared to the controls, the levels of some
of the 30 quantifiable circulating metabolites were clearly
significantly altered by the pesticide applications (Figs. 1
and 2) and this with two different patterns. A first set of
metabolites was identified because their circulating level
was modified after treatment at LD50

1/10 and/or LD50
1/100,

whichever pesticide used (Figs. 1 and 2). This includes
significant increases in phosphoric acid, glycerate, gly-
cine, succinate, citrate, glucose, and trehalose in treated
larvae. The second group of metabolites presented alter-
ations specific to either methomyl or chlorpyrifos

application. Indeed, whereas chlorpyrifos exposure in-
duced significant circulating level changes for only three
polyols (i.e., xylitol, sorbitol, and glycerol-3-phosphate;
Fig. 1), methomyl exposure altered a larger number of
metabolites including several amino acids (i.e., valine,
leucine, isoleuscine, proline, serine), two sugars (i.e., ri-
bose and arabinose), one polyol (i.e., arabitol), and fuma-
rate, which is an intermediate of the citric acid cycle
(Fig. 2).

Effects of sublethal doses on the larval behavior

The proportion of time spent by the larvae in the different
pre-defined zones of the four-choice olfactometer arena was
calculated for each larva 24 h after application of the two
sublethal doses for both pesticide or of the corresponding
solvent for the controls (Figs. 3 and 4). Compared to the
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between control and pesticide treated, double and triple asterisk
indicates more significant differences (p<0.01; p<0.0001, respectively).
Dotted squares highlight metabolites that present significant differences
between control and treated larvae and specific to methomyl treatment
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control insects (Fig. 3a), chlorpyrifos at LD50
1/10 and

LD50
1/100 did not alter the larval odorant-induced behaviors

(Fig. 3b, c) since (i) the proportions of time spent in the
odorant zones (C0+Z0) were largely higher than and signif-
icantly different to the three other zones (C1+Z1, C2+Z2,
and C3+Z3), and (ii) the times spent in Z0 and C0 odorant
zones were similar for the control and the treated insects
(Fig. 3d). However, a different response was observed for
larvae exposed to methomyl at LD50

1/10 (Fig. 4). Indeed,
larvae exposed to this dose spent more time than the con-
trols in zones without odor stimulation (Fig 4c), whereas no
differences were observed for larvae exposed to LD50

1/100

(Fig. 4a, b). Moreover, LD50
1/10-treated larvae spent less

time in odorant (C0+Z0) zones compared both to the con-
trol and to the LD50

1/100-treated larvae (Fig 4d). As the lo-
comotor speed of larvae in all experimental conditions
showed no significant differences for both pesticides
(Figs. 3 and 4e), we can conclude that methomyl, at least
at the higher dose of LD50

1/10, disrupts the attraction of
treaded larvae by food odors, whereas chlorpyrifos at the
two chosen doses did not alter the attraction of larvae by
food odors.

Effects of sublethal doses on the AChE activity

AChE activity was determined in the head of larvae exposed
to the two sublethal doses of both pesticide or to the corre-
sponding solvent for the controls, 24 h after pesticide applica-
tions (Fig. 5). The results showed that larvae exposed to sub-
lethal doses of methomyl and chlorpyrifos have an AChE
activity similar to that of controls (no significant difference).

Discussion

Our results highlight for the first time the effects of sublethal
doses of methomyl and chlorpyrifos on S. littoralis larvae,
both at the systemic and behavioral levels. Few data were
available to date on the effect of these two insecticides on
species from the Spodoptera genus. Moreover, all these
studies were focused on lethal dose effects (Klein et al.
1982) and on resistance development. Resistance to chlor-
pyrifos has been shown in Salix exigua (Ishtiaq and Saleem
2011; Che et al. 2013), Spodoptera frugiperda (Carvalho
et al. 2013), Spodoptera litura (Huang et al. 2011), and
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S. littoralis (Miles and Lysandrou 2002). Resistance to
methomyl in S. exigua (Byrne and Toscano 2001),
S. frugiperda (Rios-Diez et al. 2011), S. litura (Tong et al.

2004; Saleem et al. 2008), and S. littoralis (Riskallah 1980)
was observed.

The toxicological approach we used allowed first the de-
termination of the median lethal doses which induced 50 % of
mortality (LD50) for the two molecules. Despite the lack of
previous toxicological data for chlorpyrifos and methomyl in
S. littoralis, the LD50 values we found here for both products
were consistent with those previously reported for the related
species S. exigua and Helicoverpa zea (Pérez et al. 2000).

