Michael Capron 
  
Jérémy Bourgalais 
  
Ranjith Kumar 
  
Abhinavam Kailasanathan 
  
David L Osborn 
  
Sébastien D Le Picard 
email: sebastien.le-picard@univ-rennes1.fr
  
Fabien Goulay 
email: fabien.goulay@mail.wvu.edu
  
Flow tube studies of the C( 3 P) reactions with ethylene and propylene

Product detection studies of C( 3 P) atom reactions with ethylene, C 2 H 4 (X 1 A g ) and propylene, C 3 H 6 (X 1 A') are carried out in a flow tube reactor at 332 K and 4 torr (553.3 Pa) under multiple collision conditions.

Ground state carbon atoms are generated by 193-nm laser photolysis of carbon suboxide, C 3 O 2 in a buffer of helium. Thermalized reaction products are detected using tunable VUV photoionization and time of flight mass spectrometry. For C( 3 P) + ethylene, propargyl (C 3 H 3 ) is detected as the only molecular product in agreement with previous studies on this reaction. The temporal profiles of the detected ions are used to discriminate C( 3 P) reaction products from side reaction products. For C( 3 P) + propylene, two reaction channels are identified through the detection of methyl (CH 3 ) and propargyl (C 3 H 3 ) radicals for the first channel and C 4 H 5 for the second one. Franck-Condon Factor simulations are employed to infer the C 4 H 5isomer distribution. The measured 1:4 ratio for the i-C 4 H 5 isomer relative to the methylpropargyl isomers is similar to the C 4 H 5 isomer distribution observed in low-pressure flames and differs from crossed molecular beams data. The accuracy of these isomer distributions is discussed in view of large uncertainties on the photoionization spectra of the pure C 4 H 5 isomers.

Introduction

The chemistry of carbon atoms is involved in a wide variety of environments, from combustion reactors to astrophysical objects. Atomic carbon, the fourth most abundant element in the Universe, is ubiquitous in the interstellar medium and has been observed in various astronomical objects. [1][2][3] In combustion flames, although their detection is experimentally very challenging, 4 their reaction was proposed to be responsible for C 2 formation and chemiluminescence. 5 Carbon atoms have been detected in discharge plasmas, 6 chemical vapor deposition processes, 7 and are also abundant in thermal plasmas. 8 In all these environments the reactions of carbon atoms with small hydrocarbons are believed to initiate complex radical chemical schemes leading to the formation of larger molecules. 6,9 Reactions of ground-state atomic carbon C( 3 P) with unsaturated hydrocarbons and free radicals are therefore important in order to better understand and predict the growth of carbon containing molecules, including the formation of polycyclic aromatic hydrocarbons (PAHs).

Pioneering kinetic measurements performed by Husain and Haider 10,11 demonstrated that C( 3 P) reactions with hydrocarbons are very fast at room temperature. Very low temperature kinetic experiments (down to 20 K) also showed that these reactions remain rapid at low collision energies, indicating the absence of a barrier in the entrance channel. [12][13][14] Even in cold environments such as interstellar clouds or planetary atmospheres, C( 3 P) atoms will significantly contribute to the chemistry by fast barrierless reactions with the abundant hydrocarbons. 12,15 Reactions of ground state carbon atoms with small hydrocarbons are predicted to proceed by addition of the carbon atom onto carbon double or triple bonds to form an energy-rich reaction adduct. 15 Large uncertainties still remain regarding the fate of the so-formed intermediate. One of the proposed exit channels used in chemical models is the loss of a hydrogen atom to form larger open-shell hydrocarbons.

The overall reaction can be written as C + C n H m  C n+1 H m-1 + H. H-atom branching ratios for C( 3 P) reactions with unsaturated hydrocarbons have been studied by Bergeat and Loison. 16,17 In most cases, the H-loss accounts for no more than half of the reaction products. This result may be explained by competitive C-H and C-C cleavage as well as by the transition of the reaction intermediate from the triplet surface to the singlet surface by intersystem crossing (ISC). 18 The accuracy of the models reproducing the chemistry of carbon-rich environments strongly depends on the identification of all the reaction products.

In addition to H-atom detection in flow reactors, 16,17 crossed molecular-beams experiments combined with theoretical calculations have been widely used to investigate the dynamics of carbon atoms with a variety of hydrocarbons. The product formation of the reaction C( 3 P) + ethylene (C 2 H 4 ) was successively studied by R. Kaiser and co-workers at 7.1 and 38.1 kJ mol -1 collision energies, 19 by M.

Costes, P. Casavecchia and co-workers at collision energies ranging from 0.49 to 30.8 kJ mol -1 14 and more recently by S.-H. Lee and co-workers at 14.6 kJ mol -1 . 20 In these crossed beams experiments the products are detected by laser induced fluorescence of H-atoms, 14 or quadrupole mass spectrometry coupled to electron impact ionization 14,19 or synchrotron radiation photoionization. 20 Ab initio calculations by Mebel and co-workers 21 indicate that the C( 3 P) + C 2 H 4 reaction proceeds without an entrance barrier, as confirmed by the low temperature experimental kinetic study of Chastaing et al. 12 Theoretical investigations of the C 3 H 4 potential energy surface have shown the presence of many minima on the potential energy surface leading to various isomers with a large number of energetically allowed dissociation routes. 22,23 Mebel and co-workers performed Rice-Ramsperger-Kassel-Marcus (RRKM) calculations for collision energies lower than 38.5 kJ mol -1 resulting in branching ratios of 98-99% for the H 2 CCCH + H channel, 1-2% for the CH 2 + C 2 H 2 channel, and negligible contributions from other channels. 22 These single collision branching ratios are consistent with the kinetic study of Bergeat et al. 16 performed at room temperature (ca. 4 kJ mol -1 ) and 2 Torr in a flow reactor showing an absolute Hbranching ratio of 0.92 ± 0.04 under multiple collision conditions. The works of Kaiser and co-workers and Casavecchia and co-workers also led to the conclusion that C 3 H 3 (propargyl) + H was the main channel of the C( 3 P) + C 2 H 4 reaction. However, at collision energies greater than 6 kJ mol -1 , Casavecchia and co-workers claimed the presence of at least one other H-atom elimination channel forming a less stable C 3 H 3 isomer(s). In the most recent study, Chin et al. 20 investigated the velocity distribution of C 3 H 3 radicals produced by the C( 3 P) + C 2 H 4 reaction, at 14.6 kJ mol -1 collision energy, using two different photoionization energies: 9.5 and 11.6 eV. For both ionization energies, the time of flight remains unchanged, indicating that only one isomer contributed to the C 3 H 3 isomer channel, which was identified as propargyl (H 2 CCCH) based on its photoionization spectrum.

