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ScienceDirect
Time-resolved structural information is key to understand the

mechanism of biological processes, such as catalysis and

signalling. Recent developments in X-ray sources as well as

data collection and analysis methods are making routine time-

resolved X-ray crystallography and solution scattering

experiments a real possibility for structural biologists. Here we

review the information that can be obtained from these

techniques and discuss the considerations that must be taken

into account when designing a time-resolved experiment.
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Introduction
The relationship between the structure of proteins and

their function is determined and controlled by their

dynamic properties. From the process of polypeptide

translation by the ribosome, through folding to form

the functional protein and finally as the protein undergoes

its particular function in the cell or across the cell mem-

brane, molecular motions play a crucial role. A complete

understanding of protein function therefore requires

experiments that are able to probe both structural and

dynamic properties. X-ray crystallography and solution

scattering are routinely used methods to examine molec-

ular structures (Figure 1). However, when used in a time-

resolved manner, these methods can also enable the

observation of functionally related structural changes
www.sciencedirect.com 
and dynamics over a broad range of spatial and temporal

resolutions.

The time-scales of biologically relevant processes range

from fs (10�15 s) to hours and so the design of a time-

resolved experiment must be matched to the time-scale

of the process of interest (Figure 2). For example, while

an enzymologist might wish to focus on early steps in a

reaction mechanism occurring on fs–ns time-scales, a

molecular biologist might be interested in the large scale

conformational rearrangements associated with ligand

binding or signal transduction that occur in ms–ms. Re-

cent developments in X-ray sources, beamline instrumen-

tation and data collection methodologies now provide

structural biologists with a suite of experimental tools

to simultaneously probe biomolecular structure and dy-

namics.

X-ray methods to study biomolecular
structure and dynamics
Time-resolved X-ray crystallography is the technique

that is currently able to provide the greatest spatial and

temporal resolution over the whole structure of a protein.

However, it is limited by the requirement for well dif-

fracting protein crystals. Although great advances have

been made in this field, crystallization remains an art

rather than an exact science. Excitingly, the possibility of

performing X-ray diffraction experiments on in vivo
grown protein microcrystals has been recently demon-

strated [1,2�]. However, major protein classes such as

membrane proteins and intrinsically disordered proteins,

both key players in the life of the cell, are difficult or

impossible to crystallize. This challenge is compounded

by the delicate nature of protein crystals. Large confor-

mational changes can either destroy the crystalline lattice,

making X-ray data impossible to collect, or be restricted

by the crystal packing, preventing reaction progression in

the crystal.

An alternative approach to study the dynamics of biologi-

cal macromolecules is to monitor the time evolution of X-

ray scattering by liquid solutions of the biomolecules of

interest. This has recently emerged as a powerful method

to investigate relevant biological reactions on systems

that are either not easy to crystallize or undergo large

scale conformational changes that cannot take place with-

in a crystalline environment, such as quaternary structure
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Time-resolved X-ray diffraction from protein crystals and scattering

from protein solutions provide complementary information.

Crystallography can yield atomic resolution information about the

whole molecule, but requires that the crystal remains intact during the

reaction. Solution scattering is extremely sensitive to structural

changes with the advantage that crystals are not required. However,

associating the scattering changes with specific structural

rearrangements remains difficult.

Figure 2
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Conformational changes of biomolecules can be triggered with

different methods (i.e. direct laser excitation, laser T-jump and rapid

mixing) and monitored with time-resolved X-ray crystallography, wide-

angle X-ray scattering (WAXS) or small-angle X-ray scattering (SAXS).

The experimental technique and the triggering method must be

matched with the time-scale and type of structural change to be

investigated. Although crystallography can — in principle — be used

to detect conformational changes extending up to tens-of-Angstroms,

often only relatively small motions can be accommodated by the

crystalline environment and thus be observed in a time-resolved

experiment.
rearrangements, macromolecular folding or protein aggre-

gation. The ability to investigate such a large variety of

biologically relevant processes comes at the expense of

spatial resolution and unbiased retrieval of structural

information. The X-ray scattering pattern from an ensem-

ble of randomly oriented and unequally spaced macro-

molecules lacks the characteristic Bragg peaks of

crystalline samples (Figure 1). Nevertheless, changes in

the overall dimension/mass can be readily measured in

the SAXS (small-angle X-ray scattering) region of the

scattering pattern while higher resolution information

(relative position of different subunits, domains, or sec-

ondary structure elements) has fingerprints in the WAXS

(wide-angle X-ray scattering) region (Figure 3).
Current Opinion in Structural Biology 2015, 35:41–48 
Designing a time-resolved experiment
When planning a time-resolved experiment a number of

factors must be taken into consideration. First, the time-

scales of interest must be identified as these will define

the X-ray source and experimental protocol required.

