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ABSTRACT  

 

In humans, genetic diseases affecting skin integrity (genodermatoses) are generally caused by mutations in 

a small number of genes that encode structural components of the dermal-epidermal junctions. In this article, 

we first show that inactivation of both exosc9, which encodes a component of the RNA exosome, and ptbp1, 

which encodes an RNA-binding protein abundant in Xenopus embryonic skin, impairs embryonic Xenopus 

skin development, with the appearance of dorsal blisters along the anterior part of the fin. However, 

histological and electron microscopy analyses revealed that the two phenotypes are distinct. Exosc9 

morphants are characterized by an increase in the apical surface of the goblet cells, loss of adhesion 

between the sensorial and peridermal layers, and a decrease in the number of ciliated cells within the 

blisters. Ptbp1 morphants are characterized by an altered goblet cell morphology. Gene expression profiling 

by deep RNA sequencing showed that the expression of epidermal and genodermatosis-related genes is 

also differentially affected in the two morphants, indicating that alterations in post-transcriptional regulations 

can lead to skin developmental defects through different routes. Therefore, the developing larval epidermis of 

Xenopus will prove to be a useful model for dissecting the post-transcriptional regulatory network involved in 

skin development and stability with significant implications for human diseases. 
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INTRODUCTION 

In humans, epithelial stability defects are of genetic (genodermatosis) or autoimmune origin. Epidermolysis 

bullosa and Ehlers-Danlos syndrome are genetic disorders caused by mutations in genes that encode 

proteins of the extracellular matrix, such as collagen (COL7A1, COL1A1), intracellular proteins like plectin, or 

membrane-bound proteins involved in cell-cell or cell-substrate junctions, like laminins and non-fibrillar 

collagens (Fine et al., 2014). Cutis laxa is another form of skin syndrome in which mutations in a dozen 

genes lead to defective development of elastic skin fibers, resulting in loose skin and progeria-like features 

(Urban and Davis, 2014). Autoimmune forms of skin stability defects occur through the production of 

autoantibodies that target dermal-epidermal junction components, such as Bullous Pemphigoid Antigen 1 

(BPAG1), encoded by the Distonin gene (DST, (Sawamura et al., 1990)), or BPAG2, encoded by the 

collagen 17 A1 gene (COL17A1, Nishie, 2014). Some key genes are identified as being mutated and some 

autoantigens are known, but the phenotypic variability of these diseases suggests that modifier genes may 

affect phenotype penetrance or expressivity (Kern et al., 2009). 

While seemingly different, amphibian skin and mammal skin share a number of similarities. In both classes, a 

bilayered epidermis found in early embryos develops into a multilayered epidermis, consisting of basal, 

spinous, granular and cornified cells that are hierarchically-related and derived from the stem cells located in 

the basal layer. This hierarchical differentiation is thought to have emerged with amphibians about 350 
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million years ago. The embryonic bilayered epidermis is composed of external peridermal cells with a 

different lineage from the internal basal cells. The particularity of amphibians is that these basal cells initially 

differentiate into ciliated cells, ionocytes and small secretory cells to form a mucociliary epithelium upon 

intercalation into the external layer, which is composed of peridermal goblet cells. By 15 days of 

embryogenesis in mice and at metamorphosis in Xenopus, the bilayered epidermis is progressively replaced 

by a multilayered cornified epidermis that originates from the basal layer cells. Both larval and adult 

epidermis can be derived in vitro from larval basal cells. Therefore, larval basal cells are the direct precursors 

of adult epidermal stem cells (Suzuki et al., 2002; Yoshizato, 2007). 

The Xenopus larval epidermis has historically been used as a model for analyzing cellular differentiation 

(Billett and Gould, 1971; Steinman, 1968). This epidermis has gained renewed attention recently as an 

important model for studying the development of the mucociliary epithelium and cell-cell interactions 

(Dubaissi and Papalopulu, 2011). As some genodermatoses are known to affect both skin and upper airways 

lined with multiciliated cells (Fine et al., 2007), the developing Xenopus epidermis is an attractive model for 

addressing questions relating to both of these systems. In this specific study, we use larval Xenopus skin to 

investigate the impact of post-transcriptional regulation on skin stability. 

Through our previous work on ptbp1, we have shown that post-transcriptional regulations are required to 

control the developing epidermis (Le Sommer et al., 2005). The polypyrimidine track binding protein 1 

(Ptbp1) is a conserved RNA-binding protein involved in the regulation of alternative splicing and 

polyadenylation, mRNA stability, localization and translation (Cote et al., 1999; Gosert et al., 2000; Hamon et 

al., 2004; Sawicka et al., 2008; Tillmar and Welsh, 2002). Thereby, Ptbp1 controls the abundance and 

identity of the protein expressed from the RNA to which it is bound. While Ptbp1 expression can be detected 

in many tissues, we have described a high expression in the epidermis of the developing X. tropicalis 

embryo (Noiret et al., 2012) and we have previously shown that its inactivation in X. laevis leads to 

alterations in the skin structure, with the formation of blisters in the dorsal fin epidermis (Le Sommer et al., 

2005). 

The exosome component 9 (Exosc9) is one of the core components of the RNA exosome, a conserved high-

molecular-weight complex that is involved in RNA processing and degradation. The exosome has roles both 

in the nuclear and cytoplasmic compartments. In the nucleus, it is involved in primary transcript processing 

and the degradation of unprocessed or intergenic transcripts. In the cytoplasm, it plays a role in mRNA 

degradation through the 3-5' decay pathway (Garneau et al., 2007), controlling the turnover of mRNAs, for 

example those containing AU-rich elements found in cytokines and involved in the mRNA surveillance 

mechanism. It was recently shown that exosome components are enriched in epidermal progenitor cells 

(Mistry et al., 2012). This prompted us to test whether the exosome could play a role in skin differentiation 

using the Xenopus embryonic epidermis as a model system. In this paper, we report that the inactivation of 

Exosc9 by injection of antisense morpholino-oligonucleotides in X. laevis leads to the development of blister 

structures on the antero-dorsal part of the embryo that are similar to the structures observed in ptbp1 

morphants. 

