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INTRODUCTION

In humans, epithelial stability defects are of genetic (genodermatosis) or autoimmune origin. Epidermolysis bullosa and Ehlers-Danlos syndrome are genetic disorders caused by mutations in genes that encode proteins of the extracellular matrix, such as collagen (COL7A1, COL1A1), intracellular proteins like plectin, or membrane-bound proteins involved in cell-cell or cell-substrate junctions, like laminins and non-fibrillar collagens [START_REF] Fine | Inherited epidermolysis bullosa: updated recommendations on diagnosis and classification[END_REF]. Cutis laxa is another form of skin syndrome in which mutations in a dozen genes lead to defective development of elastic skin fibers, resulting in loose skin and progeria-like features [START_REF] Urban | Cutis laxa: intersection of elastic fiber biogenesis, TGFβ signaling, the secretory pathway and metabolism[END_REF]. Autoimmune forms of skin stability defects occur through the production of autoantibodies that target dermal-epidermal junction components, such as Bullous Pemphigoid Antigen 1 (BPAG1), encoded by the Distonin gene (DST, [START_REF] Sawamura | Bullous pemphigoid antigen (BPAG1): cDNA cloning and mapping of the gene to the short arm of human chromosome 6[END_REF]), or BPAG2, encoded by the collagen 17 A1 gene (COL17A1, [START_REF] Nishie | Update on the pathogenesis of bullous pemphigoid: an autoantibody-mediated blistering disease targeting collagen XVII[END_REF]. Some key genes are identified as being mutated and some autoantigens are known, but the phenotypic variability of these diseases suggests that modifier genes may affect phenotype penetrance or expressivity [START_REF] Kern | Forty-two novel COL7A1 mutations and the role of a frequent single nucleotide polymorphism in the MMP1 promoter in modulation of disease severity in a large European dystrophic epidermolysis bullosa cohort[END_REF].

While seemingly different, amphibian skin and mammal skin share a number of similarities. In both classes, a bilayered epidermis found in early embryos develops into a multilayered epidermis, consisting of basal, spinous, granular and cornified cells that are hierarchically-related and derived from the stem cells located in the basal layer. This hierarchical differentiation is thought to have emerged with amphibians about 350 million years ago. The embryonic bilayered epidermis is composed of external peridermal cells with a different lineage from the internal basal cells. The particularity of amphibians is that these basal cells initially differentiate into ciliated cells, ionocytes and small secretory cells to form a mucociliary epithelium upon intercalation into the external layer, which is composed of peridermal goblet cells. By 15 days of embryogenesis in mice and at metamorphosis in Xenopus, the bilayered epidermis is progressively replaced by a multilayered cornified epidermis that originates from the basal layer cells. Both larval and adult epidermis can be derived in vitro from larval basal cells. Therefore, larval basal cells are the direct precursors of adult epidermal stem cells [START_REF] Suzuki | Lineage of anuran epidermal basal cells and their differentiation potential in relation to metamorphic skin remodeling[END_REF][START_REF] Yoshizato | Molecular mechanism and evolutional significance of epithelial-mesenchymal interactions in the body-and tail-dependent metamorphic transformation of anuran larval skin[END_REF].

The Xenopus larval epidermis has historically been used as a model for analyzing cellular differentiation [START_REF] Billett | Fine structural changes in the differentiating epidermis of Xenopus laevis embryos[END_REF][START_REF] Steinman | An electron microscopic study of ciliogenesis in developing epidermis and trachea in the embryo of Xenopus laevis[END_REF]. This epidermis has gained renewed attention recently as an important model for studying the development of the mucociliary epithelium and cell-cell interactions [START_REF] Dubaissi | Embryonic frog epidermis: a model for the study of cell-cell interactions in the development of mucociliary disease[END_REF]. As some genodermatoses are known to affect both skin and upper airways lined with multiciliated cells [START_REF] Fine | Tracheolaryngeal complications of inherited epidermolysis bullosa: cumulative experience of the national epidermolysis bullosa registry[END_REF], the developing Xenopus epidermis is an attractive model for addressing questions relating to both of these systems. In this specific study, we use larval Xenopus skin to investigate the impact of post-transcriptional regulation on skin stability.

Through our previous work on ptbp1, we have shown that post-transcriptional regulations are required to control the developing epidermis (Le [START_REF] Sommer | PTB regulates the processing of a 3'-terminal exon by repressing both splicing and polyadenylation[END_REF]. The polypyrimidine track binding protein 1 (Ptbp1) is a conserved RNA-binding protein involved in the regulation of alternative splicing and polyadenylation, mRNA stability, localization and translation [START_REF] Cote | A Xenopus protein related to hnRNP I has a role in cytoplasmic RNA localization[END_REF][START_REF] Gosert | Transient expression of cellular polypyrimidine-tract binding protein stimulates cap-independent translation directed by both picornaviral and flaviviral internal ribosome entry sites In vivo[END_REF][START_REF] Hamon | Polypyrimidine tract-binding protein is involved in vivo in repression of a composite internal/3' -terminal exon of the Xenopus alphatropomyosin Pre-mRNA[END_REF][START_REF] Sawicka | Polypyrimidine-tract-binding protein: a multifunctional RNA-binding protein[END_REF][START_REF] Tillmar | Hypoxia may increase rat insulin mRNA levels by promoting binding of the polypyrimidine tract-binding protein (PTB) to the pyrimidine-rich insulin mRNA 3'-untranslated region[END_REF]. Thereby, Ptbp1 controls the abundance and identity of the protein expressed from the RNA to which it is bound. While Ptbp1 expression can be detected in many tissues, we have described a high expression in the epidermis of the developing X. tropicalis embryo [START_REF] Noiret | Expression analysis of the polypyrimidine tract binding protein (PTBP1) and its paralogs PTBP2 and PTBP3 during Xenopus tropicalis embryogenesis[END_REF] and we have previously shown that its inactivation in X. laevis leads to alterations in the skin structure, with the formation of blisters in the dorsal fin epidermis (Le [START_REF] Sommer | PTB regulates the processing of a 3'-terminal exon by repressing both splicing and polyadenylation[END_REF].