The product formation of the C( 3 P) + propylene (C 3 H 6 ) reaction was first studied by Kaiser and coworkers 24 who recorded product angular and velocity distributions of C 4 H 5 radical at m/z=53 at average collision energies of 23.3 and 45.0 kJ mol -1 . Similar to the C( 3 P) + ethylene reaction, low temperature experimental kinetic studies 25 and ab initio calculations performed by Mebel and co-workers 21 demonstrated that the carbon atom is likely to add to the -orbitals of propylene without an entrance barrier. More recently, Lee and co-workers 26 identified C 4 H 5 + H, C 4 H 4 + 2H and C 3 H 3 + CH 3 as exit channels in C( 3 P) + propylene in their crossed molecular beams experiment coupled to synchrotron radiation mass spectrometry. Quantum calculations were used to calculate the C 4 H 6 potential energy surface and infer the most likely reaction mechanisms. 21,[24][25][26] The accepted mechanism is the addition of the triplet carbon onto the reactant double bond to form a cyclic intermediate with no activation energy.

The reaction adduct then isomerizes via ring opening to give the triplet Zand E-CH 3 CHCCH 2 stereoisomers. 24,26 These triplet C 4 H 6 adducts are found to isomerize through H-atom transfer and to decompose through H-loss to form H 2 CCCHCH 2 (i-C 4 H 5 ), HCCCHCH 3 and H 2 CCCCH 3 , two methylpropargyl isomers. The CH 3 + C 3 H 3 (propargyl) channel is also found to be energetically accessible. All the transition states are found to be below the energy of the reactants.

RRKM calculations on these surfaces predict branching ratios for HCCCHCH 3 /H 2 CCCCH 3 /i-C 4 H 5 + H and H 2 CCCH + CH 3 of 7:5:10:78 respectively at 17 kJ mol -1 , while experimental evaluations based on ionization efficiencies give a ratio of 17:8:75 for the C 4 H 5 (sum of all isomers):C 4 H 4 :C 3 H 3 products. 26 The same authors used photoionization spectroscopy of C 4 H 5 (m/z=53) at photon energies ranging from 7 to 12 eV to assign HCCCHCH 3 , H 2 CCCCH 3 and i-C 4 H 5 as the main formed isomers at 16 kJ mol -1 collision energy. They determined the yield of the sum of the HCCCHCH 3 and H 2 CCCCH 3 relatively to the i-C 4 H 5 contributions to be 1.4 by fitting calculated photoionization spectra to the experimental data assuming all isomers have identical photoionization cross sections.

A better understanding of the role of C( 3 P) chemistry in interstellar chemistry, combustion and plasma environments requires probing its reaction mechanisms with hydrocarbons over a very wide range of experimental conditions, including multiple collision environments. In this study, we present the detection of the products formed by the reactions of carbon atoms with ethylene and propylene under multiple collision conditions at 332 K and 4 Torr and compare the results to recent crossed molecularbeams data. Flow tube and crossed beams experiments differ significantly by the energy range and the collisional conditions. Crossed beam experiments look at the formation and dissociation of reaction intermediates following a single collision of the reactants with no effect from the surrounding environment. In flow tube experiments the large number of collisions leads to the thermalization of the products to the temperature of the flow and may induce, in some cases, stabilization of reaction adducts and intermediates. Flow tube experiments have been applied to a wide variety of reactions, and are complementary to crossed molecular beam experiments; each approach has its advantages and disadvantages. For example, crossed beam experiments can be quite sensitive to heavy/light product channels (when probing the heavy product that is confined to a small Newton sphere), but much less sensitive to highly exothermic bimolecular channels with more even mass pairs. This bias doesn't exist in a collisional experiment. Angular distributions can be easily extracted from crossed molecular beam experiments, and generally not possible to extract from collisional environments. Photoionization spectra are less often acquired in crossed beam environments because the signal levels can make this challenging, whereas such spectra for identifying isomers are routine in flow tube experiments. Numerous studies have been performed using flow tube [27][28][29][30][31][32] and crossed molecular beams, 14,[33][34][35][36][37][38] the combination of which has provided very valuable information for the understanding of the chemistry of gas phase environments ranging from the interstellar medium to combustion flames. However, it is important to note that flow tube experiments are able to provide information about bimolecular processes only if one can discriminate between primary and secondary processes as well as demonstrate that the relevant products are formed by the studied reactions. Previous studies for highly reactive radicals (C 2 H, CH, CN) have demonstrated that the time-, mass-, and energy-resolved detection of the products makes such identification possible. 27,28,[39][40][41][42][43] Goulay et al. 39 have demonstrated that multiplex photoionization mass spectrometry can directly rule out multiple collision effects when they do not happen.

In the present study, carbon atoms are created from photodissociation of carbon suboxide, C 3 O 2 , at 193 nm, and are shown to be formed essentially in their ground electronic state, C( 3 P), eliminating the effect of C( 1 D) reactions. The products of both reactions are detected using time-resolved mass spectrometry combined with synchrotron photoionization spectroscopy. The effect of secondary reactions and pressure on the product distribution is discussed as well as the relevance of the experimental data for carbon-rich gas phase environments.