To determine whether Exosc9 and Ptbp1 share a common pathway in specifying the blister phenotype, we 
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conducted a comparative analysis of exosc9 and ptbp1 morphant embryos. We compared the phenotypes of 

the morphant embryos by histological analysis on sections, and analyzed the nature of the external epithelial 

cells using scanning electron microscopy (SEM). To address the phenotypic variations, we finally performed 

a differential analysis of gene expression in embryos depleted of Ptbp1 or Exosc9 using deep RNA 

sequencing. We conclude that epidermis defects in exosc9 and ptbp1 morphants differ significantly, and we 

discuss the implications of these findings for human pathology. 

 

RESULTS 

Exosc9 knockdown causes dorsal fin defects 

To address the potential developmental function of Exosc9, we designed a translation inhibitory morpholino 

oligonucleotide targeting exosc9 mRNA (MoExosc9). As no antibodies directed against Xenopus Exosc9 

were available, we controlled morpholino efficiency by injection of a reporter mRNA encoding a V5-tagged 

version of Exosc9 (Exosc9-V5). Co-injection of MoExosc9 with the Exosc9-V5 RNA led to a twofold decrease 

in the accumulation of the V5-tagged protein (Figure 1A, compare lanes 1 and 2). When a morpholino-

resistant version of the tagged exosc9 RNA was co-injected with the MoExosc9, no decrease in the V5-

tagged protein was observed (Figure 1A, lanes 3 and 4). This illustrates that MoExosc9 specifically blocks 

exosc9 mRNA translation. 

At stage 33, embryos depleted in Exosc9 display several defects, including improper development of the 

epidermis with the appearance of blister structures along the anterior part of the dorsal fin (Figure 1B). 

These blister structures first appeared around stage 28 as ripples along the fin (data not shown) and were 

completely formed by stage 33 (Figure 1B). The embryos died by late tadpole stage. At stage 33, more than 

80% of the injected embryos developed at least one dorsal blister (Figure 1C), indicating a strong 

penetrance of the phenotype. Embryos injected with the control morpholino (MoCo) did not present blisters 

(Figure 1B). The co-injection of Exosc9-V5R mRNA immune to the morpholino strongly reduced both blister 

number and volume (Figure 1B, right panel). These results show that Exosc9 has a role to play in the 

formation of the dorsal fin epidermis and is probably required for proper skin development and stability. 

 

Characterization of exosc9 and ptbp1 morphant embryos 

A blister phenotype was also previously described in embryos depleted of Ptbp1 by injection of a specific 

morpholino (MoPtbp1) (Le Sommer et al., 2005). We compared the blister phenotype of ptbp1 and exosc9 

morphant embryos using a combination of in situ hybridization, histological sections and scanning electron 

microscopy. 

To determine whether differentiation of the epithelial cells was altered, we first performed in situ hybridization 

with epithelial cells markers on albinos X. laevis embryos depleted in Exosc9 or Ptbp1 (Figure 2). We used 

the previously reported probes (see material and methods for details) tuba1a, foxa1, foxi1 and itln2 for 

detecting respectively: ciliated cells (cc, Figure 2A-C), small secretory cells (ssc, Figure 2D-F), ionocytes (I, 

Figure 2G-I) and goblet cells (gc, Figure 2J-L). We did not observe a striking difference in the number or 
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spatial distribution of any of these cell types between MoCo and MoExosc9- or MoPtbp1-injected embryos. 

Notably, the dorsal blisters were strongly labeled with itln2, showing that they are mostly composed of goblet 

cells (Figure 2J-L). However, some tuba1a, foxi1 and foxa1 positive cells were also present, indicating that 

the blisters are composed of goblet cells intermingled with ciliated cells, ionocytes and ssc. Therefore, no 

overall changes could be detected in the differentiation program of the sensorial layer or the periderm in any 

of the conditions. 

Next, we performed a histological analysis of 5 μm sections across the blisters of stage 40 embryos to 

analyze the structure of the blisters in more detail and determine whether the blisters were alike in 

MoExosc9- and MoPtbp1-injected embryos. Non-injected embryos (NI), ptbp1 morphants and two exosc9 

morphants presenting different phenotypic severities (Figure 3A) are shown in Figure 3 (B-Q). As previously 

described (Dubaissi and Papalopulu, 2011), the developing epidermis (ep) of control embryos is bilayered, 

comprising an internal layer of sensorial cells (slc, Figure 3C-E), overlaid by an outer epithelial layer that 

consists of four different cell types. The ciliated cells (cc) were easily identified morphologically by the 

presence of thin cilia on the pictures (Figure 3C-D), and pigment granules (pg) could be observed as 

brownish spots in the outer epithelial cell layer (Figure 3D-E). The dorsal fin blisters of both exosc9 and 

ptbp1 morphants were composed of a thin single cell layer (Figure 3, compare panels G, K, O with panel 

C). The dorsal blisters of exosc9 morphants appeared to have fewer ciliated cells, defined by the presence of 

countable cilia (Figure 3 K and O). To further quantify this phenotype, we counted cilia positive cells along 

the dorsal blisters of the morphants (Figure 3R). The proportion of ciliated cells decreased about twofold 

(p=0,01573, t-test) between the MoExosc9 and non-injected embryos. No difference was observed between 

the MoPtbp1 and non-injected embryos. Outside of the blisters, the ptbp1 morphant displayed a double 

layered epidermis with pigment granules (Figure 3 H-I). This was also the case of one of the exosc9 

morphants (Figure 3L-M), but, in some others, as shown for the exosc9 embryo2 morphant, the blisters and 

lateral and ventral epidermis were composed of a single cell layer (Figure 3 O-Q). Therefore, while the ptbp1 

morphant phenotype is restricted to the dorsal side, the exosc9 morphant phenotype can extend down to the 

ventral side. A striking feature in the exosc9 embryo1 morphant was the gap between the sensorial cell layer 

and the epithelial cell layer (Figure 3, panels J, L, M) in which the sensorial cell layer appeared to be loose 

and slightly detached from the outer cell layer (Figure 3, panels L, M; arrowhead). This suggests that the 

adhesion between these two cell layers was altered. This gap is not observed in the ptbp1 morphant (Figure 

3F-I). 

