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We report ellipsometric measurement on single walled carbon nanotube (SWCNT) films

performed in a large spectral range from 0.07eV to 4.97eV. The complex dielectric functions

of SWCNTs are correlated to their diameter distribution extracted from transmission electron

microscopy.  Here  we  show  that  the  transition  energies  between  Van  Hove  singularities  are

directly related to the strong one dimensional confinement. In the infrared spectral range, the

real part of the dielectric function becomes negative. The electronic properties of SWCNTs

are extracted from ellipsometry by using a Drude model. The mobility and the mean free path

of charge carriers are limited by the high number of SWCNT contacts. In accordance with

tight binding simulation, the conductivity and the charge carrier concentration increase with

the  SWCNT  diameter.  Finally,  we  demonstrate  that  the -plasmon energy depends on the

charge carrier concentration.
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1. Introduction

Single walled carbon nanotube (SWCNT) is a one dimensional material which has remarkable

optical and electronic properties. Indeed, depending on its chirality, a SWCNT can be metallic

or semiconductor. Moreover, semiconducting SWCNTs (SC-SWCNTs) have direct-bandgap,

so  they  can  be  used  to  emit  and  detect  light.  These  properties  make  SWCNT  an  ideal

candidate for new optoelectronic devices such as transparent conductive electrodes[1], high-

bit-rate all-optical signal regenerator[2], high-repetition mode-locked laser[3] or

bolometer[4]. However, the development and the optimization of such devices suffer to the

lack  of  experimental  reports  on  the  optoelectronic  properties  of  SWCNT  film  which  are

currently extracted from transport measurements. However, this technique requires electrical

contacts and known current paths, which exclude the estimation of the intrinsic electronic

properties of SWCNT assembled into percolated film in which Schottky barrier at the contacts

are unambiguously observed[5-6].

Ellipsometry is a non contact characterisation tool which allows determining the complex

dielectric function of material. The dielectric function contains several insights on the

optoelectronic properties of materials such as the optical band gap or the electronic

conductivity. Thus, the dielectric function is crucial to design optoelectronic devices.

Simulations based on ab-initio calculation[7] or tight binding approximation[8] show a strong

dependence between the dielectric function and the chirality of SWCNTs. Ellipsometry was

previously used to determine the chirality distribution and the porosity of SWCNT films[9].

Using an effective medium approximation to analyse ellipsometric data, Fanchini et al.[10]

claimed that for high SWCNT density, SWCNT film exhibits a metallic behaviour suggesting

that the percolation threshold can be estimated by analysing the Drude contribution to the

SWCNT dielectric function.  In the particular case of oriented SWCNTs, ellipsometry have
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revealed that the optical anisotropy is related to anisotropic selection rule conditions[11]. The

optoelectronic properties of boron doped SWCNT was investigated by combining

ellipsometric and transport measurements[12]. In this reference, the authors claimed that

boron functionalization shifts the Fermi level and induces an acceptor states in the density of

state (DOS) of SWCNT. On the other hand, ellipsometric measurements performed on sorted

SWCNTs have  shown that  the  energy  of  the -plasmon band depends on the ratio between

SC-SWCNTs and metallic SWCNTs (M-SWCNTs)[13]. Despite several advances that have

been made to measure the dielectric function of SWCNT, the correlation between the

SWCNT diameter and the dielectric function is still under debate.

This paper focuses on the ellipsometric measurements of the complex dielectric function of

SWCNT films in a large spectral range from 0.07eV to 4.97eV. The influence of SWCNT

diameter on the optical transitions and -plasmon band is highlighted. Due to one dimensional

confinement, we report a large dependence between the optical transition and the diameter.

By adjusting the infrared part of dielectric function by a Drude model, the electronic DC

conductivity of SWCNT film, charge carrier concentration, mean free path and mobility are

estimated. The variation of charge carrier concentration is compared to the simulated one

from tight binding calculation. We demonstrate that the mean free path of charge carrier is

limited by the large number of contacts between SWCNTs. Finally, we highlight a direct

correlation between charge carrier density and the -plasmon energy of SWCNTs.