The exosome component 9 (Exosc9) is one of the core components of the RNA exosome, a conserved highmolecular-weight complex that is involved in RNA processing and degradation. The exosome has roles both in the nuclear and cytoplasmic compartments. In the nucleus, it is involved in primary transcript processing and the degradation of unprocessed or intergenic transcripts. In the cytoplasm, it plays a role in mRNA degradation through the 3-5' decay pathway [START_REF] Garneau | The highways and byways of mRNA decay[END_REF], controlling the turnover of mRNAs, for example those containing AU-rich elements found in cytokines and involved in the mRNA surveillance mechanism. It was recently shown that exosome components are enriched in epidermal progenitor cells [START_REF] Mistry | Progenitor function in self-renewing human epidermis is maintained by the exosome[END_REF]. This prompted us to test whether the exosome could play a role in skin differentiation using the Xenopus embryonic epidermis as a model system. In this paper, we report that the inactivation of Exosc9 by injection of antisense morpholino-oligonucleotides in X. laevis leads to the development of blister structures on the antero-dorsal part of the embryo that are similar to the structures observed in ptbp1 morphants.

To determine whether Exosc9 and Ptbp1 share a common pathway in specifying the blister phenotype, we conducted a comparative analysis of exosc9 and ptbp1 morphant embryos. We compared the phenotypes of the morphant embryos by histological analysis on sections, and analyzed the nature of the external epithelial cells using scanning electron microscopy (SEM). To address the phenotypic variations, we finally performed a differential analysis of gene expression in embryos depleted of Ptbp1 or Exosc9 using deep RNA sequencing. We conclude that epidermis defects in exosc9 and ptbp1 morphants differ significantly, and we discuss the implications of these findings for human pathology.

RESULTS

Exosc9 knockdown causes dorsal fin defects

To address the potential developmental function of Exosc9, we designed a translation inhibitory morpholino oligonucleotide targeting exosc9 mRNA (MoExosc9). As no antibodies directed against Xenopus Exosc9 were available, we controlled morpholino efficiency by injection of a reporter mRNA encoding a V5-tagged version of Exosc9 (Exosc9-V5). Co-injection of MoExosc9 with the Exosc9-V5 RNA led to a twofold decrease in the accumulation of the V5-tagged protein (Figure 1A, compare lanes 1 and 2). When a morpholinoresistant version of the tagged exosc9 RNA was co-injected with the MoExosc9, no decrease in the V5tagged protein was observed (Figure 1A, lanes 3 and 4). This illustrates that MoExosc9 specifically blocks exosc9 mRNA translation.

At stage 33, embryos depleted in Exosc9 display several defects, including improper development of the epidermis with the appearance of blister structures along the anterior part of the dorsal fin (Figure 1B).

These blister structures first appeared around stage 28 as ripples along the fin (data not shown) and were completely formed by stage 33 (Figure 1B). The embryos died by late tadpole stage. At stage 33, more than 80% of the injected embryos developed at least one dorsal blister (Figure 1C), indicating a strong penetrance of the phenotype. Embryos injected with the control morpholino (MoCo) did not present blisters (Figure 1B). The co-injection of Exosc9-V5R mRNA immune to the morpholino strongly reduced both blister number and volume (Figure 1B, right panel). These results show that Exosc9 has a role to play in the formation of the dorsal fin epidermis and is probably required for proper skin development and stability.

Characterization of exosc9 and ptbp1 morphant embryos

A blister phenotype was also previously described in embryos depleted of Ptbp1 by injection of a specific morpholino (MoPtbp1) (Le [START_REF] Sommer | PTB regulates the processing of a 3'-terminal exon by repressing both splicing and polyadenylation[END_REF]. We compared the blister phenotype of ptbp1 and exosc9 morphant embryos using a combination of in situ hybridization, histological sections and scanning electron microscopy.

To determine whether differentiation of the epithelial cells was altered, we first performed in situ hybridization with epithelial cells markers on albinos X. laevis embryos depleted in Exosc9 or Ptbp1 (Figure 2). We used the previously reported probes (see material and methods for details) tuba1a, foxa1, foxi1 and itln2 for Notably, the dorsal blisters were strongly labeled with itln2, showing that they are mostly composed of goblet cells (Figure 2J-L). However, some tuba1a, foxi1 and foxa1 positive cells were also present, indicating that the blisters are composed of goblet cells intermingled with ciliated cells, ionocytes and ssc. Therefore, no overall changes could be detected in the differentiation program of the sensorial layer or the periderm in any of the conditions.

Next, we performed a histological analysis of 5 μm sections across the blisters of stage 40 embryos to analyze the structure of the blisters in more detail and determine whether the blisters were alike in MoExosc9-and MoPtbp1-injected embryos. Non-injected embryos (NI), ptbp1 morphants and two exosc9 morphants presenting different phenotypic severities (Figure 3A) are shown in Figure 3 (B-Q). As previously described [START_REF] Dubaissi | Embryonic frog epidermis: a model for the study of cell-cell interactions in the development of mucociliary disease[END_REF], the developing epidermis (ep) of control embryos is bilayered, comprising an internal layer of sensorial cells (slc, Figure 3C-E), overlaid by an outer epithelial layer that consists of four different cell types. The ciliated cells (cc) were easily identified morphologically by the presence of thin cilia on the pictures (Figure 3C-D), and pigment granules (pg) could be observed as brownish spots in the outer epithelial cell layer (Figure 3D-E). The dorsal fin blisters of both exosc9 and ptbp1 morphants were composed of a thin single cell layer (Figure 3, compare panels G, K, O with panel C). The dorsal blisters of exosc9 morphants appeared to have fewer ciliated cells, defined by the presence of countable cilia (Figure 3 K andO). To further quantify this phenotype, we counted cilia positive cells along the dorsal blisters of the morphants (Figure 3R). The proportion of ciliated cells decreased about twofold (p=0,01573, t-test) between the MoExosc9 and non-injected embryos. No difference was observed between the MoPtbp1 and non-injected embryos. Outside of the blisters, the ptbp1 morphant displayed a double layered epidermis with pigment granules (Figure 3 H-I). This was also the case of one of the exosc9 morphants (Figure 3L-M), but, in some others, as shown for the exosc9 embryo2 morphant, the blisters and lateral and ventral epidermis were composed of a single cell layer (Figure 3 O-Q). Therefore, while the ptbp1 morphant phenotype is restricted to the dorsal side, the exosc9 morphant phenotype can extend down to the ventral side. A striking feature in the exosc9 embryo1 morphant was the gap between the sensorial cell layer and the epithelial cell layer (Figure 3, panels J, L, M) in which the sensorial cell layer appeared to be loose and slightly detached from the outer cell layer (Figure 3, panels L, M; arrowhead). This suggests that the adhesion between these two cell layers was altered. This gap is not observed in the ptbp1 morphant (Figure 3F-I).