Together, these data show that, while exosc9 and ptbp1 morphants share a morphologically similar 

phenotype with a common monolayered epidermis in the blisters, they are histologically different. Indeed, 

exosc9 morphants display a specific decrease in cells harboring cilia in the dorsal fin epidermis and a lack of 

adhesion between the sensorial and outer cell layer. This suggests that different processes come into play to 

disrupt the development of the epidermis in both morphants. 

 

 

 



6 

Exosc9 and ptbp1 morphants display distinct epidermal defects 

 

Finally, we studied the organization of the outer epidermal layer by scanning electron microscopy. This 

technology is used to analyze and identify the different cell types located in the outer epidermal cell layer. 

They can also be identified by in situ hybridization (see Figure 2) or immunohistochemistry (Dubaissi et al., 

2014). In addition, SEM enables a detailed analysis of cellular surface morphology. Our analysis focused on 

the lateral midbody of the embryos outside of the blister structures. At stage 26, three types of cells could be 

distinguished in the control embryos (Figure 4 A, B). Ciliated cells (cc) are characterized by the presence of 

large filamentous cilia, goblet cells (gc) — the initial and major components of the periderm — are observed 

as large mucus-secreting cells with small apical vacuoles and secretory granules, and ionocytes (i) are 

viewed as medium-sized cells with a smooth apical surface. By stage 36, an additional cell type intercalates 

into the outer layer of the epidermis. These small secretory cells (ssc) have recently been described 

(Dubaissi et al., 2014) and are observed as small triangular-shaped cells with large apical vacuoles (Figure 

4 C, D). To detect any differences that may occur during skin differentiation, we analyzed the exosc9 and 

ptbp1 morphant embryos at stages 26 and 36. By stage 26, all three cell types (cc, gc, i) were present 

(Figure 4) in the exosc9 and ptbp1 morphants. While they appeared to be morphologically normal in the 

exosc9 morphants (Figure 4 I, J), in ptbp1 morphants the goblet cells were altered with a domed apical 

surface and a high density of secretion granules (Figure 4 E, F). By stage 36, the ptbp1 morphant phenotype 

was reinforced with a swollen apical surface of the goblet cells and many secretory granules. Small secretory 

cells were now present and appeared unaffected (Figure 4 G, H). At stage 36, exosc9 morphants displayed 

ssc and ionocytes that were morphologically unaffected, whereas the ciliated cells presented a reduction in 

the number of cilia, and the goblet cells appeared larger compared with the control embryos (Figure 4 K, L). 

To confirm this last observation, we quantified the goblet cell area in the control embryos and ptbp1 and 

exosc9 morphants at stage 36. Goblet cells were significantly larger in the exosc9 morphants (p< 5,02 .10
-26

, 

t-test) compared with the control embryos and their size was unaffected in the ptbp1 morphants (Figure 4M). 

We concluded from this analysis that the epidermis differed externally from the control in both the ptbp1 and 

exosc9 morphants but in different ways. While the goblet cells were the most morphologically affected cell 

type in ptbp1 morphant embryos with a swollen apical surface and an increase in secretion vacuoles, in 

exosc9 morphants, the ciliated cells were morphologically altered with a perturbed ciliogenesis and the 

goblet cells were larger than in the control embryos. 

 

Transcriptome analysis of exosc9 and ptbp1 morphant embryos 

Histological and scanning electron microscopy analysis of the outer layer of the epidermis showed that the 

exosc9 and ptbp1 morphant phenotypes were dissimilar. As in situ hybridization for markers of the four 

different cell types making up the epidermis did not show an obvious alteration in the differentiation of these 

cell types, Ptbp1 or Exosc9 depletion probably does not lead to a general disruption of the epidermal 

differentiation program (Figure 2). Therefore, to address the molecular basis of the phenotypes in more 
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detail and determine to what extent the transcriptome changes overlap in ptbp1 and exosc9 morphants, we 

carried out deep sequencing on the RNA extracted from stage 26 embryos when the blister phenotype is first 

evident. Two lines of argument indicated that Ptbp1 and Exosc9 were depleted by injection of the 

corresponding morpholinos in these particular experiments. Firstly, both the efficiency of MoPtbp1 and 

MoExosc9 has been demonstrated (Le Sommer et al. 2005 and Figure 1A). Secondly, in addition to 

collecting stage 26 embryos for RNA extraction, we allowed some siblings to develop until stage 36 for 

phenotypic analysis. About 90% of the exosc9 and ptbp1 morphant siblings generated for the RNAseq 

experiments had at least one blister consistent with the high penetrance of the phenotype (Figure 5A). We 

built unstranded sequencing libraries from stage 26 embryos, which were sequenced as 2x101 paired-end 

reads. About 85% of the reads could be unambiguously mapped to the 7.1 X. laevis genome with 75% of 

concordant pairs aligned (Figure 5B). Only concordant read pairs (aligned on the same scaffold in opposite 

directions) were kept for further analysis. To illustrate the nature of the results obtained from mapping reads 

to the Xenopus genome, we show a Sashimi plot (Wang et al., 2008) of the reads mapped to the hmnc1 

locus (one of the most overexpressed genes in both morphants, see below) in Figure 5C. The exon-intron 

structure of the gene was obvious from the mapped reads and could be compared with the annotation shown 

at the bottom. The relative abundance of reads mapped to the hmcn1 locus was indicative of a higher 

expression of hmcn1 in both exosc9 and ptbp1 morphants when compared with the control embryos. 

To determine which genes are differentially expressed upon Ptbp1 or Exosc9 knockdown, we used a 

counting strategy in which the number of reads overlapping exons was totaled for each gene. Differential 

expression analysis was performed with DESEQ2 on a model using a binomial negative distribution (Love et 

al., 2014). Principal component analysis of log-transformed expression data showed that the replicates of 

each biological sample were clustered, and each of the experimental conditions could clearly be 

distinguished from the others (Figure 5D). 

