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Localisation length L, (in units of the mean droplet diameter d) of the velocity
profiles from Couette flow simulations of a 2d dense emulsion as function of the
friction parameter 8. The emulsion is subjected to a force F = —fv, propor-
tional to the velocity field v, mimicking the effect of friction with confining walls
used in experiments in Hele-Shaw cells. Due to such friction, the shear localises
in boundary regions. This effect is coupled to the localisation due to the intrin-
sic complex rheology of the material. The numerical results (bullets) for L, are
compared with the theoretical prediction (dashed line) L,(5) = W,
obtained solving analytically, in two asymptotic limits (in the figure data in the
regime of applied shear stress much larger than the yield value are shown), the
model equations; K = 1.7 Ibu (lattice Boltzmann units) is the plastic viscosity
of the material and £ ~ 2.5 d the cooperativity length emerging due to the non-
local soft-glassy rheology of the emulsion. £ is obtained via an exponential fit
of the velocity profile for f = 0 Ibu in the wall proximal region. L, is extracted
from a local fit of the velocity profiles (inset) for various 8: S = 0 lbu (O),
B=2x10"°1bu (o), 3=3x 107" lbu (A) and 8 =4 x 1075 Ibu (V).
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Abstract

We study the Couette flow of a quasi-2d soft-glassy material in a Hele-Shaw geometry. The material is chosen to be
above the jamming point, where a yield stress oy emerges, below which the material deforms elastically and above
which it flows like a complex fluid according to a Herschel-Bulkley (HB) rheology. Simultaneously, the effect of the
confining plates is modelled as an effective linear friction law, while the walls aside the Hele-Shaw cell are sufficiently
close to each other to allow visible cooperativity effects in the velocity profiles (Goyon et al., Nature 454, 84-87 (2008)).
The effects of cooperativity are parametrized with a steady-state diffusion-relaxation equation for the fluidity field
f =+/0o, defined as the ratio between shear rate 4 and shear stress o. For particular rheological flow-curves (Bingham
fluids), the problem is tackled analytically: we explore the two regimes o > oy and o ~ oy and quantify the
effect of the extra localisation induced by the wall friction. Other rheo-thinning fluids are explored with the help of
numerical simulations based on lattice Boltzmann models, revealing a robustness of the analytical findings. Synergies
and comparisons with other existing works in the literature (Barry et al., Phil. Mag. Lett. 91, 432-440 (2011)) are
also discussed.

Keywords: Soft-Glassy Materials, Rheology, Localisation, Confinement, Lattice Boltzmann Models, Binary Liquids

1. Introduction

In a wide variety of systems, such as emulsions, foams, and granular materials [1, 2, 3, 4], when the packing
fraction of elementary constituents (droplets, bubbles, grains) exceeds a critical value, dynamical arrest occurs and
the system undergoes a kind of transition, known as jamming. Above the jamming point, a yield stress oy emerges,
below which the material deforms elastically and above which it flows like a complex fluid. Upon confinement and

increase of the droplets/bubbles/particles concentration, a challenging question concerns the role of microscopic plastic
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rearrangements and the emergence of their spatial correlations exhibiting cooperativity flow behavior at the macroscopic
level [5, 6, 7, 8, 9]. Such rearrangements affect the overall rheological behaviour of the material, usually described by
the Herschel-Bulkley (HB) law of rheology, relating the stress o to the shear rate 4. Goyon et al. [5] have demonstrated
that a modification of the local continuum theory can be successful in accounting for the observed experimental velocity
profiles of concentrated emulsions. In particular, they introduced the concept of a spatial cooperativity lengthscale
¢ and postulated that the fluidity, defined as f = 4/0o, is proportional to the rate of plastic events [9] and follows a

diffusion-relaxation equation when it deviates from its bulk value

EAf(r) + folo(r)) — f(r) = 0. (1)