Together, these data show that, while exosc9 and ptbp1 morphants share a morphologically similar phenotype with a common monolayered epidermis in the blisters, they are histologically different. Indeed, exosc9 morphants display a specific decrease in cells harboring cilia in the dorsal fin epidermis and a lack of adhesion between the sensorial and outer cell layer. This suggests that different processes come into play to disrupt the development of the epidermis in both morphants.

Exosc9 and ptbp1 morphants display distinct epidermal defects

Finally, we studied the organization of the outer epidermal layer by scanning electron microscopy. This technology is used to analyze and identify the different cell types located in the outer epidermal cell layer.

They can also be identified by in situ hybridization (see Figure 2) or immunohistochemistry [START_REF] Dubaissi | A secretory cell type develops alongside multiciliated cells, ionocytes and goblet cells, and provides a protective, anti-infective function in the frog embryonic mucociliary epidermis[END_REF]. In addition, SEM enables a detailed analysis of cellular surface morphology. Our analysis focused on the lateral midbody of the embryos outside of the blister structures. At stage 26, three types of cells could be distinguished in the control embryos (Figure 4 A,B). Ciliated cells (cc) are characterized by the presence of large filamentous cilia, goblet cells (gc) -the initial and major components of the periderm -are observed as large mucus-secreting cells with small apical vacuoles and secretory granules, and ionocytes (i) are viewed as medium-sized cells with a smooth apical surface. By stage 36, an additional cell type intercalates into the outer layer of the epidermis. These small secretory cells (ssc) have recently been described [START_REF] Dubaissi | A secretory cell type develops alongside multiciliated cells, ionocytes and goblet cells, and provides a protective, anti-infective function in the frog embryonic mucociliary epidermis[END_REF] and are observed as small triangular-shaped cells with large apical vacuoles (Figure 4 C,D). To detect any differences that may occur during skin differentiation, we analyzed the exosc9 and ptbp1 morphant embryos at stages 26 and 36. By stage 26, all three cell types (cc, gc, i) were present (Figure 4) in the exosc9 and ptbp1 morphants. While they appeared to be morphologically normal in the exosc9 morphants (Figure 4 I,J), in ptbp1 morphants the goblet cells were altered with a domed apical surface and a high density of secretion granules (Figure 4 E,F). By stage 36, the ptbp1 morphant phenotype was reinforced with a swollen apical surface of the goblet cells and many secretory granules. Small secretory cells were now present and appeared unaffected (Figure 4 G,H). At stage 36, exosc9 morphants displayed ssc and ionocytes that were morphologically unaffected, whereas the ciliated cells presented a reduction in the number of cilia, and the goblet cells appeared larger compared with the control embryos (Figure 4 K,L).

To confirm this last observation, we quantified the goblet cell area in the control embryos and ptbp1 and exosc9 morphants at stage 36. Goblet cells were significantly larger in the exosc9 morphants (p< 5,02 .10 -26 , t-test) compared with the control embryos and their size was unaffected in the ptbp1 morphants (Figure 4M).

We concluded from this analysis that the epidermis differed externally from the control in both the ptbp1 and exosc9 morphants but in different ways. While the goblet cells were the most morphologically affected cell type in ptbp1 morphant embryos with a swollen apical surface and an increase in secretion vacuoles, in exosc9 morphants, the ciliated cells were morphologically altered with a perturbed ciliogenesis and the goblet cells were larger than in the control embryos.

Transcriptome analysis of exosc9 and ptbp1 morphant embryos

Histological and scanning electron microscopy analysis of the outer layer of the epidermis showed that the experiments had at least one blister consistent with the high penetrance of the phenotype (Figure 5A). We built unstranded sequencing libraries from stage 26 embryos, which were sequenced as 2x101 paired-end reads. About 85% of the reads could be unambiguously mapped to the 7.1 X. laevis genome with 75% of concordant pairs aligned (Figure 5B). Only concordant read pairs (aligned on the same scaffold in opposite directions) were kept for further analysis. To illustrate the nature of the results obtained from mapping reads to the Xenopus genome, we show a Sashimi plot (Wang et al., 2008) of the reads mapped to the hmnc1 locus (one of the most overexpressed genes in both morphants, see below) in Figure 5C. The exon-intron structure of the gene was obvious from the mapped reads and could be compared with the annotation shown at the bottom. The relative abundance of reads mapped to the hmcn1 locus was indicative of a higher expression of hmcn1 in both exosc9 and ptbp1 morphants when compared with the control embryos.

To determine which genes are differentially expressed upon Ptbp1 or Exosc9 knockdown, we used a counting strategy in which the number of reads overlapping exons was totaled for each gene. Differential expression analysis was performed with DESEQ2 on a model using a binomial negative distribution (Love et al., 2014). Principal component analysis of log-transformed expression data showed that the replicates of each biological sample were clustered, and each of the experimental conditions could clearly be distinguished from the others (Figure 5D).

We identified the genes that were differentially expressed upon ptbp1 (n=160) or exosc9 (n=1258)

knockdown (Supplementary table 1, MoPtbp1 and MoExosc9). Ptbp1 was unaffected in MoExosc9injected embryos and, reciprocally, exosc9 was unchanged in MoPtbp1-injected embryos. Therefore, this rules out any direct control of ptbp1 upon exosc9 and conversely. It is noteworthy that ptbp2 was strongly upregulated among genes differentially expressed in ptbp1 morphant embryos. This is consistent with the PTBP regulatory feed-back loop demonstrated in human cells [START_REF] Spellman | Crossregulation and Functional Redundancy between the Splicing Regulator PTB and Its Paralogs nPTB and ROD1[END_REF] and Xenopus embryos [START_REF] Méreau | A posttranscriptional mechanism that controls Ptbp1 abundance in the Xenopus epidermis[END_REF].

Unexpectedly, given the similar external phenotypes of ptbp1 and exosc9 morphants, only 29 genes were differentially expressed in both morphants (Figure 5E). The fold changes had the same sign in both morphants for 23/29 genes and the gene expression fold change in exosc9 morphants was significantly correlated with that in ptbp1 morphants (Spearman correlation coefficient rho=0.62, p= 5 10 -4

, Figure 5F).

Hemicentin 1 (hmcn1), for which we present a Sashimi plot, is one of the most upregulated genes in both morphants. It encodes a protein localized in the extracellular matrix of epithelial cells and is involved in the response to mechanical stress. Since the commonly differentially regulated genes are few in number, they may correspond to an indirect signature of epidermal disorganization rather than hypothetical common triggers of blister appearance.