Experimental section

The reactions are performed in a slow flow reactor coupled to a time-resolved photoionization time of fight mass spectrometer at the Advanced Light Source (ALS) synchrotron at the Lawrence Berkeley National Laboratory. A description of the apparatus has been given elsewhere 32,44 and only a brief overview is presented here. The flow tube is a 62-cm long quartz tube with 1.05 cm inner diameter. The gas pressure within the reaction tube is typically 4 Torr (533.3 Pa) with a total gas flow of 250 sccm (standard cubic centimetres per second). All the experiments are performed at 332 K corresponding to a gas flow velocity of 11 m s -1 and total number density of 1.1610 17 cm -3 . The helium buffer gas, carbon atom precursor (C 3 O 2 , 1.4010 14 cm -3 ) and reaction gases (ethylene, 2.5510 14 cm -3 , and propylene 2.3210 14 cm -3 ) are supplied to the reaction flow via separate mass-flow controllers. The pressure within the reaction flow-tube is maintained constant using a butterfly valve that throttles a roots pump. Carbon atom reactions are initiated by 193 nm photolysis of carbon suboxide, C 3 O 2 , using a pulsed excimer (ArF) laser operating at 10 Hz. C 3 O 2 is synthesized prior to the experiments via the dehydration of bis(trimethylsilyl) malonate (BTSM, Aldrich, 98% purity) using variations to the procedure reported by Birkoger and Sommer (with a 54% C 3 O 2 yield). 45 The system consists of a 3-neck flask (250 mL) connected to a nitrogen purge, two glass traps in series and a mechanical pump. The pressure in the entire system is measured using an absolute pressure gauge. The system is flushed with dry nitrogen at atmospheric pressure for at least 3 hours to remove any residual water. About 40 g phosphorous pentoxide (P 2 O 5 , Aldrich, 98.5% purity) is mixed with 20 g sand and placed in the flask. The phosphorous pentoxide is flushed with dry nitrogen to remove water. The system (flask and traps) is then evacuated to a pressure below 10 torr using a mechanical pump. About 20 mL of BTSM is measured with a syringe and injected at once through a rubber septum into the 3-neck flask. The reaction occurs spontaneously leading to a dark-red coloration of the solid and production of gas. The mixture of gaseous products is collected at 77 K in a large glass bubbler. After complete stop of gas production (formation of gas bubbles in the reactant flask) (40 min) the liquid nitrogen is replaced by an acetone-liquid nitrogen slush at 179 K and the bubbler is evacuated.

At this temperature, C 3 O 2 has a negligible vapor pressure while CO 2 sublimes rapidly, leaving behind only C 3 O 2 in the trap. Up to 110 Torr of C 3 O 2 is then collected and buffered with 1100 Torr of helium in a 3.79 L stainless steel cylinder. The photoionization spectra of the gas mixture at m/z=68 confirmed the formation of carbon suboxide (Ionization Energy, IE=10.6 eV). [START_REF]Standard Reference Database Number 69[END_REF] The 193-nm laser fluence inside the reaction flow tube ranges from 20 to 50 mJ/cm 2 . Initial carbon atom number density in the flow tube is estimated to be approximately 210 11 cm -3 . At 30 cm along the flow tube, a 650 μm diameter pinhole allows a small portion of the gas mixture to escape into a vacuum chamber. This gas is sampled by a skimmer creating a beam of molecules that is subsequently intersected by the quasi-continuous vacuum-ultraviolet (VUV) synchrotron radiation. Ions formed in this region are detected as a function of their mass-to-charge (m/z) ratio using a 50 kHz pulsed orthogonal-acceleration time-of-flight mass spectrometer. All detected ions are time-tagged relative to the excimer laser pulse (at t = 0) and accumulated in a multichannel scaler. In this way, complete mass spectra are collected as a function of reaction time. The excimer laser is operated at 10 Hz, allowing sufficient time between laser pulses to completely refresh the gas mixture before the next laser pulse. The total ion detection timewindow is 50 ms, beginning 10 ms before the laser pulse.

Reagent gases were used without further purification: ethylene (99.9%, Aldrich), propylene (>99%, Aldrich).

Computational methods

C 4 H 5 photoionization spectra are simulated within the Franck-Condon (FC) approximation. Electronic structure calculations of the neutral C 4 H 5 species and their cations are carried out using the Gaussian09 package [START_REF] Ma | [END_REF] using the B3LYP/CBSB7 method to obtain optimized geometries and Cartesian force constants.

All the vibrational frequencies are real, indicating that the optimized geometries represent minima on the potential energy surface. The FC factors are calculated at 298 K using the G09 package within the Franck-Condon approximation. 48 The simulated factors are convolved with a 40 meV (FWHM) Gaussian response function and integrated to simulate photoionization spectra. The spectra are shifted such that the energy difference between the neutral and ion ground states matches the ionization energy calculated by Hansen et al. using B3LYP/6-311++G(d,p) level of theory. 49

Results and discussion

At 4 Torr and 332 K the collision frequency of the products (for example C 3 H 3 ) with the He buffer gas is of the order of 1710 6 s -1 (or 1 collision every 59 ns). Under these conditions, the products are rapidly thermalized to the flow temperature. These collisions may also stabilize reactive intermediates if the unimolecular decay of such chemically activated intermediates occurs on the same timescales (0.1 -200 microseconds) as collisional energy transfer. For unimolecular decay rates faster than ~ 1710 6 s -1 , stabilization cannot compete with dissociation, and chemically activated intermediates will decay in the same way as in crossed molecular beams experiments. Therefore, when a reactive intermediates decays with a lifetime shorter than the collision frequency, and it decays to a stable molecule with a lifetime much longer than the collision frequency, the product branching observed via crossed molecular beams and collisional experiments should be identical if the proper weighting is given to the range of collision energies.

Successive reactions of the formed products with other radicals present in the reaction flow may also occur over a short time scale (<1 ms). These reactions will lead to secondary products at higher molecular masses than that of the C( 3 P) + hydrocarbons products. At 193 nm, hydrocarbon photodissociation cross sections are relatively high leading to a large number of side reactions. Because C( 3 P) reactions are very fast, under the experimental conditions, they will occur within few hundreds of microseconds after the laser pulse. It is therefore possible to discriminate between C( 3 P) reaction and slower reactions by inspecting the product time traces. In the following sections, the contribution from slow reactions (k 2nd <510 -12 cm 3 molec -1 s -1 or k 1st <500 s -1 ) or subsequent reactions is minimized by integrating mass spectra only over the 0-1ms time range. Time-and energy-resolved mass spectra are obtained by averaging at least 500 laser shots at each photon energy. In the present study the ionizing photon energy is scanned from 7.4 to 10.6 eV in steps of 0.025 eV. Kr or Ar is used in a gas filter to absorb higher energy photons at harmonics of the undulator energy. All data are normalized to account for the variations in ALS photocurrent using a NIST-calibrated photodiode (SXUV-100, International Radiation Detectors, Inc.). At each mass-to-charge (m/z) ratio, the average signal present before the laser pulse is subtracted from the time dependent data. Mass spectra of the buffer gas with the reactants and/or C( 3 P) precursor were recorded at the beginning of each run with and without the laser pulse. No ion signals were detected at m/z=39 and 53, the masses of the expected C( 3 P) + hydrocarbon products. The photoionization spectra at a given m/z ratio are obtained by integrating the data set over the desired mass and time windows. Three independent datasets are recorded for each reaction and averaged. The error bars for a given data point of a photoionization spectrum are twice the standard deviation around the mean value. The photon energy resolution is determined to be of the order of 40 meV by measuring an atomic resonance of Xe.