We identified the genes that were differentially expressed upon ptbp1 (n=160) or exosc9 (n=1258) 

knockdown (Supplementary table 1, MoPtbp1 and MoExosc9). Ptbp1 was unaffected in MoExosc9-

injected embryos and, reciprocally, exosc9 was unchanged in MoPtbp1-injected embryos. Therefore, this 

rules out any direct control of ptbp1 upon exosc9 and conversely. It is noteworthy that ptbp2 was strongly 

upregulated among genes differentially expressed in ptbp1 morphant embryos. This is consistent with the 

PTBP regulatory feed-back loop demonstrated in human cells (Spellman et al., 2007) and Xenopus embryos 

(Méreau et al., 2015). 

Unexpectedly, given the similar external phenotypes of ptbp1 and exosc9 morphants, only 29 genes were 

differentially expressed in both morphants (Figure 5E). The fold changes had the same sign in both 

morphants for 23/29 genes and the gene expression fold change in exosc9 morphants was significantly 

correlated with that in ptbp1 morphants (Spearman correlation coefficient rho=0.62, p= 5 10
-4

, Figure 5F). 

Hemicentin 1 (hmcn1), for which we present a Sashimi plot, is one of the most upregulated genes in both 

morphants. It encodes a protein localized in the extracellular matrix of epithelial cells and is involved in the 

response to mechanical stress. Since the commonly differentially regulated genes are few in number, they 

may correspond to an indirect signature of epidermal disorganization rather than hypothetical common 
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triggers of blister appearance. 

 

Dissimilarities of Ptbp1 and Exosc9 post-transcriptional networks in epidermis biology 

To determine whether similar pathways are altered in exosc9 and ptbp1 morphant embryos, we conducted a 

GO term enrichment analysis (Figure 6A, complete list in Supplementary table 2). Upon depletion of Ptbp1, 

we observed an enrichment in misregulated genes that encode intracellular components involved in 

maintaining cell integrity, such as the cortical cytoskeleton, stress fibers and the platelet dense tubular 

network. None of these terms was enriched in exosc9 morphants. Upon Exosc9 depletion, the enrichment 

was evident for interface components between the cell and the extracellular space (“extracellular space”, 

“brush border membrane”, “proteinaceous extracellular membrane”). Only one GO term (“extracellular 

vesicular exosome”) was significantly enriched in both morphants. However, while 32 and 138 genes 

belonging to the extracellular vesicular exosome were differentially expressed in ptbp1 and exosc9 

morphants, respectively, only six of these genes were shared by both morphants (angptl2, arf1, fam162a, 

gsto1, gstp1, hmcn1, mgam). Therefore, depletion of Ptbp1 and Exosc9 proteins has different consequences 

on cell components. Along with histological analysis, this gene enrichment analysis showed that the cells are 

affected differently by Ptbp1 and Exosc9 depletion. 

 

To confirm these findings, we focused on a subset of genes relevant to epidermal biology. We first selected 

58 genes specifically expressed in the epidermis, based on previous publications (Chalmers et al., 2006; 

Hayes et al., 2007), and assessed how their expression levels were affected in ptbp1 and exosc9 morphants 

(Supplementary table 3). Figure 6B revealed slightly greater dynamic changes in RNA levels in exosc9 

morphants (log2(FoldChange) (LFC) ranging from -1.07 to 2.93) compared with ptbp1 morphants (LFC 

ranging from -0.84 to 1.57). The epidermal gene expression fold changes in exosc9 morphants were poorly 

correlated with those in ptbp1 morphants (Spearman correlation coefficient rho=0.34, p=0.03, Figure 6B). 

Indeed, a number of markers were significantly affected in only one of the two morphants (for example grhl3 

or eppk1, which are respectively upregulated and downregulated in exosc9 morphants, but unchanged in 

ptbp1 morphants) or had opposite behaviors (like atp6v1a). Together, these findings demonstrate that 

exosc9 and ptbp1 knockdowns have distinct consequences on epidermal gene expression.  

We next assessed how well these gene expression data matched previous phenotype characterization 

(Figures 2-4). The SEM data (Figure 4) revealed intense morphological perturbations of the goblet cells in 

ptbp1 morphants. This was not the case in exosc9 morphants, despite an increased surface area. 

Accordingly, two goblet cell markers — itln2 and mapk12 — were altered in opposite directions in ptbp1 

morphants and were unaffected in exosc9 morphants (Figure 6B). This suggests that inactivation of Ptbp1 

remodels gene expression in the goblet cells. The SEM data also showed altered ciliogenesis in exosc9 but 

not in ptbp1 morphants. It was therefore interesting to observe that the ciliated cell markers tuba1a, ttc25 and 

tubb6 were downregulated in exosc9 but not in ptbp1 morphants (Figure 6B). 

To determine whether this downregulation of ciliary genes could be generalized, we compared the 
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distribution of ciliary gene fold changes (SYSCILIA database, (van Dam et al., 2013) between the exosc9 

and ptbp1 morphants overall. In Figure 6C, we present the cumulative distribution function [cdf: y=(fraction 

of genes with a log fold-change ≤ x) plotted against x] of the fold change quantified in exosc9 and ptbp1 

morphants. The exosc9 morphant distribution was shifted to the left of the ptbp1 morphant distribution 

(shoulder highlighted by the arrow). For example, 10% of ciliary genes in exosc9 morphants had a log2(FC) 

below -0.5, but this only concerned 1.5% of ciliary genes in ptbp1 morphants. This indicates that, overall, the 

repression of ciliary genes in exosc9 morphants was stronger than in ptbp1 morphants. The gene expression 

analysis is therefore fully consistent with the phenotypic analysis of ptbp1 and exosc9 morphants. 