Dissimilarities of Ptbp1 and Exosc9 post-transcriptional networks in epidermis biology

To determine whether similar pathways are altered in exosc9 and ptbp1 morphant embryos, we conducted a GO term enrichment analysis (Figure 6A, complete list in Supplementary table 2). Upon depletion of Ptbp1,

we observed an enrichment in misregulated genes that encode intracellular components involved in maintaining cell integrity, such as the cortical cytoskeleton, stress fibers and the platelet dense tubular network. None of these terms was enriched in exosc9 morphants. Upon Exosc9 depletion, the enrichment was evident for interface components between the cell and the extracellular space ("extracellular space", "brush border membrane", "proteinaceous extracellular membrane"). Only one GO term ("extracellular vesicular exosome") was significantly enriched in both morphants. However, while 32 and 138 genes belonging to the extracellular vesicular exosome were differentially expressed in ptbp1 and exosc9 morphants, respectively, only six of these genes were shared by both morphants (angptl2, arf1, fam162a, gsto1, gstp1, hmcn1, mgam). Therefore, depletion of Ptbp1 and Exosc9 proteins has different consequences on cell components. Along with histological analysis, this gene enrichment analysis showed that the cells are affected differently by Ptbp1 and Exosc9 depletion.

To confirm these findings, we focused on a subset of genes relevant to epidermal biology. We first selected 58 genes specifically expressed in the epidermis, based on previous publications [START_REF] Chalmers | Grainyheadlike 3, a transcription factor identified in a microarray screen, promotes the specification of the superficial layer of the embryonic epidermis[END_REF][START_REF] Hayes | Identification of novel ciliogenesis factors using a new in vivo model for mucociliary epithelial development[END_REF], and assessed how their expression levels were affected in ptbp1 and exosc9 morphants (Supplementary table 3). Figure 6B revealed slightly greater dynamic changes in RNA levels in exosc9 morphants (log2(FoldChange) (LFC) ranging from -1.07 to 2.93) compared with ptbp1 morphants (LFC ranging from -0.84 to 1.57). The epidermal gene expression fold changes in exosc9 morphants were poorly correlated with those in ptbp1 morphants (Spearman correlation coefficient rho=0.34, p=0.03, Figure 6B).

Indeed, a number of markers were significantly affected in only one of the two morphants (for example grhl3

or eppk1, which are respectively upregulated and downregulated in exosc9 morphants, but unchanged in ptbp1 morphants) or had opposite behaviors (like atp6v1a). Together, these findings demonstrate that exosc9 and ptbp1 knockdowns have distinct consequences on epidermal gene expression.

We next assessed how well these gene expression data matched previous phenotype characterization (Figures 234). The SEM data (Figure 4) revealed intense morphological perturbations of the goblet cells in ptbp1 morphants. This was not the case in exosc9 morphants, despite an increased surface area.

Accordingly, two goblet cell markers -itln2 and mapk12were altered in opposite directions in ptbp1 morphants and were unaffected in exosc9 morphants (Figure 6B). This suggests that inactivation of Ptbp1 remodels gene expression in the goblet cells. The SEM data also showed altered ciliogenesis in exosc9 but not in ptbp1 morphants. It was therefore interesting to observe that the ciliated cell markers tuba1a, ttc25 and tubb6 were downregulated in exosc9 but not in ptbp1 morphants (Figure 6B).

To determine whether this downregulation of ciliary genes could be generalized, we compared the distribution of ciliary gene fold changes (SYSCILIA database, [START_REF] Van Dam | The SYSCILIA gold standard (SCGSv1) of known ciliary components and its applications within a systems biology consortium[END_REF] between the exosc9 and ptbp1 morphants overall. In Figure 6C, we present the cumulative distribution function [cdf: y=(fraction of genes with a log fold-change ≤ x) plotted against x] of the fold change quantified in exosc9 and ptbp1

morphants. The exosc9 morphant distribution was shifted to the left of the ptbp1 morphant distribution (shoulder highlighted by the arrow). For example, 10% of ciliary genes in exosc9 morphants had a log2(FC) below -0.5, but this only concerned 1.5% of ciliary genes in ptbp1 morphants. This indicates that, overall, the repression of ciliary genes in exosc9 morphants was stronger than in ptbp1 morphants. The gene expression analysis is therefore fully consistent with the phenotypic analysis of ptbp1 and exosc9 morphants.

Genodermatosis genes are differentially misexpressed between exosc9 and ptbp1 morphants

To investigate the relevance of our findings for human pathologies, we analyzed the Xenopus orthologs of genes known to be mutated in several genodermatoses, such as Epidermolysis bullosa [START_REF] Fine | Inherited epidermolysis bullosa: updated recommendations on diagnosis and classification[END_REF], Ehlers-Danlos syndrome [START_REF] Byers | Ehlers-Danlos syndrome: A showcase of conditions that lead to understanding matrix biology[END_REF], Kindler syndrome [START_REF] Jobard | Identification of mutations in a new gene encoding a FERM family protein with a pleckstrin homology domain in Kindler syndrome[END_REF][START_REF] Siegel | Loss of kindlin-1, a human homolog of the Caenorhabditis elegans actin-extracellular-matrix linker protein UNC-112, causes Kindler syndrome[END_REF], acral peeling skin syndrome [START_REF] Cassidy | A homozygous missense mutation in TGM5 abolishes epidermal transglutaminase 5 activity and causes acral peeling skin syndrome[END_REF] and Naxos disease [START_REF] Mckoy | Identification of a deletion in plakoglobin in arrhythmogenic right ventricular cardiomyopathy with palmoplantar keratoderma and woolly hair (Naxos disease)[END_REF]. These gene products are involved in hemidesmosomes, desmosomes or adherens junction (plakoglobin) and focal adhesion, as depicted in Figure 7B. Figure 7A and Supplementary Table 4 show the expression of genodermatosis genes in ptbp1 and exosc9 morphants. The genodermatosis genes that are differentially expressed in ptbp1 morphants are involved in Ehler-Danlos syndrome (col1a1, col1a2) or Kindler syndrome (femrt1). The genodermatosis genes that are differentially expressed in exosc9 morphants are involved in acral peeling skin syndrome (tgm5) or Naxos disease (jup). Finally, genes causal in Epidermolysis bullosa were found both within the differentially expressed genes in ptbp1 morphants (dst) and the differentially expressed genes in exosc9 morphants (krt5, lama3, dsp, plec, itga6). Col17a1, also involved in Epidermolysis bullosa, was differentially expressed in both morphants but was upregulated in exosc9 morphants and downregulated in ptbp1 morphants. Together, these data show that depletions of Ptbp1 and Exosc9 induce different types of skin stability defects.