We then observed a disruption inmetabolic homeostasis, as
depicted by hemolymphatic alterations of several metabolite
concentrations (Fig. 6). Chlorpyrifos exposure specifically in-
duced a decrease of two polyols (xylitol and sorbitol) and an
increase of glycerol-3-phosphate concentrations. Polyols and
more particularly xylitol and sorbitol are involved in the pen-
tose phosphate pathway (Kanfer et al. 1960; Bánhegyia et al.
1997; Jeffery and Jörnvall 1983). Glycerol-3-phosphate is in-
volved in glycolysis and triacylglycerol production (Alves-
Bezerra and Gondim 2012). Thus, our results highlighted that
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energy production was affected in S. littoralis after chlorpyr-
ifos sublethal dose exposure and suggested a shift between the
pentose phosphate pathways and pathways using glycerol-3-
phosphate as intermediates. The energetic alteration observed
here in S. littoralis is consistent with the reported effects of
chlorpyrifos in several other taxons, such as Caenorhabditis
elegans, Mytilus galloprovincialis, and Daphnia magna
(Jones et al. 2012; Vandenbrouck et al. 2010). In the freshwa-
ter carp, Cyprinus Carpio, a non-target vertebrate, chlorpyri-
fos exposure induced a significant increase in circulating
concentration of several metabolites involved in energy me-
tabolism, such as glucose (Kokushi et al. 2013). This augmen-
tation was associated with the need to provide energy by
gluconeogenesis after insecticide exposure in order to respond
to higher metabolic demands (Ramesh and Saravanan 2008).

Methomyl exposure at sublethal doses induced a signifi-
cant hemolymphatic concentration increase of several amino
acids (i.e., alanine, phenylalanine, Threonine, valine, leucine,
isoleucine, proline, and serine), two sugars (i.e., ribose and
arabinose), five polyols (i.e., arabitol, adonitol, glycerol, ino-
sitol, and glycerol-3-phosphate), and fumarate—an intermedi-
ate of the citric acid cycle. Interestingly, this kind of amino
acid increase has been previously reported with other carba-
mate insecticides, i.e., carbofuran, propoxur, and carbaryl. In
the earthwormMetaphire posthuma and in several model fish-
es exposed to carbofuran, this increase has been associated
with disruption of amino acid metabolism (Begum 2004;
Mudiam et al. 2013). In the rat, metabolomic profiling of

serum and urine after sublethal exposure to propoxur also
demonstrated an alteration of metabolites involved not only
in amino acid metabolism but also in energy (Liang et al.
2012a, b). In the earthworm Eisenia fetida, a decrease in phe-
nylalanine, tyrosine lysine, alanine, valine, and leucine has
been proposed as a potential metabolic response indicator to
carbaryl sublethal exposure, since no significant change in
metabolic profile was observed after exposure to sublethal
doses of chlorpyrifos (McKelvie et al. 2011). Our results in
S. littoralis are thus consistent with the literature available in
other taxons and confirm that these metabolic pathways can
be used as biomarkers of carbamate exposure.

Previous data and our current findings showed that disrup-
tion of energy production seems to be a common denominator
in the metabolic responses of all species exposed to methomyl
and chlorpyrifos, whatever the dose used. It is therefore not so
surprising to observe here variations of metabolites involved
in energetic pathways, as revealed by the increases in
glycerol-3-phosphate (glycolysis and triacylglycerol produc-
tion), glycerate (a glycolysis intermediate), citrate, and succi-
nate (citric acid cycle) and glucose levels. Modifications in
succinate and citrate levels can be due to a possible disruption
in function of the citrate synthase or of the succinate dehydro-
genase enzymes (Tripathi and Sharma 2005; Naqvi and
Vaishnavi 1993). The concomitant increase of glucose,
glycerate, and glycerol-3-phosphate highlighted a glycolysis
disruption probably also due to enzymatic dysfunction. Inter-
estingly, glycerol-3-phosphate appeared in bumblebee to be
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the optimal oxidative substrates for maintaining the high rates
of oxidative metabolism of the mitochondria (Syromyatnikov
et al. 2013).

We also observed an increase of phosphoric acid and tre-
halose concentrations after exposure to sublethal doses of
chlorpyrifos and methomyl. Phosphoric acid is crucial for nu-
merous cellular functions such as DNA and membrane lipid
synthesis, generation of high-energy phosphate esters, and
intracellular signaling. In Drosophila melanogaster, an in-
crease in hemolymphatic phosphate has been associated with
a reduction of life span and impaired functioning of Malpighi-
an tubules (Bergwitz et al. 2013). A metabolomic study in
earthworm has highlighted an increase of phosphoric acid
after exposure to carbofuran at sublethal dose (Mudiam et al.
2013). Although it is difficult to determine the role of this
metabolite in these contexts, it appeared to be a biomarker of
exposure to two pesticides. Trehalose levels, the prominent
Bblood sugar^ in most insect species (Thompson 2003), have
already been found to increase in Bombyx mori and S. litura
following exposure to sublethal doses of various pesticides
(Nath 2003; Etebari et al. 2007; Zhu et al. 2012), suggesting
that this sugar serves a protective role for proteins and cellular
membranes from inactivation and/or denaturation (Elbein
et al. 2003).