 

Genodermatosis genes are differentially misexpressed between exosc9 and ptbp1 morphants 

To investigate the relevance of our findings for human pathologies, we analyzed the Xenopus orthologs of 

genes known to be mutated in several genodermatoses, such as Epidermolysis bullosa (Fine et al., 2014), 

Ehlers-Danlos syndrome (Byers and Murray, 2014), Kindler syndrome (Jobard et al., 2003; Siegel et al., 

2003), acral peeling skin syndrome (Cassidy et al., 2005) and Naxos disease (McKoy et al., 2000). These 

gene products are involved in hemidesmosomes, desmosomes or adherens junction (plakoglobin) and focal 

adhesion, as depicted in Figure 7B. Figure 7A and Supplementary Table 4 show the expression of 

genodermatosis genes in ptbp1 and exosc9 morphants. The genodermatosis genes that are differentially 

expressed in ptbp1 morphants are involved in Ehler-Danlos syndrome (col1a1, col1a2) or Kindler syndrome 

(femrt1). The genodermatosis genes that are differentially expressed in exosc9 morphants are involved in 

acral peeling skin syndrome (tgm5) or Naxos disease (jup). Finally, genes causal in Epidermolysis bullosa 

were found both within the differentially expressed genes in ptbp1 morphants (dst) and the differentially 

expressed genes in exosc9 morphants (krt5, lama3, dsp, plec, itga6). Col17a1, also involved in 

Epidermolysis bullosa, was differentially expressed in both morphants but was upregulated in exosc9 

morphants and downregulated in ptbp1 morphants. Together, these data show that depletions of Ptbp1 and 

Exosc9 induce different types of skin stability defects. 

We also investigated how these gene products were distributed between the different subcellular structures 

involved in cell adhesion (Figure 7B). Focal adhesions and the extracellular matrix contain proteins encoded 

by genes that are differentially expressed in ptbp1 morphants. Desmosomes contain proteins encoded by 

genes that are differentially expressed in exosc9 morphants, and hemidesmosomes contain proteins 

encoded by genes that are differentially expressed in both morphants. Mutations in any one of these genes 

can cause human skin stability syndromes (Cassidy et al., 2005; Fine et al., 2014). It is therefore highly 

probable that the concomitant dysregulation of several of these genes is resulting in the appearance of the 

ptbp1 or exosc9 morphant phenotypes. 

In conclusion, we demonstrated that both exosc9 and ptbp1 morphant embryos specifically develop skin 

instability defects that could be clearly distinguished both histologically and at transcriptome level. This 

demonstrates that Exosc9 and Ptbp1 act through different regulatory pathways to control larval skin stability. 
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DISCUSSION 

 

In this article, we showed that specific inactivation of Ptbp1 and Exosc9, which encode two proteins involved 

in RNA metabolism, leads to skin stability defects in Xenopus laevis embryos. At first glance, the 

macroscopic phenotypes of both exosc9 and ptbp1 morphants are similar, with the appearance of blisters 

along the dorsal fin of the embryos. This phenotype is associated with normal early epidermal differentiation, 

as deduced from the expression of markers for all cell types in the epidermis.   

While the normal epidermis is composed of two cell layers, blisters are composed of a single layer of cells in 

both morphants. Histology, SEM and gene profiling analysis show that the morphant phenotypes differ in 

several ways: the apparent adhesion properties of the outer cell layer, the identity of the most strongly 

affected cells (ciliated cells in exosc9 morphants, goblet cells in ptbp1 morphants), the nature of the 

misexpressed genes (both taken overall and focusing on epidermal markers, ciliary genes or 

genodermatosis genes), and the enriched GO pathways. We therefore conclude that both Ptbp1 and Exosc9 

contribute to skin stability, but through different routes. 

 

The Ptbp1 route includes the downregulation of several components of the dermal-epidermal junction, such 

as col1a1, col1a2, col17a1 or BPAG2 (dst). Mutations in the human COL1A1 and COL1A2 genes have been 

directly implicated in Ehlers-Danlos syndrome, a condition that results in alteration of skin elasticity. In X. 

laevis, col1a1 expression is initially limited to the dorsal epidermal layers of the embryo (Goto et al., 2000; 

Grimaldi et al., 2004), suggesting that the dorsal localization of the blisters could be due, in part, to the 

downregulation of col1a1 in ptbp1 morphants. The COL17A1 protein (BPAG180) is a hemidesmosome 

component which is targeted by autoantibodies in bullous pemphigoid (Sawamura et al., 1990). The 

COL17A1 gene is also mutated in some benign forms of junctional Epidermolysis bullosa (Bauer and 

Lanschuetzer, 2003). 

While the constitutive knockout of Ptbp1 is lethal in early mouse development (Shibayama et al., 2009; 

Suckale et al., 2011), the conditional inactivation of Ptbp1 in the mouse telencephalon leads to disruption of 

the ciliated epithelial layer lining the inside of the brain ventricles (Shibasaki et al., 2013). While the PTBP1 

targets responsible for this phenotype remain unknown, the loss of epithelial integrity is correlated with a 

mislocalization of adherens junction components. Correct development of adherens junctions is known to 

enable the correct formation of other cell-cell junctions, such as desmosomes (Lai-Cheong et al., 2007; 

Todorovic et al., 2014). Our model for early inactivation of ptbp1 in Xenopus provides a unique and easily 

accessible means of addressing the role of ptbp1 in cell-cell or cell-substrate junction formation.  

Interestingly, we recently described a regulatory feedback loop in which the epithelial-specific splicing 

regulator Esrp1 positively and specifically controls Ptbp1 abundance in the epidermis (Méreau et al., 2015). 