We also investigated how these gene products were distributed between the different subcellular structures involved in cell adhesion (Figure 7B). Focal adhesions and the extracellular matrix contain proteins encoded by genes that are differentially expressed in ptbp1 morphants. Desmosomes contain proteins encoded by genes that are differentially expressed in exosc9 morphants, and hemidesmosomes contain proteins encoded by genes that are differentially expressed in both morphants. Mutations in any one of these genes can cause human skin stability syndromes [START_REF] Cassidy | A homozygous missense mutation in TGM5 abolishes epidermal transglutaminase 5 activity and causes acral peeling skin syndrome[END_REF][START_REF] Fine | Inherited epidermolysis bullosa: updated recommendations on diagnosis and classification[END_REF]. It is therefore highly probable that the concomitant dysregulation of several of these genes is resulting in the appearance of the ptbp1 or exosc9 morphant phenotypes.

In conclusion, we demonstrated that both exosc9 and ptbp1 morphant embryos specifically develop skin instability defects that could be clearly distinguished both histologically and at transcriptome level. This demonstrates that Exosc9 and Ptbp1 act through different regulatory pathways to control larval skin stability.

The Exosc9 route is characterized by the upregulation of krt5, tgm5, lama3 and jup, and the downregulation of itga6, plec and dsp. Mutations in these four genes are causal in human Epidermolysis bullosa (KRT5, LAMA3, ITGA6, PLEC, DSP), acral peeling syndrome (TGM5) and Naxos disease (JUP). The exosc9 morphant phenotype is accompanied by changes in the relative expression of four structural genes linking epithelial cells to the basement membrane (krt5, lama3, itga6, plec, see Figure 7B). These changes may contribute to skin instability and the development of blisters. More specifically, two desmosomal components that are inversely affected, jup and dsp, may be involved in the loss of adhesion observed between the sensorial cells and the outer cell layer in the exosc9 morphants. The epiplakin (eppk1) and grainy-head like 3 transcription factor (grhl3) genes also deserve particular attention. Eppk1 is repressed in exosc9 morphants and is a marker of the superficial cells of the epidermis [START_REF] Chalmers | Grainyheadlike 3, a transcription factor identified in a microarray screen, promotes the specification of the superficial layer of the embryonic epidermis[END_REF]. Identification of EPPK1 as an autoantigen in a patient suffering from a blistering disease [START_REF] Fujiwara | Identification of a 450-kDa Human Epidermal Autoantigen as a New Member of the Plectin Family[END_REF] would point towards a possible causal relationship between the downregulation of eppk1 and the appearance of blisters in exosc9 morphants. However, the absence of obvious skin defects in Eppk1 -/-mice renders this hypothesis less likely [START_REF] Spazierer | Epiplakin Is Dispensable for Skin Barrier Function and for Integrity of Keratin Network Cytoarchitecture in Simple and Stratified Epithelia[END_REF]. Mutations in the GRHL3 gene lead to Van der Woude syndrome, including abnormal oral periderm development [START_REF] Peyrard-Janvid | Dominant Mutations in GRHL3 Cause Van der Woude Syndrome and Disrupt Oral Periderm Development[END_REF]. Furthermore, the overexpression of grhl3 upon inactivation of Exosc9 is consistent with the observation that EXOSC9 triggers the degradation of Grhl3 mRNA in human epidermal stem cells. Upon differentiation of the epidermal stem cells, Exosc9 activity decreases, allowing the accumulation of Grhl3 mRNA and turning on its specific expression program [START_REF] Mistry | Progenitor function in self-renewing human epidermis is maintained by the exosome[END_REF]. In this model, knockdown of Exosc9 by siRNA led to the overexpression of Grhl3 mRNA, resulting in a decrease in cell proliferation, an increase in cell differentiation and a reduced number of cells in the basal layer. Upon exosc9 knockdown in Xenopus, we observed an alteration of the sensorial cell layer with the appearance of gaps between the inner and outer cell layer or the development of a monolayered epidermis. As cells located in the sensorial cell layer act as progenitor cells to generate the cell type diversity observed in the epithelial layer, it is possible that Exosc9 plays a similar function in the developing embryo.

In Xenopus, early overexpression of grhl3 in the whole embryo leads to a thickening of the deep epidermal cell layer accompanied, at stage 14, by an overexpression of superficial markers [START_REF] Chalmers | Grainyheadlike 3, a transcription factor identified in a microarray screen, promotes the specification of the superficial layer of the embryonic epidermis[END_REF]. We do not observe any thickening of the epidermis in exosc9 morphants. This difference may be accounted for by a localized overexpression of grhl3 after inactivation of exosc9 in the embryo, as opposed to the overall and early expression after injection of mRNAs encoding Grhl3.

Here we uncover a link between Ptbp1, Exosc9 and skin stability, which, for the first time, provides evidence in a model organism that alterations in post-transcriptional regulatory networks can cause skin instability.

These results draw attention to the molecular causes for skin defects in ptbp1 and exosc9 morphants. At first glance, this issue could be addressed by screening candidate genes found to be misexpressed in ptbp1 or exosc9 morphants to identify those whose knockdown phenocopies MoPtbp1-or MoExosc9-injection.

Indeed, morpholino-mediated knockdown of col17a1 or cola1 in zebrafish [START_REF] Durán | Actinotrichia collagens and their role in fin formation[END_REF][START_REF] Kim | Zebrafish type XVII collagen: gene structures, expression profiles, and morpholino "knock-down" phenotypes[END_REF], or fermt1 (kindlin) in Xenopus [START_REF] Rozario | Diverse functions of kindlin/fermitin proteins during embryonic development in Xenopus laevis[END_REF] results in skin instability. More generally, several animal models of genodermatoses have been produced [START_REF] Bruckner-Tuderman | Animal models of epidermolysis bullosa: update 2010[END_REF], which generally phenocopy the disease by targeting genes that encode key structural components of the dermal-epidermal complex. Yet, the expression of most genes is only mildly affected in ptbp1 or exosc9 morphants (generally by no more than a twofold factor at mRNA level, see Figures 6B or 7A). A modification of this magnitude of one gene alone may not be sufficient to trigger skin instability. Therefore, we favor the hypothesis that it is the concomitant dysregulation of several unidentified genes that explains the ptbp1 and exosc9 morphant phenotypes.

