L. Redecke, K. Nass, D. Deponte, T. White, D. Rehders et al., Natively Inhibited Trypanosoma brucei Cathepsin B Structure Determined by Using an X-ray Laser, Science, vol.339, issue.6116, pp.227-230, 2013.
DOI : 10.1126/science.1229663

F. Gallat, N. Matsugaki, N. Coussens, K. Yagi, M. Boudes et al., In vivo crystallography at X-ray free-electron lasers: the next generation of structural biology?, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.7, issue.5, p.20130497, 2014.
DOI : 10.1002/humu.10268

H. Chapman, P. Fromme, A. Barty, T. White, R. Kirian et al., Femtosecond X-ray protein nanocrystallography, Nature, vol.65, issue.7332, pp.73-77, 2011.
DOI : 10.1038/nature09750

. Schlichting, Serial femtosecond crystallography: the first five years, IUCrJ, vol.83, issue.2, pp.246-255
DOI : 10.1107/S205225251402702X

C. Gati, G. Bourenkov, M. Klinge, D. Rehders, F. Stellato et al., grown microcrystals using synchrotron radiation, IUCrJ, vol.1, issue.2, pp.87-94, 2014.
DOI : 10.1107/S2052252513033939/jt5002sup1.pdf

F. Stellato, D. Oberthü-r, M. Liang, R. Bean, C. Gati et al., Room-temperature macromolecular serial crystallography using synchrotron radiation, IUCrJ, vol.33, issue.4, pp.204-212, 2014.
DOI : 10.1107/S2052252514010070/it5001sup1.pdf

S. Botha, K. Nass, T. Barends, W. Kabsch, B. Latz et al., Room-temperature serial crystallography at synchrotron X-ray sources using slowly flowing free-standing high-viscosity microstreams, Acta Crystallographica Section D Biological Crystallography, vol.46, issue.2, pp.387-397, 2015.
DOI : 10.1107/S1399004714026327/wa5078sup2.xlsx

N. Coquelle, A. Brewster, U. Kapp, A. Shilova, B. Weinhausen et al., Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams, Acta Crystallographica Section D Biological Crystallography, vol.68, issue.5, pp.1184-1196, 2015.
DOI : 10.1107/S1399004715004514/kw5115sup1.pdf

URL : https://hal.archives-ouvertes.fr/hal-01162621

P. Coppens, M. Pitak, M. Gembicky, M. Messerschmidt, S. Scheins et al., The RATIO method for time-resolved Laue crystallography, Journal of Synchrotron Radiation, vol.16, issue.2, pp.226-230, 2009.
DOI : 10.1107/S0909049508040892

P. Coppens and B. Fournier, New methods in time-resolved Laue pump???probe crystallography at synchrotron sources, Journal of Synchrotron Radiation, vol.43, issue.2, pp.280-287, 2015.
DOI : 10.1107/S1600577514026538

F. Schotte, H. Cho, V. Kaila, H. Kamikubo, N. Dashdorj et al., Watching a signaling protein function in real time via 100-ps time-resolved Laue crystallography, Proceedings of the National Academy of Sciences, vol.109, issue.47, pp.19256-192612706, 2012.
DOI : 10.1073/pnas.1210938109

J. Kern, R. Alonso-mori, R. Tran, J. Hattne, R. Gildea et al., Simultaneous Femtosecond X-ray Spectroscopy and Diffraction of Photosystem II at Room Temperature, Science, vol.340, issue.6131, pp.491-495, 2013.
DOI : 10.1126/science.1234273

C. Kupitz, S. Basu, I. Grotjohann, R. Fromme, N. Zatsepin et al., Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser, Nature, vol.51, issue.7517, pp.261-265, 2014.
DOI : 10.1038/nature13453

M. Arai, E. Kondrashkina, C. Kayatekin, C. Matthews, M. Iwakura et al., Microsecond Hydrophobic Collapse in the Folding of Escherichia coli Dihydrofolate Reductase, an ??/??-Type Protein, Journal of Molecular Biology, vol.368, issue.1, pp.219-229, 2007.
DOI : 10.1016/j.jmb.2007.01.085

B. Vestergaard, M. Groenning, M. Roessle, J. Kastrup, M. Van-de-weert et al., A Helical Structural Nucleus Is the Primary Elongating Unit of Insulin Amyloid Fibrils, PLoS Biology, vol.92, issue.5, pp.1089-1097, 2007.
DOI : 10.1371/journal.pbio.0050134.sv002