Knockdown of Esrp1 expression leads to a blister phenotype that correlates with decreased Ptbp1 

expression in the skin of esrp1 morphants. By investigating to what extent the Esrp1 phenotype recapitulates 

the Ptbp1 phenotype, we should get a new insight into the post-transcriptional regulatory network at play 

during larval skin development. 
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The Exosc9 route is characterized by the upregulation of krt5, tgm5, lama3 and jup, and the downregulation 

of itga6, plec and dsp. Mutations in these four genes are causal in human Epidermolysis bullosa (KRT5, 

LAMA3, ITGA6, PLEC, DSP), acral peeling syndrome (TGM5) and Naxos disease (JUP). The exosc9 

morphant phenotype is accompanied by changes in the relative expression of four structural genes linking 

epithelial cells to the basement membrane (krt5, lama3, itga6, plec, see Figure 7B). These changes may 

contribute to skin instability and the development of blisters. More specifically, two desmosomal components 

that are inversely affected, jup and dsp, may be involved in the loss of adhesion observed between the 

sensorial cells and the outer cell layer in the exosc9 morphants. The epiplakin (eppk1) and grainy-head like 3 

transcription factor (grhl3) genes also deserve particular attention. Eppk1 is repressed in exosc9 morphants 

and is a marker of the superficial cells of the epidermis (Chalmers et al., 2006). Identification of EPPK1 as an 

autoantigen in a patient suffering from a blistering disease (Fujiwara et al., 1996) would point towards a 

possible causal relationship between the downregulation of eppk1 and the appearance of blisters in exosc9 

morphants. However, the absence of obvious skin defects in Eppk1
-/-

 mice renders this hypothesis less likely 

(Spazierer et al., 2006). Mutations in the GRHL3 gene lead to Van der Woude syndrome, including abnormal 

oral periderm development (Peyrard-Janvid et al., 2014). Furthermore, the overexpression of grhl3 upon 

inactivation of Exosc9 is consistent with the observation that EXOSC9 triggers the degradation of Grhl3 

mRNA in human epidermal stem cells. Upon differentiation of the epidermal stem cells, Exosc9 activity 

decreases, allowing the accumulation of Grhl3 mRNA and turning on its specific expression program (Mistry 

et al., 2012). In this model, knockdown of Exosc9 by siRNA led to the overexpression of Grhl3 mRNA, 

resulting in a decrease in cell proliferation, an increase in cell differentiation and a reduced number of cells in 

the basal layer. Upon exosc9 knockdown in Xenopus, we observed an alteration of the sensorial cell layer 

with the appearance of gaps between the inner and outer cell layer or the development of a monolayered 

epidermis. As cells located in the sensorial cell layer act as progenitor cells to generate the cell type diversity 

observed in the epithelial layer, it is possible that Exosc9 plays a similar function in the developing embryo. 

In Xenopus, early overexpression of grhl3 in the whole embryo leads to a thickening of the deep epidermal 

cell layer accompanied, at stage 14, by an overexpression of superficial markers (Chalmers et al., 2006). We 

do not observe any thickening of the epidermis in exosc9 morphants. This difference may be accounted for 

by a localized overexpression of grhl3 after inactivation of exosc9 in the embryo, as opposed to the overall 

and early expression after injection of mRNAs encoding Grhl3. 

Here we uncover a link between Ptbp1, Exosc9 and skin stability, which, for the first time, provides evidence 

in a model organism that alterations in post-transcriptional regulatory networks can cause skin instability. 

These results draw attention to the molecular causes for skin defects in ptbp1 and exosc9 morphants. At first 

glance, this issue could be addressed by screening candidate genes found to be misexpressed in ptbp1 or 

exosc9 morphants to identify those whose knockdown phenocopies MoPtbp1- or MoExosc9-injection. 

Indeed, morpholino-mediated knockdown of col17a1 or cola1 in zebrafish (Durán et al., 2011; Kim et al., 

2010), or fermt1 (kindlin) in Xenopus (Rozario et al., 2014) results in skin instability. More generally, several 

animal models of genodermatoses have been produced (Bruckner-Tuderman et al., 2010), which generally 

phenocopy the disease by targeting genes that encode key structural components of the dermal-epidermal 
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complex. Yet, the expression of most genes is only mildly affected in ptbp1 or exosc9 morphants (generally 

by no more than a twofold factor at mRNA level, see Figures 6B or 7A). A modification of this magnitude of 

one gene alone may not be sufficient to trigger skin instability. Therefore, we favor the hypothesis that it is 

the concomitant dysregulation of several unidentified genes that explains the ptbp1 and exosc9 morphant 

phenotypes. 

The ptbp1 and exosc9 morphant phenotypes are reminiscent of skin stability defects observed in human 

genodermatoses, which draws attention to the relevance of our findings for human disease. Skin stability 

defects in humans often occur through mutations or functional inactivation of genes that encode structural 

proteins of the dermal-epidermal complex, or through the development of autoantibodies against these 

proteins. However, the variability of clinical symptoms in patients suggests that “modifier” genes can 

modulate the expressivity of the disease. The nature of these modifier genes remains largely unknown. They 

can be specific alleles of components of the dermal-epidermal complex, as was demonstrated recently for 

Col17a1 in the context of Lamc2 mutation in mice (Sproule et al., 2014), but genes directly affecting the gene 

expression program may also be involved. Among them, our results identify EXOSC9 and PTBP1 as strong 

candidates for modifier genes involved in human skin instability syndromes. In addition, the orthologs of the 

genes found to be dysregulated and which are directly controlled by Ptbp1 and Exosc9 are also good 

candidates for modifier genes.  

 

They can be identified by integrating RNASeq data with data from the immunoprecipitation of RNA/protein 

complexes and sequencing of the bound RNAs. With the ongoing advances in Xenopus genome annotation 

and the Crispr/CAS9 system (Harrison et al., 2014), Xenopus will be an invaluable model for examining the 

effects of the identified genes responding to post-transcriptional regulators in establishing and maintaining 

the stability of the developing epidermis. 
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MATERIALS AND METHODS 

 

Plasmids, oligonucleotides and in vitro transcription 

The coding sequence for Exosc9 was amplified from the Image clone (IRBHp990G0531D) with Exosc9_fwd 

(GGGGATCCATGAGTCTATAGTTATATGA) and Exosc9_rev 

(GGGCGGCCGCCTTTTGTGCAGATTTATTCTT) for the wild-type construct and ExosC9_res 

(GGGGATCCACCATGAAACTCCGCTGTCCAACTGT) and Exosc9_rev for the rescue plasmid. The PCR 

products were cloned into pGEM-T-easy (Promega) then digested with BamHI and NotI and subcloned into 

pT7TSV5 (Hamon et al., 2004), digested with BglII and NotI beforehand. All constructs were verified by 

sequencing. The transcription templates were linearized using BamHI. In vitro transcriptions were carried out 

using the T7 mMessage Machine (Ambion) according to manufacturer recommendations to produce the 

Exosc9_V5 and Exosc9_V5Rescue mRNAs. The antisense morpholino oligonucleotides were purchased 

from Gene-Tools (MoPtbp1 and MoCo see (Le Sommer et al., 2005), MoExosc9 

(CGTCTCCTTCATGTCTGTAACACAC). 