The ptbp1 and exosc9 morphant phenotypes are reminiscent of skin stability defects observed in human genodermatoses, which draws attention to the relevance of our findings for human disease. Skin stability defects in humans often occur through mutations or functional inactivation of genes that encode structural proteins of the dermal-epidermal complex, or through the development of autoantibodies against these proteins. However, the variability of clinical symptoms in patients suggests that "modifier" genes can modulate the expressivity of the disease. The nature of these modifier genes remains largely unknown. They can be specific alleles of components of the dermal-epidermal complex, as was demonstrated recently for Col17a1 in the context of Lamc2 mutation in mice [START_REF] Sproule | Molecular identification of collagen 17a1 as a major genetic modifier of laminin gamma 2 mutation-induced junctional epidermolysis bullosa in mice[END_REF], but genes directly affecting the gene expression program may also be involved. Among them, our results identify EXOSC9 and PTBP1 as strong candidates for modifier genes involved in human skin instability syndromes. In addition, the orthologs of the genes found to be dysregulated and which are directly controlled by Ptbp1 and Exosc9 are also good candidates for modifier genes.

They can be identified by integrating RNASeq data with data from the immunoprecipitation of RNA/protein complexes and sequencing of the bound RNAs. With the ongoing advances in Xenopus genome annotation and the Crispr/CAS9 system [START_REF] Harrison | A CRISPR view of development[END_REF], Xenopus will be an invaluable model for examining the effects of the identified genes responding to post-transcriptional regulators in establishing and maintaining the stability of the developing epidermis.

MATERIALS AND METHODS

Plasmids, oligonucleotides and in vitro transcription

The coding sequence for Exosc9 was amplified from the Image clone (IRBHp990G0531D) with Exosc9_fwd

(GGGGATCCATGAGTCTATAGTTATATGA) and Exosc9_rev

(GGGCGGCCGCCTTTTGTGCAGATTTATTCTT) for the wild-type construct and ExosC9_res

(GGGGATCCACCATGAAACTCCGCTGTCCAACTGT) and Exosc9_rev for the rescue plasmid. The PCR products were cloned into pGEM-T-easy (Promega) then digested with BamHI and NotI and subcloned into pT7TSV5 [START_REF] Hamon | Polypyrimidine tract-binding protein is involved in vivo in repression of a composite internal/3' -terminal exon of the Xenopus alphatropomyosin Pre-mRNA[END_REF], digested with BglII and NotI beforehand. All constructs were verified by sequencing. The transcription templates were linearized using BamHI. In vitro transcriptions were carried out using the T7 mMessage Machine (Ambion) according to manufacturer recommendations to produce the Exosc9_V5 and Exosc9_V5Rescue mRNAs. The antisense morpholino oligonucleotides were purchased from Gene-Tools (MoPtbp1 and MoCo see [START_REF] Sommer | PTB regulates the processing of a 3'-terminal exon by repressing both splicing and polyadenylation[END_REF], MoExosc9

(CGTCTCCTTCATGTCTGTAACACAC).

Xenopus embryos and microinjection

Xenopus laevis eggs were obtained from WT or albino females and fertilized using standard procedures (Paris et al., 1988). When indicated, 25 ng of MoExosc9, 30 ng of MoPtbp1 or 30 ng of control morpholino (GeneTools) was injected into each blastomere of two-cell embryos in a volume of 13.8 nl, using a Nanoject II (Drummond). For rescue experiments, 1 fmol of mRNA-encoding morpholino-resistant Exosc9-V5R was co-injected. Embryos were allowed to develop at 22°C and collected according to Nieuwkoop and Faber stages [START_REF] Nieuwkoop | Normal Table of Xenopus Laevis (Daudin): A Systematical and Chronological Survey of the Development from the Fertilized Egg Till the End of Metamorphosis[END_REF]. Anti-V5 (Life technologies) and anti-PCNA (Sigma-Aldrich) antibodies were diluted 1/5000. The polyclonal anti-Ptbp1 antibody was used at 1/500, as previously described [START_REF] Hamon | Polypyrimidine tract-binding protein is involved in vivo in repression of a composite internal/3' -terminal exon of the Xenopus alphatropomyosin Pre-mRNA[END_REF]. To detect the primary antibodies, secondary antibodies coupled to alkaline phosphatase were used (Jackson laboratories). Phosphatase activity was detected by ECF (Amersham Biosciences) and quantified on a Storm 840 (Molecular Dynamics).

In situ hybridization

Plasmids containing cDNA for tuba1a (NM001086587), foxA1 (BI445589, IMAGE:4680765), itln2 (XL020e14) and foxi1 (BC042303, IMAGE:4682602) were linearized and used as templates for in vitro transcription as follows: tuba1a, antisense probe, NotI, T7; sense probe, ApaI, T3. foxa1, antisense probe, SalI, T7; sense probe NotI, SP6. itln2, antisense probe, EcoRI ,T7; sense probe, XhoI, T3. foxi1, antisense probe, SalI, T7; sense probe, SphI, SP6. Digoxygenin (Roche)-labeled antisense and sense probes were generated by in vitro transcription using the above-mentioned RNA polymerases (Promega). Whole-mount in situ hybridization was performed, as previously described [START_REF] Harland | In situ hybridization: an improved whole-mount method for Xenopus embryos[END_REF], using an automated system (Intavis InsituPro VSi). Detection was carried out using anti-DIG Alkaline Phosphatase-conjugated antibodies (Roche) and stained with NBT/BCIP (Promega) as a substrate. Images were taken on a Leica MZ165 with a DFC290HD camera.

RNAseq analysis

Total RNA was extracted using RNeasy columns (Qiagen) from a pool of 10 embryos at stage 26, previously injected with 25 ng of MoExosc9 or 30 ng of MoPtbp1 in both blastomeres of two-cell embryos.

Contaminating DNA was removed using TurboDnase (Ambion) and RNA quality was confirmed on a Bioanalyzer 2100 using an RNA Pico 6000 chip (Agilent). RNA was quantified by spectrometry on a

Nanodrop ND-1000. Polyadenylated mRNAs were selected and unstranded libraries were prepared from 1 μg of total RNA using the TruSeq RNA sample low-throughput kit (Illumina) according to manufacturer recommendations. Thirteen PCR cycles were required to generate enough library material for sequencing.