C. Oliveira, M. Behrens, J. Pedersen, K. Erlacher, D. Otzen et al., A SAXS Study of Glucagon Fibrillation, Journal of Molecular Biology, vol.387, issue.1, pp.147-161, 2009.
DOI : 10.1016/j.jmb.2009.01.020

M. Ortore, F. Spinozzi, S. Vilasi, I. Sirangelo, G. Irace et al., Time-resolved small-angle x-ray scattering study of the early stage of amyloid formation of an apomyoglobin mutant, Physical Review E, vol.84, issue.6, p.61904
DOI : 10.1103/PhysRevE.84.061904

M. Andersson, E. Malmerberg, S. Westenhoff, G. Katona, M. Cammarata et al., Structural Dynamics of Light-Driven Proton Pumps, Structure, vol.17, issue.9, pp.1265-1275, 2009.
DOI : 10.1016/j.str.2009.07.007

T. Kim, J. Lee, J. Choi, K. Kim, L. Van-wilderen et al., Protein Structural Dynamics of Photoactive Yellow Protein in Solution Revealed by Pump???Probe X-ray Solution Scattering, Journal of the American Chemical Society, vol.134, issue.6, pp.3145-3153, 2012.
DOI : 10.1021/ja210435n

H. Takala, A. Bjö-rling, O. Berntsson, H. Lehtivuori, S. Niebling et al., Signal amplification and transduction in phytochrome photosensors, Nature, vol.288, issue.7499, pp.245-248, 2014.
DOI : 10.1038/nature13310

M. Levantino, A. Spilotros, M. Cammarata, G. Schiro, C. Ardiccioni et al., The Monod-Wyman-Changeux allosteric model accounts for the quaternary transition dynamics in wild type and a recombinant mutant human hemoglobin, Proceedings of the National Academy of Sciences, vol.109, issue.37, pp.14894-14899, 2012.
DOI : 10.1073/pnas.1205809109

URL : https://hal.archives-ouvertes.fr/hal-00874219

M. Cammarata, M. Levantino, F. Schotte, P. Anfinrud, F. Ewald et al., Tracking the structural dynamics of proteins in solution using time-resolved wide-angle X-ray scattering, Nature Methods, vol.276, issue.10, pp.881-886, 2008.
DOI : 10.1038/nmeth.1255

J. Hofrichter, J. Sommer, E. Henry, and W. Eaton, Nanosecond absorption spectroscopy of hemoglobin: elementary processes in kinetic cooperativity., Proceedings of the National Academy of Sciences, vol.80, issue.8, pp.2235-2239, 1983.
DOI : 10.1073/pnas.80.8.2235

A. Spilotros, M. Levantino, G. Schirò, M. Cammarata, M. Wulff et al., Probing in cell protein structural changes with time-resolved X-ray scattering, Soft Matter, vol.41, issue.24, p.6434, 2012.
DOI : 10.1039/c2sm25676b

URL : https://hal.archives-ouvertes.fr/hal-00874214

J. Spence, U. Weierstall, and H. Chapman, X-ray lasers for structural and dynamic biology, Reports on Progress in Physics, vol.75, issue.10, p.102601, 2012.
DOI : 10.1088/0034-4885/75/10/102601

R. Neutze, Opportunities and challenges for time-resolved studies of protein structural dynamics at X-ray free-electron lasers, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.4, issue.Pt 6, 2014.
DOI : 10.1107/S0909049597011618

D. Arnlund, L. Johansson, C. Wickstrand, A. Barty, G. Williams et al., Visualizing a protein quake with time-resolved X-ray scattering at a free-electron laser, Nature Methods, vol.8504, issue.9, pp.923-926, 2014.
DOI : 10.1073/pnas.83.14.5121

A. Ansari, J. Berendzen, S. Bowne, H. Frauenfelder, I. Iben et al., Protein states and proteinquakes., Proceedings of the National Academy of Sciences, vol.82, issue.15, pp.5000-5004, 1985.
DOI : 10.1073/pnas.82.15.5000

M. Levantino, G. Schirò, H. Lemke, G. Cottone, J. Glownia et al., Ultrafast myoglobin structural dynamics observed with an X-ray free-electron laser, Myoglobin structure was also shown to undergo low frequency damped oscillations in the picosecond time-scale, p.6772, 2015.
DOI : 10.1038/ncomms7772

URL : https://hal.archives-ouvertes.fr/hal-01139805