2. Experimental

2.1 Dispersion of SWCNTs:

Electrical arc discharge (EAD), high-pressure carbon monoxide (HiPCo), raw cobalt

molybdenum catalyser (CoMoCat) SWCNTs and SWCNTs enriched in (6,5) chirality,
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purchased from Carbon Solution inc., Unidym and SouthWest Nanotechnologies,

respectively, are investigated. 4 mg/ml of SWCNT aqueous suspension was prepared by

mixing in water, SWCNTs with 2%wt of sodium cholate. The suspension was sonicated

during 90 min with an ultrasonic tip. The temperature of the suspension was fixed at 5°C with

a thermostatic bath. The suspension was ultra-centrifuged at 35000 rpm during 1h to separate

non-dispersed carbon nanotubes from the well separated ones. The supernatant was then

extracted.

2.2 (6,5) SWCNT chirality enrichment:

SWCNTs with a nearly single (6,5) chirality are sorted by density gradient ultracentrifugation

from CoMoCat SWCNTs [14-15]. Briefly a non-linear density gradient was made by

juxtaposing 9 layers in an ultracentrifugation column. The layers consist in 0%, 15%, 17.5%,

20% 22.5%, 25%, 27.5%, 30% and 60% of iodixanol dissolved in water. These layers also

contain  0.8%wt  of  sodium  cholate.  Then,  a  solution  of  CoMoCat  SWCNTs  with  25%  of

iodixanol and 0.8%wt of sodium cholate was introduced in the nonlinear density gradient. The

gradient was then centrifuged during 14h at 35000 rpm. The SWCNT micelles must move

down through the density gradient column during the ultracentrifugation in order to reach

their isopycnic points. A pink layer enriched in (6,5) SWCNT was observed at the top of the

gradient. This layer was extracted with the gradient master device (Biocomp).

2.3 SWCNT film preparation and characterization

SWCNTs are deposited on nitrocellulose filter with 0.22µm pore size by filtering the SWCNT

suspension with a Buchner filtration set up. The volume of the SWCNT suspension was

adjusted to obtain a completely black and opaque thick film. The film was then washed
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thoroughly to remove the surfactant. Note that contrary to reference [11], the SWCNT films

are not transferred on a silicon substrate and nitrocellulose filter is used as substrate.

Electrical measurements are recorded at room temperature with an ECOPIA HMS-5500 set

up. Briefly, four point probe measurements are performed in the Van der Paw geometry. The

film resistivity is obtained by applying a current of 0.1 mA which flows along one edge of the

sample and by measuring the voltage across the opposite edge. This set up can also be used to

perform Hall measurements. A 0.51T magnetic field is created perpendicularly to the film

surface. A current is applied along two opposite edges of the sample and a voltage induced by

the magnetic field is recorded between the other edges. This allows estimating the Hall

coefficient of the film. The carrier density and mobility are deduced from the film resistivity

and Hall coefficient. Note that the SWCNTs are assumed to be p-doped by air.

Transmission electron microscopy (TEM) investigations were performed with a Technai

CM20 electron microscope operating at 200 kV. The TEM grids were prepared by depositing

a drop of SWCNT suspension on a copper grid. Scanning electron microscopy (SEM) was

performed with a field emission gun scanning electron microscope Zeiss Gemini operating at

15 kV. The optical properties of SWCNT film are investigated by spectroscopic ellipsometry.

A home built rotating polariser ellipsometer and a photoelastic ellipsometer (Horiba Jobin

Yvon) were used to cover a large spectral range from 0.07eV to 4.97eV. The ellipsometric

measurements were performed at three angles of incidence (50°, 60°, 70°).