In the present experiments, carbon suboxide was used as the precursor of ground state carbon atoms, C( 3 P), and was chosen to avoid any contribution from the C( 1 D) state. The photodissociation of C 3 O 2 has been studied by several authors. [50][51][52][53][START_REF] Okabe | Photochemistry of Small Molecules[END_REF][START_REF] Osamura | [END_REF] The absorption cross section of carbon suboxide at 193 nm is ca. 10 -18 cm 2 56 and the energetically accessible primary product channels are CO + C 2 O and C( 3 P) + 2CO. [START_REF] Okabe | Photochemistry of Small Molecules[END_REF] The first experimental measurement of the relative yield of carbon atoms to C 2 O following the photolysis of C 3 O 2 at 193 nm was performed in 1989 by McFarlane et al. 53 Dissociation to CO + C 2 O was shown to be the dominant pathway, with a ratio of ground state carbon atoms, C( 3 P), to C 2 O of 0.06 ± 0.03. Carbon suboxide photolysis at 193 nm has been used by several authors to generate carbon atoms in their ground state. Chastaing et al. 12,13,57 performed kinetics experiments of C( 3 P) atom reactions at low temperatures using carbon suboxide as a precursor and monitoring ground state carbon atoms by VUV LIF at ca. 166 nm.

The 193-nm C 3 O 2 photodissociation spin allowed exit channel leads to the formation of the singlet C 2 O(ã 1 ) and CO(X 1  + ). 51,58 In the presence of ethylene and propylene, C 2 O is likely to react with the unsaturated molecules via addition followed by CO-loss. C 2 O may also react with atomic hydrogen with a rate of 310 -11 cm 3 s -1 , 59 leading to the formation of CH + CO. In our reaction flow, H atoms are formed from photolysis of the hydrocarbons as well as from their reactions with carbon atoms. Because C 2 O is the most abundant radical in the reaction flow, a non-negligible amount of CH radicals will be formed. A list of the main reactions expected to occur upon irradiation of a C 3 O 2 in the presence of hydrocarbon reactants at 193 nm is presented in supplementary information. imperfect subtraction of ion signal from ethylene and acetone impurity. At 193 nm, the absorption cross section of ethylene is of the order of 110 -20 cm 2 and its photodissociation may also contribute to the negative signal at m/z=28. 60 The data are recorded at 10.7 eV photon energy and integrated over the 0-1 ms reaction time window. Over this short reaction window, the main ion signals are detected at m/z=39, m/z=40. If C( 1 D) were produced, its quenching by the helium buffer gas is likely to be very slow. In order to address the possible formation of C( 1 D) in our experiments, a time-and energy-resolved mass spectrum was recorded adding at least 10 times more molecular hydrogen in the reaction flow than ethylene reactant. The C( 1 D) + H 2 reaction rate coefficient has been measured to be 2.0(±0.6)10 -10 cm 3 molec -1 s -1 at room temperature 61 while the C( 3 P) + H 2  CH + H reaction is endothermic by 96 kJ mol -1 . 62 An upper limit of the termolecular rate coefficient for C( 3 P) + H 2 + He at 300 K was derived by Husain and Young to be 6.9(±1.2)10 -32 cm 6 molec -2 s -1 . 63 Under our experimental conditions the expected pseudo first order rate constants are of the order of 53,550 s -1 and 510,550 s -1 for C( 3 P) + C 2 H 4 and C( 1 D) + H 2 , respectively. 25,64 Therefore, even if the C( 1 D) + C 2 H 4 reaction has a gas-kinetic rate coefficient, any C( 1 D) that might be formed via photolysis of C 3 O 2 will be consumed predominantly by reaction with molecular hydrogen. The C( 1 D) + H 2 reaction produces the CH radical in its electronic ground state, which upon reacting with C 2 H 4 forms C 3 H 4 isomers. 65,66 If C( 1 D) were present in our experiment, adding a large amount of molecular hydrogen in the flow tube would lead to an increase of the C 3 H 4 ion signal.

C( 3 P) + ethylene

Furthermore, C( 1 D) + C 2 H 4 is likely to be a source of C 3 H 3 and the competitive reaction with H 2 should greatly decrease the amount of C 3 H 3 formed by the C( 1 D) + ethylene reaction. However, the absolute intensities of m/z=39 and m/z=40 are found to be unchanged upon addition of a large amount of molecular hydrogen. Together with the previous studies on the photodissociation of C 3 O 2 at 193 nm this strongly suggests that C( 1 D) atoms are not produced in a significant amount. To be cautious, all the experiments were conducted with a large excess of molecular hydrogen. In the following discussion reactions between C( 1 D) and the hydrocarbon reactants are neglected.

Figure 3 shows the photoionization spectrum measured at m/z=39. The solid red line is the photoionization spectrum of the propargyl radical (C 3 H 3 ) obtained by Savee et al. 67 The very good match between the two spectra shows that propargyl is formed upon C 3 O 2 photodissociation in the presence of ethylene. As indicated by previous H-atom branching ratio measurements and cross molecular beams experiments, [14][15][16]19,20 the C( 3 P) + C 2 H 4 reaction is expected to solely produce the propargyl radical through an addition-elimination mechanism. Table S1 (see supplementary information) displays the predominant reactions resulting from the reaction system. Under these multiple collision conditions, the propargyl radical may be formed by the C( 3 P) + C 2 H 4 reaction as well as by the C 2 O + C 2 H 3 reaction. The C 2 H 3 radical has an ionization energy of 8.25 eV and has been previously detected in similar experiments. 40 In Figure 2 the small signal at m/z=27 suggests that the vinyl radical is not formed in significant amount. In addition the rate coefficient for the C 2 O + C 2 H 3 is likely to be one order of magnitude slower than C( 3 P) + C 2 H 4 reaction (based on expected radical-radical kinetics of reactions with no barrier) and is therefore unlikely to contribute to the fast m/z=39 signal rise observed in Figure 5.