Few studies have been previously performed on the effect
of these two pesticides on insect behavior. For chlorpyrifos,
alterations of odorant-driven behaviors in the two parasitoid
species T. brassicae and L. heterotoma were already reported
but for higher doses (i.e., low lethal doses LD20 or LD0.1

(Desneux et al. 2007).Moreover, the impact of sublethal doses
of methomyl on such olfactory-driven behavior has not been
studied before. High doses of methomyl were only described
to have feeding cessation effects (Hannig et al. 2009). We
showed here evidence for disruption of larval behavior after
methomyl exposure, whereas no modification was observed
with chlorpyrifos. We can hypothesize that this behavioral
alteration could be due to a modification in the detection of
the odorant source at the peripheral olfactory level (i.e., the
antennae) and/or in the perception of the stimulus at the olfac-
tory central level (antennal lobes) and/or higher central ner-
vous system structures integrating chemical cues. Although
we do not have data on the toxicity of the two pesticides on
the AChE activity at the time of the pesticide exposure, our
results showed that 24 h after treatment, the AChE activity of
treated and control larvae is similar. Our data did not allow us
to establish if there is a reversibility of AChE inhibition or if
sublethal doses cannot induce AChE inhibition in our model.
But, at the time of the behavioral experiment, no cholinergic
poisoning by disruption of AChE was observed unlike other
studies (El Hassani et al. 2005; Benzidane et al. 2010; Paudyal
2008; Carr et al. 1995).

This behavioral disruption could also be due to an indirect
consequence of metabolic disruption. Indeed, blocking or

inhibiting neurotransmission can induce stress or/and meta-
bolic modulation in neuronal tissues or tissues under neuronal
control such as, for example, muscles. Bendahou and co-
workers highlighted, for example, biochemical effects of sub-
lethal doses of two neurotoxic pesticides (cypermethrin and
fenitrothion) in hemolymph, head, and thoracic muscles of
honeybees. Kokushi et al. (2013) correlated the high increase
of metabolic ammonia levels after exposure to high concen-
tration of chlorpyrifos to a severe convulsion inmuscle caused
by the inhibition of acetylcholinesterase activity. Moffat et al.
(2015) highlighted that the poor navigation and foraging ob-
served in bumblebee (Bombus terrestris) colonies following a
chronic exposure of neonicotinoid can be explained by a mi-
tochondrial dysfunction in the brain of these insects, which
may affect more globally the cellular metabolism. Although
the mechanisms are not well understood or studied, all these
results suggest that low or sublethal doses of neurotoxic pes-
ticides can probably disrupt the metabolism of many tissues
under AChE control including the nervous system itself.
However, since our metabolic profiling results were obtained
with hemolymph of larvae, it is difficult to determine the tis-
sue(s) responsible for this metabolic disruption.

As we have performed topical applications directly on lar-
val cuticle, both pesticides could have escape from midgut
detoxification processes, leading to the observed metabolic
disruption. But, interestingly, despite these two insecticides
sharing the same mode of action by inhibiting both AChE,
sublethal doses of chlorpyrifos did not induce any behavioral
disruption in our assay conditions. These specific responses
may not only be due to differences in the efficacy of these
substances, but may also be linked to the different detoxifica-
tion capacities of the insect toward these compounds, espe-
cially at the hemolymph–brain barrier level. As in vertebrates
and for other biological barriers (e.g., digestive epithelium),
this barrier provides xenobiotic chemoprotection (Mayer et al.
2009; Limmer et al. 2014) and involved specific detoxifica-
tion enzymes. We can hypothesize that the behavioral effects
observed here can be due to lower defense capabilities of this
hemolymph–brain barrier against methomyl compared to
chlorpyrifos.

The metabolic disruption and the info-disruption of the
chemical communication that we reported here in a model pest
moth participate to a better understanding of the subtle effects
of environmentally relevant sublethal pesticide concentrations
on a target species. Further studies could allow to test if the
effects observed here were observable in field conditions and
to validate the metabolic markers identified here in an inte-
grated pest management or ecotoxicological context.
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