3. Results and discussion

3.1 SWCNT diameter distribution

Figure 1 depicts the diameter distributions of SWCNT extracted from a statistical analysis

based  on  transmission  electron  microscopy  (TEM)  of  more  than  50  SWCNTs.  Due  to  Van
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Der Waals interactions, SWCNTs are assembled into bundles. The SWCNT diameters follow

a Gaussian distribution. The mean radius of (6,5), CoMoCat, HiPCo and EAD SWCNTs are

0.75nm 0.08 nm, 0.75 nm 0.08 nm, 0.95nm 0.09 nm and 1.3 nm 0.12 nm, respectively

(Fig.1). Due to the limited TEM resolution few diameter differences are observed between

(6,5) and CoMoCat SWCNTs.

Fig. 1- Diameter distribution of (a) (6,5) enriched, (b) CoMoCat, (c) HiPCo and (d) EAD

SWCNTs extracted from TEM images (in inset).
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3.2 Ellipsometric data analysis

Ellipsometric measurements were performed in the 0.07eV to 4.97eV spectral range on dense

SWCNT films. Depending on the SWCNT film, the film thickness, estimated from

mechanical profilometry, is in the 500nm-800nm range. These films are sufficiently thick,

absorbent and reflective to be considered as an isotropic semi-infinite medium for the

ellipsometric data analysis. In this context, the effective dielectric constant  of SWCNT films

can be analytically derived from the measured ellipsometric angles  and  not shown[16]

2

2 tan
tan1

tan1
1sin

j

j

e

e
, (1)

where  is the angle of incidence. In other words, the effective dielectric function of SWCNTs

(Fig.2) can be extracted from ellipsometric measurements by using equation (1) without

fitting. Measurements performed at three angles of incidence (50°, 60°, 70°) reveal that the

dielectric function does not depends on the angle of incidence (not shown). This

unambiguously suggests that the surface roughness is sufficiently small to be neglected,

confirming the correctness of our ellipsometric model.
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Fig. 2- Real (red line) and imaginary (green line) parts of dielectric function of (a) (6,5)

enriched, (b) CoMoCat, (c) HiPCo and (d) EAD SWCNTs. The Drude adjustment in the

infrared spectral range is represented in black dash lines.

3.3 Visible-near infrared optical properties of SWCNTs

Several bands are observed from 0.40 eV to 3.20 eV in the i spectra. These bands are

associated to the transitions between the Van Hove singularities (VHS) in the SWCNT DOS

induced by the one-dimensional nature of SWCNT. These bands are assigned to specific

transitions between VHS according to references [17-22]. Indeed, the S11, S22, M11, S33 bands

of EAD SWCNTs are in the 0.5-1eV[18], 1-1.5eV[19], 1.5-2.1eV[19] and 2.1-2.9eV[19]

spectral ranges, respectively. The S11,  S22,  M11,  bands  of  HiPCo  SWCNTs  are  in  the  0.6-

1.4eV[18], 1.4-2.6eV[19] and 2.6-3.5eV spectral ranges, respectively. The S11,  S22,  M11,
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bands of CoMoCat SWCNTs are located in the 0.6-1.5eV[20], 1.5-2.5eV[20] and 2.6-3.1eV

[20] spectral ranges, respectively. The transition energies associated to (6,5) SWCNTs are

given by Bachilo [17]. According to Knupfer et al. [21] and Lauret et al. [22], the band

located above 3.5 eV is the -plasmon band of SWCNTs.

In  agreement  with  the  Kramers-Kronig  relation,  large  variations  of r appear close to these

transitions. The CoMoCat and HiPco SWCNT spectra are more structured than the EAD one.

These substructures are the optical signature of individual chiralities present in the film. Due

to their large diameter, EAD SWCNT has broad chirality distribution. This induces an

inhomogeneous broadening of the absorption bands.