Figure 4 displays photoionization spectra of m/z=40. The red line is a fit to the spectrum using the experimental absolute spectra of allene 68 and methylaceytlene. 69 The best fit is within the 2- error bars and corresponds to branching fraction of 49% allene and 51% methylacetylene. The formation of C 3 H 4 isomers (m/z = 40) upon irradiation of a C 3 O 2 /C 2 H 4 gas mixture at 193 nm was also previously reported by Bayes et al. 70 As discussed by Kaiser et al. 19 the formation of the reaction adduct at m/z=40 upon attack of the triplet carbon atom onto the ethylene double bond does not lead to formation of the singlet C 3 H 4 final products. The lifetime of the triplet C 3 H 4 intermediate is expected to be on the order of, or shorter than, the rotational period of the molecules (0.5 ps along the C axis). 19 During this lifetime there will be a negligible number of collisions (<<1) between the triplet adduct and the He buffer gas. Crossing to the singlet surface is also predicted to be negligible. 19 The triplet adduct is therefore expected to rapidly dissociate to form the propargyl radical by H-loss with negligible contribution from stabilization of the triplet or singlet intermediate. The C 3 H 4 isomers observed in Figures 1 and2 are therefore likely to come from side reactions in the reaction flow.

Figure 5 shows the temporal trace of the C 3 H 4 -isomers (red squares) and the propargyl radical (blue circles) signals. The decay of the m/z=39 ion signal after the initial radical formation is due to the propargyl self-reaction and reaction with the reactor tube walls. In the case of the closed-shell C 3 H 4 products, the signal is stable after its formation, with a slight linear rise due to slight changes in laser fluence along the reactor tube. Within the experimental time resolution, both products are formed rapidly after irradiation of the gas mixture. The formation of propargyl radicals is likely to come from the C( 3 P) + C 2 H 4 reaction whereas that of C 3 H 4 isomers may be explained by either the C 2 O + C 2 H 4 , or CH + C 2 H 4 reaction (see Table S1). The C 2 O radical is formed by photodissociation of the C 3 O 2 precursor while the CH radical is formed by the C 2 O + H reaction. At room temperature, the later reaction has a rate coefficient 59 of 310 -11 cm 3 molec -1 s -1 while CH + C 2 H 4 has a rate coefficient of 2.8410 -10 cm 3 molec -1 s - 1 . 71 Using these rate coefficients, and estimating the 1 Upon irradiation of the C 3 O 2 /ethylene mixture, signals at m/z=52 and m/z=42 are also observed when integrating the mass spectra over 40 ms of reaction time. Photoionization spectra of m/z=52 and m/z=42 identify them as vinylacetylene (C 4 H 4 ) and ketene (H 2 CCO, IE=9.6 eV) 72 , respectively. Their formation kinetics is slower than that of the C 3 H 4 isomers. Vinylacetylene is unlikely to come from the reaction of CH radicals with the C 3 H 4 products as most CH radicals will be completely consumed by reactions with more abundant molecules such as C 2 H 4 and C 3 O 2 (see Table S1). The reaction of the CH radicals with the abundant C 3 O 2 is expected to give C 2 H radicals and two CO molecules. 61 The ethynyl radical can then react with ethylene to give vinylacetylene. 73 Alternatively the C 2 O + C 3 H 4 reaction may also lead to the formation of C 4 H 4 by CO-loss. It is important to note that these products are the results of secondary and tertiary reactions and do not significantly contribute to the detected products at short reaction time (see Figure 2). Ketene is likely formed by successive C 2 O reactions with hydrocarbons and/or atomic hydrogen.

C( 3 P) + propylene

According to the recent theoretical investigation of the C( 3 P) reaction with propylene by Chin et al. 26 the main exothermic product channels are the following: and its photodissociation also contributes to the negative signal at m/z=42. 74 73,76 Because the lifetime of the reaction adduct is expected to be very short, 24 products at m/z=54 are likely to be formed by the CH + C 3 H 6 reaction. 43 According to Table S2 reactions, respectively (Table S2). Based on similar kinetic arguments as for the C 4 H 5 products, it is unlikely that these reaction contribute to the fast m/z=39 and m/z=15 rise displayed in Figure 7 (a). From 77 and the methylpropargyl isomers (IE=7.94 eV for H 2 CCCCH 3 and IE=7.95 eV for HCCCHCH 3 ), 77 all to their singlet ion state, as well as the ionization to the triplet ion state of H 2 CCCCH 3 (IE=9.74 eV). 77 The ion signal observed above 7.5 eV and the ion onset at 7.9 eV suggest the presence i- ionization. Alternatively the ionization signal above 9.6 eV could be due to the dissociative ionization of a higher mass, leading to a charged ion at m/z=53 and a neutral fragment. In this case the time profile of the daughter ion is that of the parent molecule. Figure 9 displays the temporal profile of m/z=53 integrated from 8.5 to 9.4 eV and from 9.5 to 10.5 eV. The difference between the temporal traces is constant with time, suggesting contribution from a stable species other than the C 4 H 5 radical isomers. The photoion spectrum of m/z=54 can be reproduced with contributions from only two isomers: 1,3-butadiene and 1butyne; there is no evidence for cyclic C 4 H 6 isomers. Neither 1,3-butadiene nor 1-butyne will dissociate to give C 4 H 5 over the experimental energy range. [START_REF]Standard Reference Database Number 69[END_REF] The signal at photon energy higher than 9.5 eV is therefore likely to be mostly due to the dissociative ionization of a closed shell neutral whose parent ion corresponds to either 56 or 68. There is not enough information about the dissociative ionization of these molecules to conclusively assign the origin of the m/z=53 signal above 9.5 eV. together with m/z=53 photoionization spectrum recorded in a low pressure (40 Torr) benzene flame (red line). 77 Similar photoionization spectra were recorded in cyclopentene, propyne, and allene flames. 77 Despite the large temperature difference, the very good overlap between the benzene flame spectrum and the present data strongly suggests that the C 4 H 5 isomer distributions in the flow tube and in the flame are similar. Hansen et al. 77 identified i-C 4 H 5 and the methylpropargyl isomers as the main contributors to m/z=53 ion signal. The authors were not able to explain the ion threshold at 8.25 eV based on simulated photoionization spectra and detailed combustion modeling. Using the same fitting procedure as that described above, they infer an isomer distribution of 1:3, which is similar to that expected under thermal equilibrium at 1700 K (using computed enthalpies of formation). 49 At this temperature, the H 2 CCCCH 3 isomer is twice as abundant as the HCCCHCH 3 isomer. At lower temperature, the equilibrium will shift toward the formation of the lowest energy isomer, H 2 CCCCH 3 . Close to room temperature under equilibrium conditions the contributions from i-C 4 H 5 and HCCCHCH 3 are expected to be negligible. The detection of i-C 4 H 5 in the flow tube experiment suggests that the measured m/z=53 ion spectrum in Figure 10 is not representative of a thermal equilibrium isomer distribution at 330 K.