The quantity f;, is the bulk fluidity, i.e. the value of the fluidity in the absence of spatial cooperativity (£ = 0). The
non-local equation (1) has been justified [9] based on a kinetic model for the elastoplastic dynamics of a jammed
material, which takes the form of a non-local kinetic equation for the stress distribution function. In the steady state,
under the hypothesis of weak cooperativity, the model predicts non-local equations of the form (1), plus an equation
predicting a proportionality between the fluidity and the rate of plastic events. This picture was later applied to other
complex fluids, such as Carbopol gels [10], granular media [3, 11], and foams in a 2d cylindrical Couette geometry [8].
The spatial cooperativity was shown to be of the order of a few times (typically five) the size of the elementary
microstructural constituents, i.e. the droplets for emulsions [5, 6, 12], the bubbles for foams [8], the blobs for a
polymeric gel [10]. The fluidity model agrees with existing experiments, and provides a convenient framework to
rationalize the flow of confined complex fluids. However, at least two points remain unclear and largely unexplored.
First, the issue of the boundary condition at solid walls for f. Only recently, Mansard et al. [13] explored the role of
surface boundary conditions for the flow of a dense emulsion. Both slippage and wall fluidization were shown to depend
non-monotonously on the roughness. Second, the fluidity parameter f has been seldom related to an independent
and direct measure of the local density of plastic events. Sometimes, indirect indications of such a relation have been
proposed, based on the correlations of the fluctuations of the shear rate [7]. Using numerical simulations based on
the bubble model [14], Mansard et al. [15] were able to measure independently the fluidity and the density of plastic
events, but they show that the two quantities are not proportional; more precisely, the rearrangement rate was found
to be a sublinear power (with an exponent 0.4) of the fluidity. On the other hand, using experiments in a Hele-Shaw
cell and simulations based on lattice Boltzmann method, we showed recently [16] that for foams and emulsions flowing
in a 2d channel, there is a good correlation between the rate of plastic events and the fluidity.

Very frequently some of the systems of interest are confined so as to be quasi-2d: this is the case of Hele-Shaw

cells [17, 18, 19], or quasi-2d systems made of bubbles confined between a plate and a liquid surface [20]. A friction
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force due to the presence of one or more confining plates may provide shear localisation for the velocity profiles
on lengthscales which can be of the order of a few bubble/droplet sizes, thereby interfering with the cooperativity
lengthscale described above. This extra localisation is usually parametrized with another lengthscale related to the
viscosity and wall friction [21]. This naturally poses the question on how to rationalize the coupled role of friction and
non-locality. Barry et al. [22] combined the non-local constitutive equation for the fluidity field (1) with the continuum
theory of 2d shear localisation for a foam in a Couette Flow [21]. They showed that the localisation length due to
friction is increased by cooperativity, and explored the limiting cases of zero and infinite cooperativity length. Due to
the generality of their formulation, their analysis may be directly applicable to other complex fluids.

The aim of this paper is to complement the results by Barry et al. [22] exploring the complex flow of a soft-glassy
material in a Hele-Shaw geometry with both friction and non-locality. The problem is tackled analytically for the case
of a Bingham fluid, where we study the two regimes ¢ > oy and o ~ oy. A distinctive feature of our analysis, is to
explore those situations where the wall acts as a source of fluidity propagating into the bulk of the system [13, 15] and
to provide analytical results which remain finite in the limit of zero wall friction (see section 2). In the second part
of the paper, we explore the validity and robustness of the analytical findings by performing numerical simulations of
the flow of concentrated 2d emulsions under the effect of a linear friction.

The paper is organized as follows: in Sec. 2 we recall the essential features of the theoretical framework for the problem
at hand; in Sec. 3 we derive analytical results for a Bingham fluid; in Sec. 4 we recall the essential features of the
numerical model used to perform the numerical simulations, while in Sec. 5 we compare the numerical results with

the analytical predictions of Sec. 3. Conclusions and implications for further studies are finally discussed in Sec. 6.

2. Problem Statement

In this section we briefly recall the essential features of the fluid-dynamical model we consider for our study. The
model considers a steady 2-dimensional flow in a Hele-Shaw cell with a width H and vanishing inertia. We also
neglect end effects and assume that the flow is streamwise invariant. Hence, the flow field is unidirectional and writes:
v = v(z)&, with & the streamwise direction and Z the spanwise one (with z € [—-H/2; +H/2]), and the problem reduces
to a 1-dimensional one for the velocity profile v(z). We set the velocity at the boundaries such that v(£H/2) = tv,,.
The bulk wall friction is modelled following Janiaud et al. model [21], i.e. adding a linear friction force Fp = —fv in
the momentum balance equation which, then, reads

do(z)
dz

— Bu(z) =0, (2)
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with 8 a wall friction parameter and o(z) the total shear stress. In principle, a more realistic modelling of foams
would require a non-linear law for the friction force, i.e. Fp = —fv®, with a < 1 [23, 24, 25], which would, however,
make any analytical approach unfeasible; furthermore, we have recently shown, by comparison with experimental data
on Poiseuille flows, that the effect of non-linearities of wall friction on the flow profiles is rather weak [16]. Taking
into account cooperativity and non-local effects induced by local plastic rearrangements is also key for our purposes.
The underlying idea is that correlations among plastic events exhibit a complex spatio-temporal scenario: they are
correlated at the microscopic level with a corresponding cooperativity flow behavior at the macroscopic level. Plastic
events trigger avalanches of such processes in their vicinity and the consequent non-local effects are captured in terms
of the effective inverse viscosity, or fluidity, f(z) = 4(z)/o(z), relating stress to strain rate %(z), locally. At the

mathematical level, this is translated in the following equation

2d2f(z)

dz?