Transitions between the first (S11) and second (S22) pairs of VHS of SC-SWCNTs appear in all

SWCNT  spectra  while  the  transition  between  their  third  VHS  (S33)  is  only  observed  in  the

EAD  spectra.  In  the  other  hand,  the  amplitude  of  the  band  associated  to  the  transitions

between the first pair (M11) of VHS of M-SWCNTs is reduced as the SWCNT mean diameter

decreases and completely disappears for sorted SWCNTs. Indeed, CoMoCat SWCNTs

contain few metallic species[9]. Moreover, the dielectric function of sorted SWCNTs is

dominated by two wide bands located at 1.23 eV and 2.15 eV attributed to the S11 and S22

transitions of (6,5) SC-SWCNTs[17], respectively, confirming the high (6,5) chirality

enrichment. As shown in Figure 2, the transition energies depend on the SWCNT source. As

example, the S11 transition is centered at 1.23 eV, 1.11 eV, 0.99 eV and 0.67 eV for (6,5)

enriched, CoMoCat, HiPco, and arc discharge SWCNTs. By neglecting excitonic effects,

these energies can be considered as the optical band gap of SC-SWCNTs[23]. The measured

transitions energies are reported in a Kataura plot (Fig.3) and are compared to the calculated

ones from tight binding approximation[24]. Experimental data are in close agreement with the

calculated ones. Small deviations with theoretical value can be attributed to the perturbations
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by the environment and excitonic effects. In agreement with tight binding and zone-folding

calculations[25], the measured energies ESii and EM11 are inversely proportional to the SWCNT

diameter d:

d

ia
E cc

Sii

02
, (2)

d

a
E cc

M
06

11
, (3)

where  ac-c and 0 are the carbon bond length and the transfer integral parameter used to

describe the optoelectronic properties of SWCNTs, respectively. Thus, by fitting

simultaneously all experimental transition energies by equations (2-3), the transfer integral

can be estimated to 2.8 eV 0.1 eV. This value is in close agreement with the reported one by

Dresselhaus et al.[25].  Thus,  the  redshift  of  the  transition  energies  is  due  to  the  strong  one

dimensional confinement induced by the periodic boundary conditions that result from

wrapping the graphene sheet into a tubular structure.
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Fig. 3- Comparison between the Kataura plot of experimental data (filled symbol), their

fitting from equation (2-3) (black line) and the calculated values from the tight binding

approximation[24] (empty symbol).

3.4 Electronic properties of SWCNTs:

In the 0.07eV-0.40eV range, the real part of the dielectric function become more and more

negative while the imaginary parts abruptly increases as the photon energy decreases. This

metallic behaviour was previously observed[26] and involves the free charge carrier motion in

the SWCNT network. Note that SC-SWCNTs are known to be p-type in air[15]. Several

works have previously reported the presence of an absorption band at 17meV [18,26-28]. This

band was attributed to the bandgap of M-SWCNTs induced by curvature effect. However, due

to our limited spectral range, this band cannot be observed in Figure 2.  As shown in figure 2,
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the SWCNT dielectric function in the infrared spectral range can be modelled by a Drude

dispersion law[10, 26]:

i

p

2

, (4)

where  and  are the effective dielectric function of the SWCNT film and the photon energy,

respectively. Three parameters are adjusted , p et  which correspond to the dielectric

function at high energy, the plasma energy and the damping constant of free charge carrier.

To give more insights on the electronic properties of SWCNT films, the free charge carrier

concentration n and the conductivity of SWCNT film calculated from equations (5) and (6)

are represented in Fig.4a.