C( 3 P) + C 3 H 6 (X 1 A')  CH 3 + C 3 H 3 H = -228.2 kJ mol -1  H+ C 4 H 5 (H 2 C-CC-CH 3 ) H = -198.1 kJ mol -1  H + C 4 H 5 (H 2 C=C-CH=CH 2 ) H = -188.1 kJ mol -1  H +
Chin et al. 26 Using RRKM calculations at about 16.7 kJ mol -1 collision energy, 26 Chin et al. predict a ratio of the sum of the methylpropargyl isomer densities over that of i-C 4 H 5 of 1.2, which is close to their 1.4 experimental values. The difference from the ratio of 4 we measure in a flow tube close to room temperature is unlikely to come from pressure effects because the reaction adduct is expected to decompose to the final products on a timescale much shorter than the collision rate. 24 This difference could suggest that the formation of the methylpropargyl isomers is favored at lower temperature. This dependence could come from the fact that the decomposition channels of the initial intermediates to methylpropargyl isomers have low or no barriers relatively to the formation of i-C 4 H 5 . However, such large changes in isomer distribution with temperature are usually not observed for very exothermic reactions where the average thermal energy represents only a very small fraction of the internal energy of the reaction intermediates. In addition, despite the multiple collision conditions, the short predicted lifetimes of the intermediates implies that these branching ratios results are unaffected by collisional energy transfer. The difference in isomer fraction between the two experiments could also be due to uncertainties when fitting the m/z=53 ion signal. In the case of the crossed beams experiments the Previous studies have shown that Franck-Condon overlap calculations fail at reproducing experimental ion spectra in the case of shape resonances. 78,79 The onset at 8.2 eV as well as the following structures (up to 9.4 eV) could therefore be due to auto-ionizing states of the neutral species at these energies. To our knowledge it is not possible to easily predict such features or to attribute them to one of the three considered isomers. If the ion signal at 8.2 eV is due to ionization of the methylpropargyl isomers, the relative branching ratios for the C 4 H 5 isomers would be unchanged. However, if this feature were due to the ionization of i-C 4 H 5 , the isomer branching ratios would be greatly affected toward a much higher ratio for i-C 4 H 5 . Such effect would affect the measured branching ratios in the flame, flow tube and crossed beams experiments the same way.

The detection of both i-C 4 H 5 and methylpropargyl isomers from the C( 3 P) + C 3 H 6 reaction close to room temperature qualitatively agree with the previously accepted mechanisms inferred from single collision experiments and potential energy surfaces. 19,22,24 Once formed, the final products will rapidly be thermalized to the flow temperature by collisional quenching with the buffer gas. The reaction of the so 

Astrophysical and combustion implications

Titan and the interstellar medium. The kinetics of ground state carbon atoms, C( 3 P), with ethylene and propylene has been shown to be fast down to very low temperature, 25 making these reactions of interest for the photochemical modeling of cold astrophysical environments rich in hydrocarbons. Titan, a satellite of Saturn, has been the subject of many studies in the last decade due to the successful Cassini mission, which revealed a far more complex chemistry than predicted 18,48,65,79,80 with neutral chemistry playing a central role. 45,49,62,79,80 16 and confirmed by the present study. The reaction of C( 3 P) with C 3 H 6 however, plays a minor role in the formation of larger hydrocarbons on Titan due to the much lower molar fraction of propylene compared to acetylene in the atmosphere of Titan. 49 The situation is quite different for propylene in the interstellar medium. Due to its small dipole moment, it has been discovered only recently by Marcelino et al. 82 using the IRAM 30 m telescope in the giant Taurus Molecular Cloud 1 (TMC-1). An abundance relative to H 2 of 4x10 -9 , comparable to other abundant hydrocarbons in this cloud was derived from these observations, indicating the potential importance of propylene in the chemistry of the interstellar medium. The reactions involving propylene with abundant species such as atomic carbon, for instance, are therefore of importance in the chemical reaction network aiming to determine the abundance of molecular species in the interstellar medium. [83][84][85] The present study shows that even near room temperature, and likely below, the reaction of C( 3 P) atoms with propylene can form larger species such as C 4 H 5 and may contribute to the formation of complex molecules in the interstellar medium.

Combustion environments:

The detection of carbon atoms in flames is made very difficult due to the large absorption cross section of hydrocarbons at the VUV wavelengths used for laser induced fluorescence detection of C( 3 P). Ground state carbon has been detected in simple diffusion flames but the possible contribution from hydrocarbon photolysis by the excitation light has not been fully addressed. 4 In flames, carbon atoms could be formed by the CH + H reaction as suggested for cold environments.

Although the reaction is thermodynamically favorable and occurs at fractions of the collision rate over the combustion temperature range, [START_REF]Standard Reference Database Number 69[END_REF] this channel will remain minor because CH will preferentially react with more abundant fuel molecules. If formed, the carbon atoms will immediately react with the most abundant hydrocarbon molecules in the flame. Nevertheless, even a small amount of carbon atom self reaction could also be responsible for part of the observed C 2 chemiluminescence. 5 The reaction of C( 3 P) with acetylene, ethylene and propylene would contribute to the formation of radicals such as C 3 H, C 3 H 3 , CH 3 as well as With the advent of interest in plasma assisted combustion, there is an important need to better understand the chemistry of the reactive species formed in such energy and carbon rich environments. [START_REF] Starikovskii | Proc. Comb. Inst[END_REF] The neutral and ion chemical scheme initiated by plasma discharge in engines has been demonstrated to facilitate rapid combustion, thereby making it possible to use leaner mixtures, decreasing temperatures and hence NO x production. [START_REF] Starikovskii | Proc. Comb. Inst[END_REF] The carbon chemistry of these environments will be governed by fast ion and neutral reactions with the most abundant species. Carbon reactions may be able to compete with ion chemistry as long as carbon atoms are formed with a sufficiently high number density. Mass spectrometry experiments were able to detect carbon atoms in glow discharge plasmas 6 suggesting much higher concentrations than in combustion environments. The reaction of carbon atoms with the hydrocarbons present in high concentration will contribute to the neutral radical chemistry propagation and ultimately to the overall combustion process. More advanced computational models on the role of ion and neutral chemistry is required in order to better understand plasma assisted combustion phenomena.