 

Xenopus embryos and microinjection 

Xenopus laevis eggs were obtained from WT or albino females and fertilized using standard procedures 

(Paris et al., 1988). When indicated, 25 ng of MoExosc9, 30 ng of MoPtbp1 or 30 ng of control morpholino 

(GeneTools) was injected into each blastomere of two-cell embryos in a volume of 13.8 nl, using a Nanoject 

II (Drummond). For rescue experiments, 1 fmol of mRNA-encoding morpholino-resistant Exosc9-V5R was 

co-injected. Embryos were allowed to develop at 22°C and collected according to Nieuwkoop and Faber 

stages (Nieuwkoop and Faber, 1994). Anti-V5 (Life technologies) and anti-PCNA (Sigma-Aldrich) antibodies 

were diluted 1/5000. The polyclonal anti-Ptbp1 antibody was used at 1/500, as previously described (Hamon 

et al., 2004). To detect the primary antibodies, secondary antibodies coupled to alkaline phosphatase were 

used (Jackson laboratories). Phosphatase activity was detected by ECF (Amersham Biosciences) and 

quantified on a Storm 840 (Molecular Dynamics). 

 

In situ hybridization 

Plasmids containing cDNA for tuba1a (NM001086587), foxA1 (BI445589, IMAGE:4680765), itln2 (XL020e14) 

and foxi1 (BC042303, IMAGE:4682602) were linearized and used as templates for in vitro transcription as 

follows: tuba1a, antisense probe, NotI, T7; sense probe, ApaI, T3. foxa1, antisense probe, SalI, T7; sense 

probe NotI, SP6. itln2, antisense probe, EcoRI ,T7; sense probe, XhoI, T3. foxi1, antisense probe, SalI, T7; 

sense probe, SphI, SP6. Digoxygenin (Roche)-labeled antisense and sense probes were generated by in 

vitro transcription using the above-mentioned RNA polymerases (Promega). Whole-mount in situ 

hybridization was performed, as previously described (Harland, 1991), using an automated system (Intavis 

InsituPro VSi). Detection was carried out using anti-DIG Alkaline Phosphatase-conjugated antibodies 
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(Roche) and stained with NBT/BCIP (Promega) as a substrate. Images were taken on a Leica MZ165 with a 

DFC290HD camera. 

 

RNAseq analysis 

Total RNA was extracted using RNeasy columns (Qiagen) from a pool of 10 embryos at stage 26, previously 

injected with 25 ng of MoExosc9 or 30 ng of MoPtbp1 in both blastomeres of two-cell embryos. 

Contaminating DNA was removed using TurboDnase (Ambion) and RNA quality was confirmed on a 

Bioanalyzer 2100 using an RNA Pico 6000 chip (Agilent). RNA was quantified by spectrometry on a 

Nanodrop ND-1000. Polyadenylated mRNAs were selected and unstranded libraries were prepared from 

1 μg of total RNA using the TruSeq RNA sample low-throughput kit (Illumina) according to manufacturer 

recommendations. Thirteen PCR cycles were required to generate enough library material for sequencing. 

The libraries were quantified using the Qubit fluorimeter with the dsDNA BR kit (Invitrogen). Library size 

distribution was controlled on a Bioanalyzer 2100 using the DNA1000 chips (Agilent). Sequencing was 

performed on a Hiseq 2000 (Illumina) as 2x101 paired-end data. Reads were submitted to the European 

Nucleotide Archive (PRJEB8711). After sequencing and demultiplexing, read quality was controlled using 

FASTQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc). Reads were mapped to the Xenopus 

laevis 7.1 genome (available from Xenbase) using Tophat2 (Kim et al., 2013), allowing up to two matches for 

each read to take the pseudo-tetraploidy of the species into account (Pollet and Mazabraud, 2006). We 

determined the differentially expressed genes in MoPtbp1 and MoExosc9 by comparing the mapped reads 

with non-injected embryos, using DESEQ2 (v1.8.1) and the JGIv15 annotation available from Xenbase 

(Bowes et al., 2010). We considered the genes with a Benjamini-Hochberg adjusted p-value below 0.05 (BH-

adjusted pvalue <0.05) as differentially expressed. Non-injected control embryos were used because the 

transcriptomic consequence of a control morpholino was likely to be dependent on the sequence of the 

control morpholino used and would later impair comparison with other forms of functional inactivation. Gene 

Ontology enrichment analysis was conducted based on the human orthologs of the Xenopus genes (HCOP). 

Statistical analysis was conducted with R using the topGO package (Alexa et al., 2006). 

 

Scanning electron microscopy and histology 

For scanning electron microscopy, embryos were fixed in MEMFA, dehydrated in methanol and processed 

for critical point dehydration, and coated and imaged on a JEOL JSM 6301F. For histological analysis, 

embryos were fixed in Bouin’s solution (Sigma-Aldrich), dehydrated in ethanol, included in paraplast 

(McCormick Scientific) and processed for 5 μm transversal sections with a microtome (Leica). Sections were 

mounted, stained with hematoxylin/eosin and scanned (Nanozoomer NDP, Hamamtsu). 
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LEGENDS 

 

Figure 1: ExosC9 morphant embryos specifically display dorsal skin blisters 

A) We injected two-cell embryos with the indicated molecules: morpholino targeting exosc9 mRNA 

(MoExosc9), mRNA encoding a V5-tagged Exosc9 (Exosc9-V5) and mRNA mutated on the morpholino 

recognition site encoding a V5-tagged Exosc9 (Exosc9-V5R). We allowed the embryos to develop until stage 

26 to assess the accumulation of V5-tagged protein by western blot. Pcna is the loading control. B) 

Photographs of stage 33 embryos previously injected with the indicated molecules. Arrows point to blisters. 