Once the decision as to type of experiment and time-

resolution required has been reached then the question of

reaction initiation must be addressed.

Choice of source and experimental protocol

In any time-resolved experiment, the key consideration is

signal to noise (S/N). The fundamental time-resolution of

the experiment is determined by the time it takes to

deliver enough photons onto the detector for a measur-

able signal to be obtained. How fast the required number

of photons can be delivered depends on the brilliance of

the X-ray source.

Third generation synchrotron radiation sources are able to

provide X-ray pulses as short as �100 ps and, by using

polychromatic Laue radiation, can deliver 1010 photons

per pulse at the sample. Such X-ray photon flux is suffi-

cient to perform time-resolved experiments at time-scales
www.sciencedirect.com
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Figure 3
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Schematic illustration of the X-ray solution scattering profile of a

typical globular protein (central panel, in magenta) and qualitative

signal changes (in green) as a result of (a) protein aggregation; (b)

protein expansion; (c) protein tertiary structural changes; (d) protein

unfolding. In the case of tertiary structural changes, expected

difference signals in the WAXS region are of the order of �1% and are

thus better visualized as scattering difference patterns (DI versus q).

The unfolding of globular proteins can be qualitatively assessed using

a Kratky plot (q2I versus q). In the case of globular proteins, the Kratky

plot presents a peak at q ¼
ffiffiffi

3
p

=Rg;, where Rg is the protein radius of

gyration.

* BL4-2 beamline at SSRL (SLAC National Accelerator Laboratory,

USA); BioCAT 18ID beamline at APS (Argonne National Laboratory,

USA); SAXS-1 beamline at LNLS (Brazil); ID02 beamline at ESRF

(France); SWING beamline at SOLEIL (France); P12 BioSAXS beam-

line at PETRA III (DESY Hamburg, Germany); I22 beamline at Dia-

mond Light Source (UK); BL45XU-SAXS beamline at Spring-8 (Japan).
as short as 100 ps. For lower time-resolutions, a train of

100 ps X-ray pulses rather than a single pulse can be used

to probe the sample, thus increasing the S/N.

X-ray free-electron lasers (XFELs) are an exciting new

alternative if sub-picosecond time-resolution is needed.

XFELs are able to produce extremely short (�10 fs) X-ray

pulses with a number of photons �102–103 times higher

than the �100 ps pulses produced at synchrotrons. More-

over, XFEL pulses can be focused down to �0.1 mm

without significant reduction in the number of X-ray

photons delivered to the sample. XFELs have been used

to perform the first steady-state serial femtosecond crys-

tallography (SFX) experiments on protein crystals [3,4�].
In SFX a suspension of nano-to-micro crystals is delivered,

usually via a liquid jet, into the path of the X-ray beam.

Single diffraction patterns are recorded by a fast pixel array

detector whenever an X-ray/crystal hit occurs and these

patterns are then assembled into a complete dataset.

Similar experiments have been shown to be feasible also

at synchrotrons [5–8]. The main advantage of XFELs for

dynamic studies is thus that they allow us to address

scientific questions that require sub-ps time-resolution.
www.sciencedirect.com 
Several options for time-resolved data collection strate-

gies exist. All are based on the well established classical

pump-probe method, where the reaction initiation

(pump) is followed by an X-ray probe (or probe series)

after a time-delay. In the simplest case of a reversible

system which relaxes back to its initial state in a reason-

able time (within a few seconds) and without appreciable

radiation damage buildup, this can be repeated many

times to increase S/N, explore different time-delays

and, for crystallography, all needed crystal orientations.