Conclusions

We investigated the reaction of the ground state C( 3 P) with ethylene and propylene under multiple collision conditions at 332 K and 4 torr. Despite these multiple collision conditions, as long as reaction of the observed products were used to differentiate between primary and secondary reaction products and reaction kinetics considerations were used to discuss the origin of the detected products. In the case of C( 3 P) + ethylene, the propargyl (C 3 H 3 ) radical is detected as the major molecular reaction products in agreement with previous H-atom branching ratios and molecular beam experiments.

In the case of the C( 3 P) + propylene reaction, the observed reaction channels are C 4 H 5 + H and C 3 H 3 + CH 3 . The measured C 4 H 5 :C 3 H 3 signal ratio from the present flow data is in agreement with the 1:1 H:CH 3 -loss ratio from fast flow reactor H-atom detection results. 16,17 Photoionization spectra recorded at the mass of the C 4 H 5 isomers show possible contamination from dissociative ionization of higher masses at energy above 9.5 eV. At lower energies, the C 4 H 5 spectra are found to be almost identical to that recorded in a low pressure benzene flame. 77 The fit of the experimental data with integrated Franck- ethylene mixture in helium. The red solid line is a fit to the data using the absolute photoion spectra of allene (green dashed line) from Yang et al. 52 and methylaceytlene (blue point line)

from Cool et al. 53 The best fit to the data is obtained for 49% allene and 51% methylacetylene. 

  Figure 1 shows (a) the mass spectrum and (b) the kinetic trace of C 2 O at m/z=40 recorded at 11.3 eV upon irradiation of C 3 O 2 in helium. A positive peak represents species production following laser irradiation; a negative peak represents laser-induced destruction. Negative signals at m/z=43 and 60 are likely due to photolysis and dissociative ionization of impurities. The positive signal at m/z=52 could be due to reaction of C 2 O with impurities. In the absence of any other reactants, loss on the reactor walls of singlet C 2 O, along with its reaction with C 3 O 2 , is likely to account for the fast signal decay. The most thermodynamically favorable C 2 O + C 3 O 2 exit channel is the formation of C 2 and 3CO.

  photolysis of C 3 O 2 in the presence of C 2 H 4 is used to demonstrate the formation of atomic carbon.

Figure 2

 2 Figure 2 displays the background subtracted photoionization mass spectrum obtained following photolysis

  C 2 O + C 3 O 2 rate coefficient at 110 -10 cm 3 molec -1 s - 1 , a simple kinetic model including C 2 O + C 3 O 2 , C 2 O + H, C + C 2 H 4 and CH + C 2 H 4 predicts a characteristic time for the rise of the C 3 H 4 products of the order of 200 s in agreement with the fast kinetic rise of m/z=40 in Figure 5. The C 3 H 4 time-trace can be reproduced without including effects from the stabilization of the reaction adduct. This agrees with the short adduct lifetime discussed above.

C 4 H 5 ( 1  1 Figure 6

 45116 Figure 6 displays the mass spectra obtained by photolysis of (a) propylene and (b) a mixture of

Figure 7

 7 Figure 7 presents the normalized time traces of some of the (a) odd and (b) even masses over the

Figure 7 (

 7 Figure 7(a), propargyl and the C 4 H 5 isomers have a very similar temporal profile. The product ratio can

Figure 8

 8 Figure 8 displays the m/z=53 photoionization spectrum obtained by irradiating a C 3 O 2 and

C 4 H

 4 5 as well as one or two of the methylpropargyl isomers. Within the experimental photon energy resolution (40 meV) it is not possible to differentiate between the ionization of H 2 CCCCH 3 or HCCCHCH 3 . Additional ion signal onsets are observed at 8.25 eV and 9.5 eV. According to the calculated ionization energies of all the possible C 4 H 5 isomers to their singlet or triplet ion states,77 the transition from the ground neutral state to the triplet ion state of H 2 CCCCH 3 has the closest energy (9.74 eV) to that of the observed feature at 9.5 eV. The poor Franck-Condon overlaps calculated for transition to H 2 CCCCH 3 triplet state suggest that the observed ion signal about 9.5 eV is not due to H 2 CCCCH 3

Figure 8b displays the

  Figure 8b displays the m/z=53 photoionization spectrum over the 7.4-8.25 eV photon energy range

Figure 10 displays

 10 Figure 10 displays the m/z=53 photoionization spectra from the present experiments (circles)

  identified m/z=15, 39, 52, and 53 as the main products of the C( 3 P) + propylene reaction under single collision conditions. They report a H:CH 3 -loss channel ratio of 1:4 and a ratio of the sum of the methylpropargyl isomer densities over that of i-C 4 H 5 of 1.4. The 1:4 branching ratio for H:CH 3 -loss channels measured in crossed beams experiments differs from the 0.5 H-elimination branching ratio measured by Bergeat and Loison17 under multiple collision conditions. The 1:1 normalized signal ratio between the m/z=39 and m/z=53 from Figure6agrees with the results from Bergeat and Loison at room temperature, with the caveat that we assume equal photoionization cross sections for these radicals. Assuming that the m/z=53 and m/z=39 are primary products from the C( 3 P) + C 3 H 6 reaction, the high collision energy in the crossed molecule beam experiments could account for the difference of H:CH 3 .