2
0 p , (5)

2

2
0

e

m
n

p . (6)

e and 0 are the elementary charge and vacuum permittivity. The effective mass m of charge

carriers in carbon nanotubes is 0.9*10-31kg [29]. The conductivity obtained from ellipsometry

is compared to DC conductivity estimated from Van Der Paw electrical measurements (Figure

4a). Despite a limited ellipsometric spectral range, the film conductivity values obtain from

ellipsometric measurements deviates by less than 6% from the estimated ones from Van Der

Pauw electrical measurements confirming correctness of the ellipsometric data analysis. In

other words, the additional low frequency band reported in references[18,26-28] at 17 meV

has a negligible effect on the DC conductivity. By considering that SWCNTs are p-doped in

air[15], the free charge carrier concentration can be assimilated to the hole concentration. The

hole concentration and the film conductivity increase with the SWCNT diameter (Fig.4a). The

charge carrier density of SWCNTs is close to the charge carrier density of graphite [30].

Despite CoMoCat and (6,5) SWCNTs have similar diameter, their charge carrier

concentration and conductivity differ. Indeed, the number of M-SWCNTs and so the

concentration in free charge carriers is smaller in (6,5) SWCNTs. By considering the
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approach introduced by Marulada et al.[29,31], the hole carrier concentration of SWCNTs is

defined by:

fE

dEEfED
dhd

n 1
25.0

1
22

, (7)

where f(E) is the Fermi Dirac distribution, h the effective wall thickness of SWCNTs equals

to 0.617 Å and d the SWCNT diameter. The DOS (D(E)) of SWCNTs is given by[27,31]:

bandsall

i

i

cc

Eg
a

ED )(
3

8

0

, (8) with

ic

ic

ic

ic

i

EEsi

Esi

EEsi
EE

E

Eg

,

,

,2
,

2

0

01 . (9)

Ec,i is the minimum energy value of the ith conduction band. By considering a rigid band

model whereby doping shifts the Fermi level without affecting the band structure, this

approach can also be used to compute the charge carrier density of doped SWCNTs by air.

Thus, simulations have been made for undoped and p-doped carbon nanotubes by assuming

the Fermi level in the mid-gap of SWCNTs and shifted by Eg(6,5)/2~0.3eV toward the valence

band[32-33], respectively. Although no accurate value of the Fermi level shift has been found

in the literature, simulations performed in Figure 4b give qualitative information used to

highlight the electronic properties of SWCNTs.
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Fig. 4- (a) Variation of the DC conductivity and charge carrier density measured by

ellipsometry, with the SWCNT diameter (filled symbol). The DC conductivity extracted

from Van Der Pauw measurements is also reported (empty symbol). (b) Theoretical

charge carrier density of doped (| Ef|=0.3eV, empty symbol) and undoped (| Ef|=0 eV,

filled symbol) M-SWCNTs and SC-SWCNT. (c) Charge carrier mobility and mean free

path versus the SWCNT diameter. In inset, a typical SEM image of the SWCNT surface.

In accordance with Marulada et al.[29,31], simulations presented in the Figure 4b show that

the charge carrier concentration increases by three orders of magnitude for SC-SWCNTs

while it slightly decreases for M-SWCNTs as the diameter increases. Due to the higher DOS

of M-SWCNTs close to the Fermi energy, the charge carrier concentration in SC-SWCNTs is

smaller than the metallic one. Since M-SCWNT has constant DOS near the Fermi level, the

Fermi level shift induced by doping has little effect on the charge carrier concentration. On

the contrary, doped SC-SWCNTs have a higher charge carrier concentration than undoped

SC-SWCNTs. Thus, air doping may induce a drastic increase of the concentration of the SC-

SWCNT hole charge carriers. The charge carrier concentration estimated from ellipsometry is

smaller than the calculated charge carrier concentration of M-SWCNTs but slightly higher

than the doped SC-SWCNT one. Indeed, the films are composed of a mixture of both kinds of

SWCNTs.  As  the  optical  M11 band of M-SWCNTs is more and more pronounced as the
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SWCNT mean diameter increases, we can conclude that the variations of the measured charge

carrier concentration and so the DC conductivity can be attributed to the increase of both, the

charge carrier concentration in doped SC-SWCNTs and the M-SWCNT concentration.