The libraries were quantified using the Qubit fluorimeter with the dsDNA BR kit (Invitrogen). Library size distribution was controlled on a Bioanalyzer 2100 using the DNA1000 chips (Agilent). Sequencing was performed on a Hiseq 2000 (Illumina) as 2x101 paired-end data. Reads were submitted to the European Nucleotide Archive (PRJEB8711). After sequencing and demultiplexing, read quality was controlled using FASTQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc). Reads were mapped to the Xenopus laevis 7.1 genome (available from Xenbase) using Tophat2 [START_REF] Kim | TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions[END_REF], allowing up to two matches for each read to take the pseudo-tetraploidy of the species into account [START_REF] Pollet | Insights from Xenopus genomes[END_REF]. We determined the differentially expressed genes in MoPtbp1 and MoExosc9 by comparing the mapped reads with non-injected embryos, using DESEQ2 (v1.8.1) and the JGIv15 annotation available from Xenbase [START_REF] Bowes | Xenbase: gene expression and improved integration[END_REF]. We considered the genes with a Benjamini-Hochberg adjusted p-value below 0.05 (BHadjusted pvalue <0.05) as differentially expressed. Non-injected control embryos were used because the transcriptomic consequence of a control morpholino was likely to be dependent on the sequence of the control morpholino used and would later impair comparison with other forms of functional inactivation. Gene

Ontology enrichment analysis was conducted based on the human orthologs of the Xenopus genes (HCOP).

Statistical analysis was conducted with R using the topGO package [START_REF] Alexa | Improved scoring of functional groups from gene expression data by decorrelating GO graph structure[END_REF].

Scanning electron microscopy and histology

For scanning electron microscopy, embryos were fixed in MEMFA, dehydrated in methanol and processed for critical point dehydration, and coated and imaged on a JEOL JSM 6301F. For histological analysis, Abbreviations: dorsal fin (df), eye (e), blister (bl). 

HIGHLIGHTS

x Exosc9 and ptbp1 knockdown triggers blister development in the dorsal Xenopus epidermis

x Multiciliated cell development is compromised in Exosc9 morphants

x Embryos depleted in Ptbp1 and Exosc9 display phenotypically different skin defects

x Ptbp1 and Exosc9 differentially control expression of genodermatosis-related genes

  Figure 2G-I) and goblet cells (gc, Figure 2J-L). We did not observe a striking difference in the number or

  exosc9 and ptbp1 morphant phenotypes were dissimilar. As in situ hybridization for markers of the four different cell types making up the epidermis did not show an obvious alteration in the differentiation of these cell types, Ptbp1 or Exosc9 depletion probably does not lead to a general disruption of the epidermal differentiation program (Figure 2). Therefore, to address the molecular basis of the phenotypes in more detail and determine to what extent the transcriptome changes overlap in ptbp1 and exosc9 morphants, we carried out deep sequencing on the RNA extracted from stage 26 embryos when the blister phenotype is first evident. Two lines of argument indicated that Ptbp1 and Exosc9 were depleted by injection of the corresponding morpholinos in these particular experiments. Firstly, both the efficiency of MoPtbp1 and MoExosc9 has been demonstrated (Le Sommer et al. 2005 and Figure 1A). Secondly, in addition to collecting stage 26 embryos for RNA extraction, we allowed some siblings to develop until stage 36 for phenotypic analysis. About 90% of the exosc9 and ptbp1 morphant siblings generated for the RNAseq

Figure 1 :

 1 Figure 1: ExosC9 morphant embryos specifically display dorsal skin blisters A) We injected two-cell embryos with the indicated molecules: morpholino targeting exosc9 mRNA (MoExosc9), mRNA encoding a V5-tagged Exosc9 (Exosc9-V5) and mRNA mutated on the morpholino recognition site encoding a V5-tagged Exosc9 (Exosc9-V5R). We allowed the embryos to develop until stage 26 to assess the accumulation of V5-tagged protein by western blot. Pcna is the loading control. B) Photographs of stage 33 embryos previously injected with the indicated molecules. Arrows point to blisters.C) The blister phenotype was scored according to the number of dorsal blisters. The number of embryos scored for each experimental condition is indicated under the graph.

Figure 2 :

 2 Figure 2: In situ hybridization for epidermal markers in exosc9 and ptbp1 morphants Albino embryos were injected with the control morpholino (MoCo, A, D, G, J), MoPtbp1 (B, E, H, K) or MoExosc9 (C, F, I, L) in both blastomeres. Embryos were fixed at stage 32 and processed for in situ hybridization with the following probes: tuba1a (A-C), foxa1 (D-F), foxi1 (G-I) and itln2 (J-L).

Figure 3 :

 3 Figure 3: Histological comparison of ptbp1 and exosc9 morphant embryos Embryos were injected with MoPtbp1 or MoExosc9 in both blastomeres, fixed at stage 40 and processed for histological analysis. A) Macroscopically, ptbp1 and exosc9 morphant embryos displayed similar blister structures on the dorsal side. B-Q) 5 μm transversal sections from the embryos presented in A (section plans shown by white line) and stained with hematoxylin/eosin. Detailed images of the dorsal fin (C, G, K, O), and the lateral (D, H, L, P) and ventral (E, I, M, Q) epidermis were shown for each embryo as indicated. Abbreviations: epidermis (ep), neural tube (nt), notochord (nc), somite (sm), sensorial layer cells (slc), ciliated cells (cc) and pigment granule (pg). The scale bar is shown for each image (100 μm, except B, F, J, N 1 mm). Arrowhead points to gap between slc and periderm layer. R) Cells harboring cilia were counted in the dorsal epithelium and normalized to the number of nuclei observed. The number of embryos and sections counted is presented below each barplot.

Figure 4 :

 4 Figure 4: Scanning Electron Microscopy (SEM) analysis of the peridermal layer of ptbp1 and exosc9 morphant embryos A-L) Stage 26 (A, B, E, F, I, J) and stage 36 (C, D, G, H, K, L) embryos, previously injected with MoPtbp1 or MoExosc9 or left uninjected (control) as indicated, were fixed, dehydrated and processed for SEM. The four cell types described in the Xenopus mucociliary epithelium are indicated as ionocytes (i), goblet cells (gc), ciliated cells (cc) and small secretory cells (ssc). M) The apical area of the goblet cells was measured in stage 36 embryos (MoCo 262 cells, 4 embryos; MoPtbp1 131 cells, 3 embryos; MoExosc9 168 cells, 4 embryos). The scale bar shown on pictures represents 10 μm (A, C, E, G, I, K) or 100 μm (B, D, F, H, J, L).