  E/E=4% (compared to E/E<1% for the present experiments) energy resolution does not allow the observation of the methylpropargyl isomers' ionization threshold. The data displayed in Figures 8 allow the unambiguous identification of i-C 4 H 5 and methylpropargyl isomers in the flow tube experiments. Large uncertainties still remain about the C 4 H 5 isomer distribution mostly due to the unattributed signal above 8.2 eV in both the flame and flow tube experiments. Based on the previous identification this signal is likely to come from the ionization of either the i-C 4 H 5 or the methylpropargyl isomers, although the Franck-Condon simulations do not predict it.

formed C 4 H 5

 45 isomers with a H-atom present in the flow is barrier-less only in the case of the HCCCHCH 3 isomer. The reaction proceeds via the formation of the Z-or E-CH 3 CHCCH 2 stereoisomers with no exit channels presenting energy barriers below the energy of the initial HCCCHCH 3 + H. The lowest energy product channel is the formation of C 3 H 3 and CH 3 radicals. Such reaction would deplete the HCCCHCH 3 contribution toward formation of the propargyl and methyl radicals. H-assisted isomerization is therefore unlikely to contribute to the difference of isomer fraction between the crossed beams experiments and the flow tube experiments.

C 4 H 5 ,

 45 therefore participating in the propagation of the radical chemistry. The good match between the flame and flow tube C 4 H 5 ion spectra could support a possible contribution from the C( 3 P) + C 3 H 6 reaction in combustion.

  intermediates have short lifetimes relatively to the collision frequency, the observed product distribution is unaffected by collisional energy transfer. Carbon atoms are generated by 193 nm photodissociation of carbon suboxide in a large excess of molecular hydrogen in order to minimize any potential contributions from C( 1 D) reactions. Time-and energy-dependent photoionization spectra recorded with and without hydrogen as a C( 1 D) scavenger indicate that only C( 3 P) atoms are formed in the reaction flow. Time traces

Condon factors gives a 1 :

 1 photoionization spectrum of the i-C 4 H 5 isomer displays a strong shape resonance features above its

FiguresFigure 1 :

 1 Figures

  Figure 1: (a) Mass spectrum integrated over the 0-1 ms time range and (b) m/z=40 kinetic

Figure 2 :

 2 Figure 2: Mass spectrum obtained by photolysis of a C 3 O 2 and ethylene mixture in helium, at

Figure 3 :

 3 Figure 3: Photoion signal at m/z 39 ion (open circles) integrated over the 0-40 ms time range

Figure 4 :

 4 Figure 4: Photoion signal at m/z = 40 (open circles) obtained by photolysis of a C 3 O 2 and

Figure 5 :

 5 Figure 5: Kinetic traces of C 3 H 4 isomers (red squares) and propargyl radical C 3 H 3 (blue

Figure 6 :

 6 Figure 6: Mass spectra obtained by 193-nm photolysis of (a) propylene in helium and (b) a

Figure 7 :

 7 Figure 7: Normalized kinetic traces obtained by photolysis of a C 3 O 2 and propylene mixture

Figure 8 :

 8 Figure 8: Photoionization spectrum of m/z=53 obtained by photolysis of a C 3 O 2 and

Figure 9 :

 9 Figure 9: Kinetic traces of m/z=53 integrated from 8.5 to 9.4 eV photon energy (red circles)

Figure 10 :

 10 Figure 10: Photoionization spectrum of m/z=53 from the C( 3 P) + C 3 H 6 reaction integrated

Table S2 (

 S2 see supplementary information) displays the main reactions expected to occur in the reaction flow upon irradiation of a C 3 O 2 /C 3 H 6 mixture at 193 nm. The slower rise of the m/z=40 and 54 displayed in Figure7(b) compared to that of m/z=15, 39, and 53 suggests that they are formed by slower reactions than the

C( 3 P) + propylene reaction or secondary processes such as C 2 O, CH and C 2 H reactions. The signal at m/z=52 is identified based on its photoionization spectrum as vinylacetylene (C 4 H 4 ) likely formed by reaction of the C 2 H radical with C 3 H 6 (CH 3 -loss channel).

  , C 4 H 5 at m/z=53 may be formed by C( 3 P) + C 3 H 6 or the unwanted C 2 O + C 3 H 5 reaction. We use the kinetic traces to distinguish between the two potential sources. Both the C 2 O and C 3 H 5 radicals are detected and are formed by 193 nm photolysis of C 3 O 2 and C 3 H 6 , respectively. The C 2 O + C 3 H 5 reaction rate can be estimated to be of the order of 410 -11 cm 3 s -1 based on barrierless radical-radical reactions. According to the C 3 O 2 and C 3 H 6 number densities and 193-nm absorption crosssections, both radicals are expected to be formed with similar number densities, on the order of 510 12 cm - 3 . The characteristic rise time of any reaction products is therefore expected to be 5 ms, which is much slower than the rise time of m/z=53 observed in Figure7(<500 s). Based on this analysis, C 4 H 5 + H are assigned as products of the C( 3 P) + C 3 H 6 reaction.The measurement of the C 4 H 5 /C 3 H 3 branching ratio in the flow tube experiment is made difficult due to the high C 3 H 6 193 nm-absorption cross section and high C 3 H 3 formation quantum yield. In addition, the propargyl and methyl radicals may also be formed by the C 2 O + C 2 H 3 and C 2 H + C 3 H 6

  Zhang et al.3 identified the atomic neutral carbon emission CI line feature at 1657 Å (2s 2 2p 1 3s 1 3 P J -2s 2 2p 2 3 P J ) in the upper atmosphere of Titan using the Cassini Ultra-violet Imaging Spectrograph. CH + H50 and CN + N 81 are the major sources of atomic carbon on Titan, while the reactions with C 2 H x hydrocarbons, mainly C 2 H 2 and C 2 H 4 , are their most important loss processes, at least above 600 km3 . Recently, Hébrard et al.,49 pointing out that only a small fraction of all possible reactions producing or involving C 3 -compounds was included in previous photochemical models, reported an update of the photochemistry of C 3 H x in the stratosphere of Titan. Their study suggests that C( 3 P) + C 2 H 2 leads to the formation of C 3 and C 3 H, while, C( 3 P) + C 2 H 4 forms essentially C 3 H 3 + H, as inferred byBergeat et al., 
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experimental conditions more relevant for combustion and plasma chemistry. Under multiple collision conditions, the present experiments suggest the formation methyl and propargyl radicals in non-negligible amounts alongside both i-C 4 H 5 and methylpropargyl isomers. Suggested branching ratios for computational model are 1:4 for the i-C 4 H 5 :methylpropargyl isomers. Further computational studies are required in order to determine the effect of these branching ratios on the outcome of chemical models.