In practice, even for readily reversible biological systems,

such as naturally photoactive proteins, radiation damage

is a significant problem, necessitating either a constant

delivery of fresh sample or the dilution of radiation

damage over a large sample volume for both scattering

and diffraction experiments. An elegant modification for

diffraction experiments is the Ratio method where a

probe-pump-probe sequence is used and the ratio be-

tween the pre and post pump X-ray intensities [9,10], or

between independent reference and post pump intensi-

ties [11], is determined for each reflection. A recently

proposed alternative approach to classic pump-probe

experiments is to use Hadamard transform based X-ray

probe pulse sequences to improve the time-resolution of

experiments using slow detectors or flux limited X-ray

sources [12�].

Reaction initiation

There are two requirements that must be considered for

reaction initiation. First, the process must be triggered in a

significant fraction of the sample and second, the trigger-

ing event must be faster than the process of interest.

Rapid mixing

Classical stopped-flow and continuous-flow apparatus are

available at several synchrotron beamlines dedicated to

time-resolved X-ray scattering experiments,* and can be

used to study reactions triggered by the rapid mixing of

different solutions in the ms [13,14] or even ms time-

scales if a continuous-flow apparatus with T-shaped

micromixers [15] or jet-in-jet devices are employed

[16,17]. In the case of protein crystals, the simplest

approach to reaction initiation is to allow the substrate

to diffuse into the crystal, where for micro or nano-crystals

diffusion times are on the order of ms and ms respectively

(Figure 4) [18].

Direct and indirect light activation

To achieve higher time-resolutions reactions must be

triggered with a short laser light pulse. This can be used

to either directly photoexcite a light sensitive reaction
Current Opinion in Structural Biology 2015, 35:41–48
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Figure 4
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Techniques for triggering protein conformational changes either in crystalline or solution samples. Light activation: light pulses are used to

photolyze a bond, rapidly increase the temperature of the solvent surrounding the protein, or to induce the release of a photocaged compound.

Rapid mixing: a solution containing either protein crystals or solubilized protein can be mixed with a solution containing a substrate or a

denaturant agent and then probed with X-rays to monitor any structural change occurring as a function of time.

# While SVD or GA analysis are implemented in several commercial or

freely available scientific software packages, a custom fitting routine that

matches the kinetic model chosen to describe the observed kinetic

changes is required in the case of generalized GA.
[19] or to create a temperature jump [20] that initiates, for

example, a folding or enzymatic reaction.

The simplest biological processes to investigate with

time-resolved methods are those occurring in inherently

light sensitive proteins, many of which can be activated

efficiently with short (fs–ns) laser pulses. Unsurprisingly

the majority of sub-ms time-resolved structural experi-

ments to date have focused on such systems.

For non-naturally photoactivatable systems, either photo-

labile protecting groups can be chemically added to the

natural substrate, or photocaged unnatural amino acids

can be site-specifically incorporated into the protein itself

[21�]. However, this is non-trivial. Site-specific labelling

of proteins is dependent on the reactivity and accessibili-

ty of the residues or requires genetic incorporation of the

unnatural amino-acid (with only a few photocaged unnat-

ural amino acids currently available), and the photocaging

of substrates can be synthetically challenging [22]. Fur-

thermore, the correct choice of photocaging scaffold is

essential as this determines the time-scales accessible.

In all light activated reactions (whether natural or not) the

major limitation of photoinitiation is the laser penetration

through the sample (Figure 4). Again a balance must be

struck between a high sample concentration, desirable to
Current Opinion in Structural Biology 2015, 35:41–48 
provide good S/N (and unavoidable in a crystallographic

experiment), and the need for the laser to uniformly

excite the sample volume to be probed.

Data analysis
The result of an X-ray time-resolved experiment, either

on a crystalline or solution sample, is usually a set of

average multi-dimensional data (integrated Bragg peaks,

scattering curves, etc.) at different time-delays from the

reaction triggering event. The signal evolution at time-

scales longer than few tens of ps, can usually be attributed

to exchanges in the population of a finite set of different

molecular species each with a well defined (not time-

dependent) structure. In such cases, singular value de-

composition (SVD) or global analysis (GA) are usually

used to extract a limited number of ‘components’ de-

scribing the time-evolution of the experimental signals

[23–26]. When a plausible kinetic model is available, it

can be used to analyze the data in terms of a generalized

GA approach# that retrieves the fingerprint of a given

physical species on the basis of its predicted time-evo-

lution [11,24,27]. It must be noted that at ultrafast
www.sciencedirect.com
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time-scales (from fs to ps) the very concept of population

kinetics is of course meaningless and every single time

point has to be treated as an independent component.