Figure 5 :

 5 Figure 5: Transcriptome analysis A) Scoring of the blister phenotypes obtained in stage 36 embryos, the siblings of those used to prepare the RNA sequencing libraries. The number of scored embryos is indicated below the categories. B) Unstranded poly(A)+ RNA sequencing libraries were prepared from biological triplicates of pools of 10 embryos either non-injected (NI), or injected with MoPtbp1 or MoExosc9. Sequencing generated 2 x 101 nt paired reads. The total number of reads obtained (InputReads), the percentage of reads aligned (Overall_read_aligned) and of concordant pairs of reads aligned for each sample is indicated. C) Example of a Sashimi plot representing read coverage across the hmcn1 locus in the three experimental conditions (samples 1). D) Principal component analysis of the nine samples discriminates between the experimental conditions. E) Venn diagram showing the overlap between differentially expressed genes (BH-adjusted pvalue <0.05 and at least twofold fold changes) in ptbp1 and exosc9 morphants. F) Log2 fold changes (LFC) are presented for genes differentially expressed in ptbp1 and exosc9 morphant embryos.

Figure 6 :

 6 Figure 6: Post-transcriptional networks of Ptbp1 and Exosc9 in epidermis biology A) Comparison of enriched GO terms in differentially expressed genes in ptbp1 and exosc9 morphants. The dotted red line indicates p=0.05. B) Comparison of the fold change in exosc9 (MoExosc9_Log2(FC)) and ptbp1 (MoPtbp1_Log2(FC)) morphant embryos for genes encoding epidermal markers (Chalmers et al., 2006; Hayes et al., 2007). Genes significantly (p <0.05 corrected for multiple testing) differentially expressed in ptbp1 morphants are shown in red, those significantly differentially expressed in exosc9 morphants are shown in green and those significantly differentially expressed in both morphants are shown in black. C) Cumulative distribution of the Log2 fold-change of ciliary genes following Exosc9 depletion (green) and Ptbp1 depletion (red), compared with the non-injected embryos. Differential expression of ciliary genes in exosc9 and ptbp1 morphant embryos.

Figure 7 :

 7 Figure 7: Differential expression of genodermatosis-causing genes A) Comparison of the fold changes in exosc9 (MoExosc9_Log2(FC)) and ptbp1 (MoPtbp1_Log2(FC)) morphant embryos for genes causing genodermatosis in humans. B) Schematic diagram of the dermalepidermal junction in relation to genes differentially expressed upon Ptbp1 or Exosc9 depletion. Genes significantly (p <0.05 corrected for multiple testing) differentially expressed in ptbp1 morphants are highlighted with a red dot, those significantly differentially expressed in exosc9 morphants with a green dot and those significantly differentially expressed in both morphants with a black dot. Abbreviations: HD, hemidesmosome; FA, focal adhesion; DES, desmosome.
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DISCUSSION

In this article, we showed that specific inactivation of Ptbp1 and Exosc9, which encode two proteins involved in RNA metabolism, leads to skin stability defects in Xenopus laevis embryos. At first glance, the macroscopic phenotypes of both exosc9 and ptbp1 morphants are similar, with the appearance of blisters along the dorsal fin of the embryos. This phenotype is associated with normal early epidermal differentiation, as deduced from the expression of markers for all cell types in the epidermis.

While the normal epidermis is composed of two cell layers, blisters are composed of a single layer of cells in both morphants. Histology, SEM and gene profiling analysis show that the morphant phenotypes differ in several ways: the apparent adhesion properties of the outer cell layer, the identity of the most strongly affected cells (ciliated cells in exosc9 morphants, goblet cells in ptbp1 morphants), the nature of the misexpressed genes (both taken overall and focusing on epidermal markers, ciliary genes or genodermatosis genes), and the enriched GO pathways. We therefore conclude that both Ptbp1 and Exosc9 contribute to skin stability, but through different routes.

The Ptbp1 route includes the downregulation of several components of the dermal-epidermal junction, such as col1a1, col1a2, col17a1 or BPAG2 (dst). Mutations in the human COL1A1 and COL1A2 genes have been directly implicated in Ehlers-Danlos syndrome, a condition that results in alteration of skin elasticity. In X. laevis, col1a1 expression is initially limited to the dorsal epidermal layers of the embryo [START_REF] Goto | Expression and characterization of Xenopus type I collagen alpha 1 (COL1A1) during embryonic development[END_REF][START_REF] Grimaldi | Hedgehog regulation of superficial slow muscle fibres in Xenopus and the evolution of tetrapod trunk myogenesis[END_REF], suggesting that the dorsal localization of the blisters could be due, in part, to the downregulation of col1a1 in ptbp1 morphants. The COL17A1 protein (BPAG180) is a hemidesmosome component which is targeted by autoantibodies in bullous pemphigoid [START_REF] Sawamura | Bullous pemphigoid antigen (BPAG1): cDNA cloning and mapping of the gene to the short arm of human chromosome 6[END_REF]. The COL17A1 gene is also mutated in some benign forms of junctional Epidermolysis bullosa [START_REF] Bauer | Type XVII collagen gene mutations in junctional epidermolysis bullosa and prospects for gene therapy[END_REF].

While the constitutive knockout of Ptbp1 is lethal in early mouse development [START_REF] Shibayama | Polypyrimidine tract-binding protein is essential for early mouse development and embryonic stem cell proliferation[END_REF][START_REF] Suckale | PTBP1 is required for embryonic development before gastrulation[END_REF], the conditional inactivation of Ptbp1 in the mouse telencephalon leads to disruption of the ciliated epithelial layer lining the inside of the brain ventricles [START_REF] Shibasaki | PTB deficiency causes the loss of adherens junctions in the dorsal telencephalon and leads to lethal hydrocephalus[END_REF]. While the PTBP1 targets responsible for this phenotype remain unknown, the loss of epithelial integrity is correlated with a mislocalization of adherens junction components. Correct development of adherens junctions is known to enable the correct formation of other cell-cell junctions, such as desmosomes [START_REF] Lai-Cheong | Genetic diseases of junctions[END_REF][START_REF] Todorovic | Plakophilin 3 mediates Rap1-dependent desmosome assembly and adherens junction maturation[END_REF]. Our model for early inactivation of ptbp1 in Xenopus provides a unique and easily accessible means of addressing the role of ptbp1 in cell-cell or cell-substrate junction formation. Interestingly, we recently described a regulatory feedback loop in which the epithelial-specific splicing regulator Esrp1 positively and specifically controls Ptbp1 abundance in the epidermis [START_REF] Méreau | A posttranscriptional mechanism that controls Ptbp1 abundance in the Xenopus epidermis[END_REF].