§

+ o) = f(2)] =0 (3)

where the scale £ quantifies the non-locality of the cooperativity within the flow. The quantity f; is the bulk fluidity,
i.e. the value of the fluidity in absence of spatial heterogeneities. The bulk fluidity f; only depends upon the shear
stress wvia the rheological flow curve. As stressed in the original papers [5, 9, 15], in fact, the bulk fluidity must be
interpreted as the fluidity in absence of non-local effect, as it would be for an HB flow-curve 0 = oy + K4% (a and K
are characteristic parameters; in particular, for a Bingham fluid, « = 1 and K is essentially the plastic viscosity of the

material) homogeneously valid, and it is expressed in terms of the shear stress as

1 /o—oy 1/a
fb(U)ZE( I > :

The bulk fluidity (4) is a constant in absence of wall friction since o = const from equation (2). Calculating f; from the

(4)

velocity profile is obviously wrong, the latter being affected by non-local effects: while the bulk fluidity only depends
upon the stress, f(z) depends upon the position in space as predicted by equation (3). Moreover, the solution of the
fluidity equation requires boundary conditions, i.e. one has to prescribe the value the fluidity close to the boundaries.
Equations (2)-(4) are coupled together and analytical solutions cannot easily be found: one has to work out the details
in some appropriate asymptotic limits or solve the problem numerically [22]. However, in the case of a Couette flow
with zero friction (8 = 0), an exact analytical solution can readily be found. In particular, at fixed shear stress o and

with boundary conditions f(+H/2) = f,, the expression of the shear rate %(z) reduces to [6]:

cosh(z/£) }

cosh(H/2¢) (5)

i) = o {fb(a) Tl folo)]

independently of the HB parameters of the flow-curve in (4). Switching on the friction parameter, already at the level

of the Couette flow, makes the problem more challenging: the shear stress is no longer constant and the solutions of
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Egs. (2)-(4) depends on the parameters of the flow-curve (4). Our strategy will be to work with a Bingham fluid (i.e.
a = 1 in equation (4)), which allows to write exact solvable equations in the two limits ¢ > oy and 0 < 0 —oy < oy.
In particular, in those limits, the effect of friction will be quantified exactly on the velocity profiles in such a way
that in the limit 8 — 0 we will recover the solution (5). Through comparisons with numerical simulations [16], for
which the flow-curve fulfills the HB equation with an exponent a < 1, we will try to capture what we believe are the
“universal” features that we are able to prove analytically in the case a = 1.

The study that we propose bears analogies with the work of Barry et al. [22], who combined the local model of Janiaud et
al. [21] with a non-local constitutive equation for the fluidity field in a Couette flow. The authors explored analytically
the limit of weak (§ < H) and strong (§ — oo) cooperativity. For small £ (and close to yield) they predicted the

emergence of a localisation length L, of the velocity profile, an increasing function of both the cooperativity length &

Lﬁ:\/g’ (6)

through the relation L, = ,/£2 + L%, which can be approximated (being £ small) by L, ~ Lg (1 + %), while in
B

and the friction length:

the limit & — oo an exponential profile is recovered with L, growing with Lg. To work out these results they also
dealt with a Bingham fluid, as we do here. However, there are significant differences with our approach which must be
underlined, the first of which is of a conceptual character. In [22] the cooperativity effects are seen as corrections to the
underlying continuum model and the bare fluidity model results [5, 9] are not recovered in the limit of vanishing viscous
drag (Lg — o0); instead, we put ourselves in the —somehow— complementary perspective of tuning the wall friction
(Lg) at a given cooperativity (£), motivated by the aim of comparing with mesoscopic numerical simulations where
the latter is fixed by the fluid physical properties (and it cannot be easily related to the parameters of the numerical
model). Furthermore, we will explicitly address both the limit of low (close to yield) and high (far from yield) shear
stress, showing that wall friction and non-locality conspire to give the global shear localisation in opposite ways in
the two regimes. Finally, the boundary conditions for the fluidity are different: based on the idea that the fluidity
equation looks like a steady-state diffusion equation, Barry et al. assume an adiabatic boundary condition at the walls,
f'(z=+H/2) = 0. This contrasts with our choice of using a Dirichlet-type boundary condition, f(z = £H/2) = f.;
it is indeed our interest to explore those situations where the wall acts as a source of fluidity propagating into the
bulk of the system [13, 15], in the spirit of the works by Bocquet et al. [9] and Goyon et al. [5]. Generally speaking,
Mansard et al. [13] recently proposed a mixed boundary condition: Féwanf'(z = £H/2) = f(z = £H/2) — fs(0),
where Eyan is a surface cooperativity length, and fs(o) is the value of the fluidity at the wall when the fluidity gradient

vanishes at the wall. The circumstances at which this boundary condition reduces to an adiabatic-like or a Dirichlet
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condition remain an open issue.

3. Asymptotic results for a Bingham fluid

In this section we report the analytical solutions for the coupled Eqgs. (2)-(4) upon the assumption of a Bingham

fluid (@ = 1) and explore separately the two regimes, o > oy (fluid regime) and 0 < o — oy < oy (plastic regime).

3.1. Fluid regime (o> oy )

In this case the bulk fluidity f is a constant and equal to the inverse plastic viscosity K ~!. Under this assumption,

the fluidity equation (3) decouples from that of the velocity profile and can be integrated directly to give

f(z)=fo+ ({;Us}:(ig) cosh (2) ) (7)

where A = H/2¢. The force balance (2) can be recast, upon derivation with respect to the variable z and recalling the

fluidity f(z) = 4(2)/o(z), in the following form
o — Bfo=0. (8)
Inserting the expression (7) for f we get

" Jw = fo z -
o _ﬁ<fb+cosh(/\)COSh<E>>G_O' 9)

Equation (9) can be rewritten (upon the change of variable z — Z = 2z /) as

J//_€2 1 — 1_wa
cosh(\)

cosh(i)) o =0, (10)

where we have defined ¢ = {/Lg and used the definition of the friction length given in (6). A solution of equation (10)
is
o(2) = M(e*(8), 4(B); 2i2)

where M is the modified Mathieu’s function [26] and ¢ = % i;f(ﬁ\) If H > &, interesting insight close to the wall

z = H/2 is provided by the asymptotic limit # > 1 in equation (10). Then we approximate coshZ ~ e*/2, and

Kfo—1 -
" 2 w 241 -0
7 e (2(zosh()\)e * )U ’

equation (10) reduces to

or also, with the change of variable e*/2 = ), to

Kf -1

2 1 / 2 w 2

o' +no —4 — +1)o=0.
" " ¢ <2COSh(/\)77 > 0
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Finally, setting # = en\/2(K fi, — 1)/ cosh(\) and a = 2¢, we get
1 a?
1 /! —
U+;U—(1+E)O’—O (11)
which is the Bessel’s modified equation. The velocity is positive, hence from (2), o is a monotonously growing

function. A solution of (11) is then proportional to the modified Bessel function of the first kind I, (x), i.e. o(z) =

aq(,?)fgg/Lﬁ (e\/2(wa — 1)/ cosh(A) 62/25), where o) is the stress in absence of wall friction. The solution for the
velocity profile (close to the top wall z = +H/2) is, therefore,

_ o [~ Jw = fo S & J2(Kfw=1) ¢
v(2) = vy + 0 /H/2 (fb + cosh() cosh (5)> L/, (LB “osh(h) et/ ) d¢. (12)

For small £/Lg the argument of the Bessel’s function is small and we can expand it as I, (z) ~ (x/2)"/T'(v + 1) [26],

which gives

2¢/Lg
(L%s) (K fu — l)ﬁ/Ls B

0(2) ~ v + (0 [1 4 (K fu— 1)e(<_H/2)/§} [e(—H/2)/26)2¢/ La g (13)

KT (i—i—kl) H/2

where I'(z) is Euler’s Gamma function and we have made use of f, ~ K 1. The latter equation can be easily integrated

resulting in the following expression for the velocity profile
0(2) ~ vy + A {L/3 [e@*H/?)/Ls - 1} (K fu—1) Ly [e<Z*H/2>/Lv - 1] } , (14)

where the coefficient A is given by
26/Lg
£ _ 1\é/Lg
0) (Lﬁ) (Kfw—1)

