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Abstract 

For efficient information processing during cognitive activity, functional brain networks have 

to rapidly and dynamically reorganize on a sub-second time scale. Tracking the 

spatiotemporal dynamics of large scale networks over this short time duration is a very 

challenging issue. Here, we tackle this problem by using dense electroencephalography 

(EEG) recorded during a picture naming task. We found that (i) the picture naming task can 

be divided into six brain network states (BNSs) characterized by significantly high 

synchronization of gamma (30-45 Hz) oscillations, (ii) fast transitions occur between these 

BNSs that last from 30 ms to 160 ms, (iii) based on the state of the art of the picture naming 

task, we consider that the spatial location of their nodes and edges, as well as the timing of 

transitions, indicate that each network can be associated with one or several specific function 

(from visual processing to articulation) and (iv) the comparison with previously-used 

approach aimed at localizing the sources showed that the network-based approach reveals 

networks that are more specific to the performed task. We speculate that the persistence of 

several brain regions in successive BNSs participates to fast and efficient information 

processing in the brain. 

 

 

 

 



3 
 
 

 

Introduction 

Any cognitive process involves the activation of a large-scale functional brain network 

(Bressler & Menon, 2010). In visual, attentional and memory processes, this network is 

characterized by increased synchronization of cortical oscillations (in the gamma frequency 

range (Doesburg, Roggeveen, Kitajo, & Ward, 2008), in particular but not only) across distant 

neuronal assemblies distributed over distinct brain areas.  

The accurate tracking of the spatiotemporal dynamics of large-scale networks over the 

duration (often as short as a few hundreds of ms) of cognitive processes is still a challenging 

issue (Allen et al., 2012; Hutchison et al., 2013). A number of theories have been elaborated 

to explain these spatiotemporal dynamics. It has been hypothesized that functional brain 

networks engage in fast transitions between transiently stable states, each characterized by a 

network with intrinsic dynamics and with specific functional relationships between neuronal 

assemblies (Hansen, Battaglia, Spiegler, Deco, & Jirsa, 2014; Sporns, 2010). According to 

this theory, the substrate of cognitive processes would correspond to a sequence of switches 

between networks and, thus, to time- and space-dependent fluctuations in the node and edge 

properties of the global network. 

The validation of such hypotheses for task-related data requires the following of brain 

processes at the millisecond time-scale. This can barely be achieved using fMRI data for a 

simple and well-known reason: although they are characterized by an excellent spatial 

resolution, BOLD signals reflect the metabolic and hemodynamic response of neuronal 

assemblies (at voxel level). This slow response (seconds) is obviously related to the fast 

dynamics of cortical oscillations taking place over interconnected neuronal assemblies and 
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defining functional networks, but indirectly (i.e. through the neuro-glial-vascular coupling 

(Logothetis, Pauls, Augath, Trinath, & Oeltermann, 2001)).  

In this study, we address this issue using EEG source connectivity analysis to track the 

spatiotemporal dynamics of large-scale networks associated with cognitive activity. We 

collected dense-EEG data from 21 subjects performing a picture naming task. We then 

reconstructed the functional networks in both their spatial and temporal dimension, over the 

entire duration of the cognitive process (from image perception to motor response) using a 

recently reported method (Hassan, Dufor, Merlet, Berrou, & Wendling, 2014) that combines 

i) the solution to the inverse EEG problem, ii) the estimation of brain connectivity from phase 

locking values and iii) the segmentation of functional networks using a clustering method 

(Mheich, Hassan, Khalil, Berrou, & Wendling, 2015) (see figure 1A). Our results reveal that 

the cognitive process can be decomposed into a sequence of transiently-stable and partially-

overlapping networks. We assume, based on the state of the art of the picture naming task, 

that each network might be associated with a specific function (Levelt, Praamstra, Meyer, 

Helenius, & Salmelin, 1998) (visual percept computing, lexical concept activation, selecting 

the target word from the mental lexicon, phonological encoding, phonetic encoding, and 

initiation of articulation) of the whole cognitive process. The results show that dense-EEG can 

bring highly valuable information about cortical networks, with both high spatial (1000 

cortical regions) and temporal (ms time-scale) resolution. We speculate that the identified 

brain network states (BNSs) contribute to fast and efficient information processing in the 

brain. 
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Materials and methods 

Picture naming task 

Twenty one right-handed healthy volunteers (11 women: mean age 28 year; min: 19, max: 40 

and 10 men: mean age 23 years; min: 19, max: 33), with no neurological disease, were 

involved in this study. Participants were asked to name at a normal speed 148 displayed 

pictures on a screen using E-Prime 2.0 software (Psychology Software Tools, Pittsburgh, PA) 

(Schneider, Eschman, & Zuccolotto, 2002). The images were selected from a database of 400 

pictures standardized for French (Alario & Ferrand, 1999) and were used during session about 

eight minute. They were controlled according to several parameters (see table S1). All 

pictures were shown as black drawings on a white background. Order of presentation was 

randomized across participants. Naming latencies were determined as the time between 

picture onset and the beginning of vocalization recorded by the system. Oral responses were 

recorded and then analyzed with Praat software to set the voice onset time (Boersma, 2002). 

This study was approved by the National Ethics Committee for the Protection of Persons 

(CPP), conneXion study, agreement number (2012-A01227-36), and promoter: Rennes 

University Hospital. All participants provide their written informed consent to participate in 

this study. The ethics committee has approved the consent procedure. A typical trial started 

with the appearance of an image during 3 seconds followed by a jittered inter-stimulus 

interval of 2 or 3 seconds randomly. Most responses were given while the image was still 

present on the screen.  Errors in naming were discarded for the subsequent analysis. A total of 
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2926 on 3108 events were considered. The fastest response time delay for an event was < 600 

ms (see figure S1 for the responses delays of all subjects). 