By considering that all holes which participate to the conduction have an energy close to the

Fermi energy, the hole carrier mobility µ and mean free path lf are both related to the damping

constant:

m

e
(10) and f

f

v
l (11)

where vf =8.8*105 m.s-1 is the Fermi velocity[29]. Figure 4c shows that the variations of hole

mobility µ and mean free path as a function of nanotubes diameter are similar. Large

dispersion of mobility around the 75 cm2V-1s-1 value is observed. The mobility is smaller than

the measured one on individual nanotubes[34]. Despite a micrometer length ballistic transport

was reported for individual SWCNT[35], the mean free path of charge carrier is in the

nanometer scale. The hole mobility and mean free path are both related to the scattering

events and potential barriers that occur in the conduction channel. As shown by scanning

electron microscopy (inset of figure 4c), the films are composed of highly entangled

SWCNTs. Schottky barrier between M-SWCNTs and SC-SWCNTs drastically reduces the

mean free path of carriers. In addition, potential barriers are also present at the junction of two

M-SWCNTs  or  two  SC-SWCNTs.  In  other  words,  the  small  mean  free  path  and  mobility

values come from the large number of SWCNT-SWCNT contacts in the film.
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3.5 Diameter dependence of the -plasmon band

The broad band observed in the 3.95-4.50eV range (Fig.2) is attributed to the -plasmon

resonance induced by the collective oscillation of -electrons polarised along the tube axis

which arises from the electronic transitions near the M-point of the Brillouin zone. In contrast

with transitions between VHS, the position of the -plasmon band is blueshifted from 3.95eV

to 4.50eV as the nanotubes diameter increase. In accordance with our results, a blueshift of

the -plasmon band as the SWCNT diameter increases, was reported in recent ab-initio

calculations which take into account local field effects[36]. As reported by Park et al.[13], the

-plasmon band energy depends on the concentration ratio between M-SWCNTs and SC-

SWCNTs i.e. the charge carrier concentration. Moreover, a large blue shift of the -plasmon

band accompanied by an increase of SWCNT film reflectivity was reported for hydrogenated

or fluorinated SWCNT[37]. Hydrogenation and fluorination are known to dope SWCNTs. In

other words, the variation of -plasmon band energy depends on the number of transferred

charges. By assuming that all free charge carriers contribute to the collective surface

oscillation of the  electrons, a quadratic relation, derived from free electron gas model[38],

can be found after some calculations between the -plasmon energy ( ) and the charge

carrier concentration:

n
m

e

0

2
2
0

2

2
, (12)

The first term of equation (12) is associated to the – * interband oscillator energy 0, while

the second term represents the surface plasmon energy of  electrons. Note that due to the

expansion  of  the  wave  function  of -electrons over the SWCNT diameter, SWCNTs are

considered, in first approximation, as a solid cylinder[38]. In agreement with equation (12), a

linear behaviour is obtained between 2  and n (Fig.5), confirming the correlation between
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free charge carriers and the -plasmon band energy. Note that the slope corresponds to the

calculated one from equation (12). The – * interband oscillator  energy  is  estimated  at  3.7

0.1  eV.  Thus,  we  can  conclude  that  the  blue  shift  of  the -plasmon band, observed by

increasing the SWCNT diameter, is attributed to the increase of the free charge carrier

concentration.

Fig. 5- Square of the -plasmon energy versus the charge carrier density.

5. Conclusion

In summary, we have highlighted the dependences between the diameter distribution and the

complex  dielectric  functions  of  SWCNTs.  Due  to  the  strong  one  dimensional  confinement,

the energy of optical interband transition between VHS is redshifted when the diameter

increases. The DC electronic properties of SWCNT are evaluated by analysing the infrared

part of the dielectric function by a Drude model. The mean free path of charge carrier is

drastically reduced by the large number of SWCNT contact. Finally, we have demonstrated

that the position of the -plasmon band is correlated to the concentration of charge carrier.
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