KT (% +1)

and the localisation length L, by

_ Lgg &
L”_LB+£_1+£/L5' (16)

Equation (14) suggests that the velocity profile is the result of the superposition of two exponentials with characteristic

lengths Lz and L,. For not too high friction (small 5), Lg is large and the velocity localisation is controlled by the

second exponential, i.e. it is determined by the localisation length L,:
v(2) ~ vy + A(K fop — 1)Ly, |eEH/D/ Lo 1] (17)

We notice from equation (16) that L, tends to £ when Lg — oo (that is § — 0), as one would expect. Also, for a

finite &, L, is always smaller than £: wall friction, then, adds up as an extra source of localisation for the velocity.
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It is worth commenting that the above scenario could also be predicted based on heuristic arguments. Indeed, equation
(8) suggests a stress localisation scale related to Lg, although the exact analytical solution hinges on the knowledge
of the function f = f(z). Once a localisation for the stress has been predicted, it is then straightforward to derive the

resulting localisation for the velocity v(z) = [ o(¢)f(¢)dC.

3.2. Plastic regime (0 < o0 — oy < oy)

This is also the regime considered by Barry et al. in [22] (see equation (12) of their paper) to derive the result in
the weak cooperativity limit. In this plastic regime, the effect of friction must be expected to be small: at yield, in
fact, the bulk fluidity goes to zero as well as the velocity (the friction force goes as ~ Bv). If we write 0 = oy + &,

with & < oy, the bulk fluidity (to first order in ¢/0y") reads:

g

If we now derive the fluidity equation (3) twice with respect to z, we get

dif 1<d2f d2fb>

dz4 g2

1
dz? dz? (19)

For the second derivative of f;, we see from equation (18) and from the mechanical equilibrium condition ¢/ = v that

the following relations hold
Ph_ e 1
dz2 Koy dz? Koy dz

1 .
(Bv) = Kiay(ﬁw’
but ¥ = of ~ oy f (again, to first order in &), hence

ef, B

a2 ?f
and equation (19) becomes

df1 (d?f B ) 20)

dzt T 2 \d?2 K
which is a closed linear fourth-order differential equation for f. Using Lg = /K/3, the latter equation can be

rewritten as
1 1

1
-+
2 272
el Ter?

whose solution, due to symmetry reasons (i.e. f(—z) = f(z)), is

fIV

=0,

() = C4 cosh (%) + Cy cosh <£> : (21)
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where (' » are two integration constants and L4 are such that

1 1 4¢2
Li:%?(li 1—L€2>; (22)

the latter equation provides, in the low friction limit (£ < Lg, to first order in £?/L3), L =~ Lg and Ly =~ L, where

52
Lv:£<1+2L%>, (23)

whence, equation (21) can be rewritten in the following form, fulfilling the boundary condition f(£H/2) = f,,

. w — (eff) H/2 :
1) = 157 + 2 D O o (2, (24)
where (superscript (0) refers to the 8 — 0 limit)
) = 1" comh (£ ). (25)
Lg

As in the previous section, the zero-friction (Lg — co) limit of equation (23) gives L, — &, i.e. we recover the purely
cooperative case. Equation (24) is quite elegant since it has the form of the fluidity without wall friction and it unveils
that the effect of the latter is to renormalize the bulk fluidity into an effective one according to equation (25). For very
large Lg (i.e. small friction) we can assume, in equation (24), éeff)(z; B) =~ flfo), that is the fluidity (and hence the
velocity) profile is controlled solely by L,. Equation (23) elucidates well the interplay of cooperativity and friction,
showing that the localisation length L, is indeed proportional to the cooperativity length & and supports a relative
increase proportional to &2/ L%. These results are in qualitative agreement with those found by Barry et al. [22], in
that wall friction and non-locality conspire to give the global shear localisation. However, in Barry et al. [22] the
cooperativity is taken as a perturbation to the underlying wall friction and the result tends to diverge at vanishing
friction, whereas the localisation length must remain finite in this limit and equal to £&. As mentioned above these
effects are small, namely of second order in {/Lg: for comparison, let us recall that in the fluid regime the correction
to the localisation length with respected to the no-friction reference case was of the first order. The numerics (see
Sec. 5) will actually confirm these observations.