C) The blister phenotype was scored according to the number of dorsal blisters. The number of embryos 

scored for each experimental condition is indicated under the graph. 

 

Figure 2: In situ hybridization for epidermal markers in exosc9 and ptbp1 morphants 

Albino embryos were injected with the control morpholino (MoCo, A, D, G, J), MoPtbp1 (B, E, H, K) or 

MoExosc9 (C, F, I, L) in both blastomeres. Embryos were fixed at stage 32 and processed for in situ 

hybridization with the following probes: tuba1a (A-C), foxa1 (D-F), foxi1 (G-I) and itln2 (J-L). 

 

Figure 3: Histological comparison of ptbp1 and exosc9 morphant embryos 

Embryos were injected with MoPtbp1 or MoExosc9 in both blastomeres, fixed at stage 40 and processed for 

histological analysis. A) Macroscopically, ptbp1 and exosc9 morphant embryos displayed similar blister 

structures on the dorsal side. B-Q) 5 μm transversal sections from the embryos presented in A (section plans 

shown by white line) and stained with hematoxylin/eosin. Detailed images of the dorsal fin (C, G, K, O), and 

the lateral (D, H, L, P) and ventral (E, I, M, Q) epidermis were shown for each embryo as indicated. 

Abbreviations: epidermis (ep), neural tube (nt), notochord (nc), somite (sm), sensorial layer cells (slc), 

ciliated cells (cc) and pigment granule (pg). The scale bar is shown for each image (100 μm, except B, F, J, 

N 1 mm). Arrowhead points to gap between slc and periderm layer. R) Cells harboring cilia were counted in 

the dorsal epithelium and normalized to the number of nuclei observed. The number of embryos and 

sections counted is presented below each barplot. 
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Figure 4: Scanning Electron Microscopy (SEM) analysis of the peridermal layer of ptbp1 and exosc9 

morphant embryos 

A-L) Stage 26 (A, B, E, F, I, J) and stage 36 (C, D, G, H, K, L) embryos, previously injected with MoPtbp1 or 

MoExosc9 or left uninjected (control) as indicated, were fixed, dehydrated and processed for SEM. The four 

cell types described in the Xenopus mucociliary epithelium are indicated as ionocytes (i), goblet cells (gc), 

ciliated cells (cc) and small secretory cells (ssc). M) The apical area of the goblet cells was measured in 

stage 36 embryos (MoCo 262 cells, 4 embryos; MoPtbp1 131 cells, 3 embryos; MoExosc9 168 cells, 4 

embryos). The scale bar shown on pictures represents 10 μm (A, C, E, G, I, K) or 100 μm (B, D, F, H, J, L).  

Abbreviations: dorsal fin (df), eye (e), blister (bl). 

 

Figure 5: Transcriptome analysis 

A) Scoring of the blister phenotypes obtained in stage 36 embryos, the siblings of those used to prepare the 

RNA sequencing libraries. The number of scored embryos is indicated below the categories. B) Unstranded 

poly(A)+ RNA sequencing libraries were prepared from biological triplicates of pools of 10 embryos either 

non-injected (NI), or injected with MoPtbp1 or MoExosc9. Sequencing generated 2 x 101 nt paired reads. 

The total number of reads obtained (InputReads), the percentage of reads aligned (Overall_read_aligned) 

and of concordant pairs of reads aligned for each sample is indicated. C) Example of a Sashimi plot 

representing read coverage across the hmcn1 locus in the three experimental conditions (samples 1). D) 

Principal component analysis of the nine samples discriminates between the experimental conditions. E) 

Venn diagram showing the overlap between differentially expressed genes (BH-adjusted pvalue <0.05 and at 

least twofold fold changes) in ptbp1 and exosc9 morphants. F) Log2 fold changes (LFC) are presented for 

genes differentially expressed in ptbp1 and exosc9 morphant embryos. 

 

Figure 6: Post-transcriptional networks of Ptbp1 and Exosc9 in epidermis biology 

A) Comparison of enriched GO terms in differentially expressed genes in ptbp1 and exosc9 morphants. The 

dotted red line indicates p=0.05. B) Comparison of the fold change in exosc9 (MoExosc9_Log2(FC)) and 

ptbp1 (MoPtbp1_Log2(FC)) morphant embryos for genes encoding epidermal markers (Chalmers et al., 

2006; Hayes et al., 2007). Genes significantly (p <0.05 corrected for multiple testing) differentially expressed 

in ptbp1 morphants are shown in red, those significantly differentially expressed in exosc9 morphants are 

shown in green and those significantly differentially expressed in both morphants are shown in black. C) 

Cumulative distribution of the Log2 fold-change of ciliary genes following Exosc9 depletion (green) and 

Ptbp1 depletion (red), compared with the non-injected embryos. Differential expression of ciliary genes in 

exosc9 and ptbp1 morphant embryos. 

 

 

 



17 

Figure 7: Differential expression of genodermatosis-causing genes 

A) Comparison of the fold changes in exosc9 (MoExosc9_Log2(FC)) and ptbp1 (MoPtbp1_Log2(FC)) 

morphant embryos for genes causing genodermatosis in humans. B) Schematic diagram of the dermal-

epidermal junction in relation to genes differentially expressed upon Ptbp1 or Exosc9 depletion. Genes 

significantly (p <0.05 corrected for multiple testing) differentially expressed in ptbp1 morphants are 

highlighted with a red dot, those significantly differentially expressed in exosc9 morphants with a green dot 

and those significantly differentially expressed in both morphants with a black dot. Abbreviations: HD, 

hemidesmosome; FA, focal adhesion; DES, desmosome. 

 

 

 

HIGHLIGHTS 

 

 

� Exosc9 and ptbp1 knockdown triggers blister development in the dorsal Xenopus epidermis 

� Multiciliated cell development is compromised in Exosc9 morphants 

� Embryos depleted in Ptbp1 and Exosc9 display phenotypically different skin defects 

� Ptbp1 and Exosc9 differentially control expression of genodermatosis-related genes 
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