The signal time-evolution in this time regime is typically

due to structural relaxations within a given minimum of

the system free-energy landscape. This corresponds to

the observation of a protein within a given energy state

dynamically changing its structure as opposed to the

observation of an energy-activated transition between

two different energy states.

Once the time-independent components have been

found, the analysis usually proceeds very differently for

crystallography and solution scattering. In both cases,

several software packages able to perform standard data

analysis have been developed and are freely distributed.

Crystallographic data are analyzed in the same way as

static data, starting with a known structure to phase the

experimentally determined intensities, followed by ex-

amination of difference electron density maps to identify

the structural changes that occur over time. In the case of

solution scattering data, the basis patterns are usually

analyzed in terms of global parameters (molecular mass,

radius of gyration) or by ab initio methods [28]. However,

the attribution of experimental time-resolved signals to

specific biomolecular motions is usually difficult. This is

only partly due to the intrinsic low spatial resolution of

solution scattering data. Indeed, although it is conceptu-

ally impossible to retrieve a high resolution (all-atom)

model of a biomolecule conformation using only its

solution X-ray scattering pattern, the combination of

TR-SAXS and TR-WAXS data with other detailed struc-

tural information either from complementary spectro-

scopic techniques or from computational approaches

can greatly facilitate the structural interpretation of the

data [29,30,31�].

Examples/case studies
Time-resolved X-ray crystallography

Time-resolved crystallographic studies allow the struc-

tural changes associated with bond breakage/formation,

isomerization, side-chain rotation etc. to be visualized

across the whole protein, this information when combined

with spectroscopic data can provide compelling evidence

for the mechanisms of enzyme catalysis and protein

function. The dynamic motions that accompany chemical

mechanisms, can be used to explain how the structure of

the entire protein contributes to both the lowering of the

activation energy required for enzyme catalysis and the

structural rearrangements that enable signalling and en-

ergy transfer. Incomplete photoactivation and mixtures of

states produced by parallel reaction pathways can intro-

duce uncertainty during data analysis, by performing

time-resolved experiments at multiple temperatures it

is sometimes possible to separate the overlapping energy

profiles of parallel processes to determine intermediate

structures, energy barriers and kinetics.
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The photoisomerization and subsequent structural rear-

rangement of photoactive yellow protein (PYP) has been

extensively studied using synchrotron based time-re-

solved crystallography (most recently [11,32]). Discrepan-

cies between density functional theory calculations and

the mechanism deduced from the analysis of time-re-

solved data have since been highlighted [33,34]. It may be

possible to address these discrepancies with ultra-fast

experiments using an FEL. Indeed, recent time-resolved

SFX experiments on PYP have shown that high-resolu-

tion difference electron density maps show improved

detail when compared to those obtained from Laue

diffraction data [35��]. This has enabled the analysis of

the relative occupancies of two intermediate states (pR1

and pR2) at 1 ms. Serial time-resolved crystallography has

also been applied to photosystem I (PSI) [36] and photo-

system II (PSII) [37,38]. For PSI, changes in diffraction

were observed at 5 and 10 ms following photoexcitation

matching the time-scale of electron transfer from PSI to

ferredoxin. The FEL data also allowed the observation of

changes in the oxygen evolving complex in PSII indicat-

ing binding of a second water molecule during the photo-

cycle.

Time-resolved X-ray solution scattering

A straightforward application of time-resolved X-ray scat-

tering is the study of large conformational changes. These

can be monitored by changes in the macromolecule radius

of gyration (Rg) from the analysis of the SAXS scattering

profile at very small angles in combination with rapid

mixing techniques in which a protein solution is com-

bined for example with a substrate solution or a denatur-

ant one [14,15,39].

Time-resolved scattering has also been used in protein

aggregation studies. The formation of protein aggregates

is naturally and easily detectable in the SAXS region of

the scattering pattern [40–42]. However, the large sample

heterogeneity (distribution of molecular species with

different sizes simultaneously present in solution) can

limit the data analysis and makes the data interpretation

challenging.