To conclude this section, let us remark an important result: the velocity profiles exhibit different forms (controlled
by different localisation lengths) in the two regimes, hence they cannot overlap upon simply rescaling by the wall
velocity (i.e. they are shear-rate dependent). Of course, this is an effect due to the conspiring role of wall friction
and cooperativity; in absence of spatial heterogeneities (which translates, in the language of the kinetic elasto-plastic

model [9], into the condition £ — 0) the only relevant length would be Lg and it is easy to realize that the profiles
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would recover the rate-independency, as observed experimentally by comparison of monodisperse and polydisperse
2d foams under linear shear [27]. Analogously, without wall friction (i.e. in the limit Lg — o0), L, tends to &, as

previously commented, and, again, rate-independent profiles are recovered [12].

4. Numerical Model

For the numerical simulations, we adopt a mesoscopic lattice Boltzmann (LB) model for non ideal binary fluids,
which combines a small positive surface tension, promoting the formation of stable diffuse interfaces, with a posi-
tive disjoining pressure, inhibiting interface coalescence. The model has already been described in several previous
works [16, 28, 29]. Here, we just recall its basic features. We consider two fluids A and B, each described by a discrete
kinetic distribution function fe;(r, ¢;;t), measuring the probability of finding a particle of fluid ¢ = A, B at position r
and discrete time ¢, with discrete velocity c¢;, where the index i runs over the nearest and next-to-nearest neighbors of

r in a regular 2d lattice [28, 30]. The distribution functions evolve in time under the effect of free-streaming and local

two-body collisions, described by a relaxation towards a local equilibrium ( fc(fq)) with a characteristic time scale 77 p:
1 e
feilr + e eist +1) = fei(r,eist) = - (f(i N\ féiq)) (r,cist) + Fei(r, cist). (26)
LB

The equilibrium distribution is given by

;. vv:(cie; — cgl)} (27)

I = [1 \ vc? " 2ct
with w; a set of weights known a priori through the choice of the discrete velocity set [31] and ¢? = 1/3 a characteristic
velocity (a constant in the model). Coarse-grained hydrodynamical densities are defined for both species pc =", fei
as well as a global momentum for the whole binary mixture j = pv = Z“ feici, with p = ZC p¢. The term Fei(r, ¢;;t)
is just the i-th projection of the total internal force which includes a variety of interparticle forces. First, a repulsive
(r) force with strength parameter Gap between the two fluids

F(r) = ~Ganpc(r) Y wipe (r+ ee; (28)
i,¢'#C
is responsible for phase separation [28]. Furthermore, both fluids are also subject to competing interactions whose role
is to provide a mechanism for frustration (F') for phase separation [32]. In particular, we model short range (nearest
neighbor, NN) self-attraction, controlled by strength parameters Gaa1 < 0, Gpp,1 < 0), and “long-range” (next to
nearest neighbor, NNN) self-repulsion, governed by strength parameters Gaa 2 > 0, Ggp 2 > 0):

FC(F) (r) = _gcgﬂb{(r) Z wﬂﬁg(’r +ci)e; — g<<72¢4(’l") Z ’wﬂﬁg(r + ¢i)e;, (29)

1I€ENN iIENNN
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with ¥¢(r) = ¢[p(r)] a suitable pseudo-potential function [33, 34, 35, 36]. The pseudo-potential is taken in the form
originally suggested by Shan & Chen [33, 34]:

belpe(r)] = po(l — e Pelr)/eo), (30)

The parameter py marks the density value above which non-ideal effects come into play. The prefactor pg in (30)
is used to ensure that for small densities the pseudopotential is linear in the density ps. With the phase separation
interactions (28) we can generate a collection of droplets whose overall stability against coalescence is determined
by the stability of the thin films formed between the neighboring droplets. Due to the effect of frustration (29), a
positive disjoining pressure can be achieved [16, 37], which stabilizes the thin films and make the droplets stable
against coalescence. As already stressed elsewhere [16], the numerical model possesses two advantages that have been
used rarely together. From one side, it gives a realistic structure of the emulsion (though with the limitation of an
overestimated interface-thickness/droplet-size ratio), like for example the Surface Evolver method [38, 39, 40] would
do; at the same time, due to its built-in properties, the model gives direct access to equilibrium and out-of-equilibrium
stresses [37], including elastic and the viscous contributions. In contrast to other mesoscopic models, such as Durian’s
bubble model [14], our model naturally incorporates the dissipative mechanisms and the interfacial constraints that

lead to T1-type plastic events [12, 16].

5. Numerical Results

We studied numerically a planar Couette flow of a 2d dense emulsion confined between two parallel walls in a
computational box of L x H = 1024 x 1024 lattice nodes, with steady velocity at the boundaries +v,,, and with a
volume fraction of the continuous phase ¢ = 7.5% (a study of how the phenomenology changes at spanning various
liquid fractions would be also of interest, but beyond the scope of the present work). All the model parameters are
exactly the same used in our recent work [16]. Two sets of simulations have been performed by varying the wall
velocity, which amounts to impose a nominal shear rate of 4 = 2v,,/H = 9.76 x 1076 Ibu ! (left panel of Fig. 1) and
4 = 2.92 x 1075 Ibu (right panel of Fig. 1). The smaller shear is just above the yielding point. The other shear,
instead, is the largest that we can obtain with stable numerical simulations. Stresses are measured as an outcome of
the simulations [16]: we find o ~ 1.2 oy (for the case 4 = 9.76 x 1076 Ibu) and o ~ 1.7 oy (for 4 = 2.92 x 107° Ibu). In
both sets of simulations, the parameter 8 has been changed to explore the effect of the wall friction and compare with

the theoretical results. To this aim, however, some comments are in order. First, in our derivations we have assumed a

1bu stands for lattice Boltzmann units
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Figure 1: We report snapshots of the density field of closely packed droplets in a Couette flow simulated with the lattice Boltzmann models
(see Sec. 4). Light (dark) colors refer to regions of space with majority of the dispersed (continuous) phase. Two sets of simulations
have been performed by varying the wall velocity, i.e. imposing a nominal shear rate of: 2v,,/H = 4 = 9.76 x 1076 Ibu (left panel) and

4 =2.92 x 1072 lbu (right panel). Visual inspection reveals, as expected, a larger distortion at larger shears.

HB relation (4) with a = 1, which is not compatible with the properties of the numerical model, the latter supporting
HB rheology (4) with a < 1 [12, 29]. For a quantitative comparison between the numerics and the analytical results
of Sec. 3, we need therefore to determine the “equivalent” of the Bingham viscosity K to be used in our theoretical
predictions. As a first guess, we can compute such viscosity as K = Ao/A%, where Ao (A7) is just the difference
between the two stresses (shear rates) considered in the simulations for 8 = 0 Ibu. We find K ~ 1.7 Ibu. The other
issue concerns the determination of how far/close we are from the yield point, a question that matters in view of the
analysis presented in Sec. 3, in order to decide which analytical prediction to compare with the numerical data. Since
the LB simulations refer to a HB fluid (4) with a < 1 [12], the actual stress deviates more slowly from the yield point
than it would do in a Bingham fluid under the same shear conditions. Therefore, one heuristically expects a transition
from the plastic regime to the fluid regime at relatively smaller values of the stress. This fact will be indeed observed
in the numerics.

Figure 2 reports the analysis for the case o0 =~ 1.70y. In the left panel we plot the velocity profiles without

(8 = 0) and with (Lg =~ 7.25d) wall friction. The cooperativity length & ~ 2.5d is obtained via an exponential fit
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of the velocity profile for § = 0 lbu in the wall proximal region (solid line in the right panel of Figure 2). Given
the effective plastic viscosity (see above discussion), the friction length Lg is an input parameter for the simulations.
Notice that all the spatial lengthscales are given in units of the mean droplet diameter d. In the right panel of
figure 2, we also compare the numerical results in the wall proximal region with the analytical predictions (dashed
line) for B # 0 (17): the localisation length used, L, ~ 1.86d, is exactly the value given by equation (16) while the
fitted prefactor is A =~ 1.25 x 10~* lbu, in reasonable agreement with the analytical prediction A = 1.15 x 10~4 lbu
given by (15) (deviating by less than 9%). Fig 2 actually shows that the “fluid” limit of equation (17) (without any
adjustable parameter) is well captured by the LB simulations. To further check the analytical prediction (16), we
performed various numerical simulations at changing the friction parameter. For each (3, the localisation lengths L,’s
are extracted from local fits of the velocity profiles (inset of Fig 3). We observe in the main panel of Fig. 3 that the
values of L, agree very well with the theoretical prediction (16). We finally turn to the case o = 1.20y, close to yield.
In Fig. 4 we show, in analogy with Fig. 2, the velocity profiles for 3 = 2 x 10~° lbu and the related exponential fits. We
could fit the 8 = 0 case with a cooperativity length £ = 2.57 d, very close to the one obtained for the stress o = 1.70y;
with this value (being Lz = 7.25d fixed), equation (23) gives a localisation length in reasonable agreement with the
numerics.