Smaller, faster structural changes, such as allosteric

motions or tertiary local changes in protein conformation

can also be very effectively studied using time-resolved

X-ray scattering [27,43–44,45�,46]. We will illustrate this

using the prototypical model system for allosteric pro-

teins, human hemoglobin (Hb). TR-WAXS, in combina-

tion with laser photolysis, was used to study the kinetics

of the R ! T transition in solution [24,47]. The changes

in the relative position of the Hb subunits associated with

the R ! T transition are evident in the WAXS region of

the X-ray scattering patterns and the time-resolved data

can be accurately described in terms of linear combina-

tions of the deoxyHb (T-state) WAXS pattern and a

HbCO (R-state) WAXS pattern [24,48]. Interestingly,
Current Opinion in Structural Biology 2015, 35:41–48
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the rate of the Hb allosteric transition was shown to be of

the order of �1 ms, that is much faster than previously

assumed on the basis of time-resolved optical spectro-

scopic data [49]. Moreover, in spite of the high heteroge-

neity that characterizes a cell suspension, it was possible

to observe the Hb allosteric transition within intact red

blood cells thus demonstrating the feasibility of in-cell

TR-WAXS experiments [50].

The advent of XFELs has opened the possibility of

investigating the structural dynamics of proteins with fs

resolution [51,52]. The extension of time-resolved X-

ray scattering techniques to the use of XFELs is

straightforward, as demonstrated by a TR-WAXS study

on the Blastochloris viridis photosynthetic reaction cen-

ter [53�]. A subpicosecond motion of the reaction cen-

ter, reminiscent of the so-called ‘protein-quake’

proposed by Frauenfelder and coworkers for myoglobin

(Mb) already 30 years ago [54] was observed, although

under conditions of extensive multiphoton absorption

by the protein chromophores [53�]. More recent experi-

ments on carbonmonoxy Mb [55�] showed without any

ambiguity that protein helices are indeed able to move

in the ps time-scale. The strain released by the heme

chromophore after mild laser photoexcitation condi-

tions is transferred to the Mb polypeptide chain within

a few ps and triggers a damped oscillation of the entire

protein. Although synchrotron TR-WAXS experiments

clearly indicated that structural changes were occurring

within 100 ps [27], their characterization has only been

possible with XFELs.

Summary
With the recent developments in X-ray sources (micro-

focus beamlines and FELs), high throughput sample

delivery methods and data analysis protocols time-re-

solved X-ray crystallography and solution scattering are

becoming increasingly accessible to the wide community

interested in investigating biologically relevant macro-

molecular conformational changes. However, the major

obstacle that remains is the challenge of reaction trigger-

ing in systems whose mechanisms are not naturally pho-

toinduced. This will only be overcome by bringing

together the expertise of X-ray and instrumentation

method developers with that of chemists and biologists

to develop new and interesting methods of initiation for

research questions that will benefit from time-resolved

data.
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Cupane A: Probing in cell protein structural changes with time-
resolved X-ray scattering. Soft Matter 2012, 8:6434.
Current Opinion in Structural Biology 2015, 35:41–48 
51. Spence JCH, Weierstall U, Chapman HN: X-ray lasers for
structural and dynamic biology. Rep Prog Phys 2012,
75:102601.

52. Neutze R: Opportunities and challenges for time-resolved
studies of protein structural dynamics at X-ray free-electron
lasers. Philos Trans R Soc Lond B: Biol Sci 2014, 369:20130318.

53.
�

Arnlund D, Johansson LC, Wickstrand C, Barty A, Williams GJ,
Malmerberg E, Davidsson J, Milathianaki D, DePonte DP,
Shoeman RL et al.: Visualizing a protein quake with time-
resolved X-ray scattering at a free-electron laser. Nat Methods
2014, 11:923-926.

This paper reports on the first experiment at an X-ray free-electron laser
using time-resolved WAXS to study the conformational changes of a
photosynthetic reaction center after light excitation. Selection of suitable
frames from non-equilibrium MD simulations in conditions close to the
experimental ones, i.e. extensive multiphoton absorption by the protein
chromophores, was used to interpret the observed time-resolved WAXS
signals in terms of a picosecond protein expansion.

54. Ansari A, Berendzen J, Bowne SF, Frauenfelder H, Iben IE,
Sauke TB, Shyamsunder E, Young RD: Protein states and
proteinquakes. Proc Natl Acad Sci USA 1985, 82:5000-5004.

55.
�
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