Before closing this section, we briefly discuss how LBM results can be paralleled to experimental data on soft-glasses.
As for the time scales, simulation results are representative of situations where tp > tgp > t., with tp = H?p/n the
diffusive time associated with molecular viscosity, ¢ the elastic time for a stress-wave to propagate from one boundary
to the other and t. ~ w_ 1, where w, is the frequency at which the storage modulus G’(w) and the loss modulus G” (w)
cross each other, i.e. G'(w.) = G"(w.) [12]. A close look at some experimental datal[5, 6, 43] reveals that the adopted
ordering of time scales is reasonable. As for the space scales involved, the lattice spacing is set by do = H/N, where
H is the size of the sample in meters and NV is the number of lattice sites. For, say H = 200 ym and N = 1024, we
have dr ~ 2 x 10~"m = 0.2 um. A typical plastic event extends over the size of a few droplets, each droplet diameter

covering of the order of 60 lattice units. Hence, we estimate the correlation length in the order of, say, 120 dz ~ 25um.

6. Conclusions

We have studied both analytically and numerically the Couette flow of a quasi-2d soft-glassy material in a Hele-Shaw
geometry. Walls aside the Hele-Shaw cell are sufficiently close to each other to allow visible cooperativity effects [5, 6, 9],
recently invoked in the literature to rationalize the flow of complex fluids in confined geometries. Simultaneously, the
effect of the confining plates has been modelled by an effective linear friction law, providing shear localisation for

the velocity profiles on lengthscales interfering with the spatial cooperativity [5, 6, 10, 12]. For particular rheological
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Figure 2: Left panel: Velocity profiles for the Couette flow of a 2d soft-glassy material with 8 = 2 x 1075 lbu (corresponding to Lg ~7.25d,
see text for the details) and 8 = 0 lbu (without wall friction). The imposed wall velocity is such that the resulting stress is o &~ 1.70y .
Right panel: zoom of a boundary region extended up to a distance ~ & from the wall. The solid line is an exponential fit of the frictionless
case, which gives a cooperativity length £ ~ 2.5d. With this value, together with f and K as input parameters of the simulations, we
compute the value of L, from equation (16), which imposes the slope of the dashed line. Notice that, consistently with our assumptions,
the points start to deviate from the exponential profiles when the distance from the wall starts to be of the order of the cooperativity

length, i.e. |[H/2 —z| ~ &.

flow-curves (Bingham fluids), the problem has been tackled analytically, providing expressions for the two distinct
regimes where the material is close to (plastic regime) or well above (fluid regime) the yield point. Other rheo-thinning
fluids were also explored with the help of numerical simulations based on lattice Boltzmann models [12, 16], revealing
robustness of the analytical findings. Notably, our analysis suggests that the wall friction has different effects in the
two regimes: the velocity localisation length is decreased far from yield, while it slightly increases close to yield. Some
aspects, however, remain to be further investigated. In the numerics, which simulate a generic HB rheology, the
fluid regime is indeed observed to emerge at stresses which are not much larger than the yield stress. This should
be attributed to the rheo-thinning character of the fluid, for which the stress grows more slowly with the applied
shear than for the Bingham case. It is important to add that this fact, at present, is only supported by numerical
simulations. It would be interesting to have complementary experiments with either rheo-thinning and/or Bingham
fluids to test the analytical findings at changing the stresses in the material.

Perspectives include more research on the boundary conditions. Even in the absence of slip, which is assumed
here and which is realized in practice with rough enough walls, it is not clear what is the boundary condition on the
fluidity, and this may affect flow localisation. Ultimately, this amounts to reconnect the “macroscopic” fluidity model

to the micromechanics of soft glassy flows [41], and especially how plastic events redistribute the elastic stress in their
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Figure 3: Localisation length L, vs. friction parameter 8. The numerical results (bullets) for L, are compared with the theoretical
prediction (16) (dashed line) with the cooperativity length, & ~ 2.5d, obtained via an exponential fit of the velocity profile for 8 = 0 lbu
in the wall proximal region (see also Fig. 2). L, is extracted from a local fit of the velocity profiles (inset) for various : S = 0 lbu (O),

B=2x10"21lbu (o), 3=3x 1072 Ibu (A) and 8 =4 x 10~° lbu (V).

surroundings, and how this redistribution is affected by the vicinity of the walls [42].
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