Data 

The brain activity was recorded using dense-EEG, 256 electrodes, system (EGI, Electrical 

Geodesic Inc.). The main feature of this system is the large coverage of the subject’s head by 

surface electrodes allowing for the improved analysis of the intracerebral activity from non-

invasive scalp measurements, as compared with 32 -to 128- electrodes standard systems. EEG 

signals were collected with a 1 kHz sampling frequency and band-pass filtered between 3 and 

45Hz. Each trial was visually inspected, and epochs contaminated by eye blinking, 

movements or any other noise source were rejected and excluded from the analysis performed 

using the EEGLAB open source toolbox (Delorme & Makeig, 2004).  

EEG source connectivity 

A crucial step when realizing EEG source connectivity analysis is the choice of three factors: 

the method used to solve the inverse problem, the method used to compute the functional 

connectivity among the time series of the reconstructed sources and the number of electrodes 

used on the scalp. Very recently, we have described a comparative study of these factors and 

we showed that a combination of the weighted Minimum Norm Estimate (wMNE) with the 

Phase Locking Value (PLV) using high resolution EEG is the best combination among the 

tested combination (Hassan et al., 2014). This combination was used in the presented work.  

According to the linear discrete equivalent current dipole model, EEG signals S(t) measured 

from Q channels can be expressed as linear combinations of P time-varying current dipole 

sources D(t): 

S= G. D+B 
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where G and B(t) are respectively the matrix containing the lead fields of the dipolar sources 

and the additive noise. In the general case, the inverse problem consists in finding an estimate 

D̂ (t) of the dipolar source parameters (typically, the position, orientation and magnitude), 

given the EEG signals S(t) and given the gain matrix G. This matrix can be computed from a 

multiple layer head model (volume conductor) and from the position of electrodes. For 

instance, the Boundary Element Method is a numerical method classically used in the case of 

realistic head models. 

As this problem is ill-posed (P>>Q), physical and mathematical constraints have to be added 

to obtain a unique solution among the many solutions that minimize the residual term in the 

fitting of measured EEG signals. Using segmented MRI data, the source distribution can be  

constrained to a field of current dipoles homogeneously distributed over the cortex (Dale & 

Sereno, 1993), and normal to the cortical surface.  

Technically, in the source model, we assumed that EEG signals are generated by macro-

columns of pyramidal cells lying in the cortical mantle and aligned orthogonally with respect 

to its surface (Nunez, 2006). Thus, the electrical contribution of each macro-column to scalp 

electrodes can be represented by a current dipole located at the center of gravity of each 

triangle of the 3D mesh and oriented normally to the triangle surface. Using this source space, 

the weighted Minimum Norm Estimate (wMNE) method only estimates the moment of dipole 

sources. The wMNE compensates for the tendency of classical MNE to favor weak and 

surface sources. This is done by introducing a weighting matrix WS: 

T 1 T

wMNE S S
D G W G I G W S  ˆ ( )  

where matrix WS  adjusts the properties of the solution by reducing the bias inherent to MNE 

solutions. Classically, WS is a diagonal matrix built from matrix G with non-zero terms 

inversely proportional to the norm of the lead field vectors. The value of   is computed 
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relatively to the signal to noise ratio for each signal computed as the ration between the post-

stimuli period to the pre-stimulus (200 ms). The  value was between 0.1 and 0.3. 

The sources were reconstructed for each trial (same number of sources for each trial) and the 

functional connectivity is then computed between the reconstructed sources using the phase 

synchronization (PS) method. The first step for estimating the PS is to extract the 

instantaneous phase of each signal. We used the method based on Hilbert transform in our 

study. The second step is the definition of an appropriate index to measure the degree of 

synchronization between estimated instantaneous phases. To measure PS, the phase locking 

value (PLV) method is used as described in (Lachaux, Rodriguez, Martinerie, & Varela, 

1999). For each source pair, x and y, at time t (t = t1,. ., tT where T= D * fs; D and fs denote the 

signal length relative to the onset and the sampling frequency, respectively) for the Tr trials 

and for subject j (j = 1...M, where M denotes the number of subjects), PLV is defined as: 

1

1
PLV ( ) ( ) ( )

 x y

N
j

x y

n

t t t
Tr

 


                        

To reduce the effect of correlations between near electrodes we apply a normalization 

procedure (z-score) so that the PLV
x y

values were compared with the 200 ms baseline 

preceding the presentation of the image. Let xy
 and xy

 are the mean and standard deviation 

computed from a 200 ms pre-stimulus baseline. The normalized PLVs are then defined 

as PLV ( ) (PLV ( ) - ) /
j

j j j
xy xy xy xyt t   . The functional connectivity was computed at the low gamma 

band (30-45Hz). This frequency band is the most relevant one in the context of the similar 

cognitive task performed by the subjects, as reported in (Fell & Axmacher, 2011; Rodriguez 

et al., 1999; Supp, Schlögl, Trujillo-Barreto, Müller, & Gruber, 2007). The PLVs  were then 

averaged over subjects: 
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1

1
PLV ( ) PLV ( )

xy

M

xy

j

t t
M 

   

where PLV ( )xy t  represents the general term of the average adjacency matrix PLV( )t which 

defines a functional connectivity network N at each time t,  ( ),  1,..,N N t t T  , computed 

for the V pairs of x and y sources, where V is equal to (Nc.(Nc-1)/2)) and Nc is the number of 

ROIs.  

Functional connectivity states 

We recently developed an algorithm to decompose cognitive task into functional connectivity 

states (Mheich et al., 2015). The objective of this algorithm is to identify clusters among the T 

networks ( )N t . The proposed algorithm is based on the K-means clustering of the connectivity 

networks obtained by the PLV method. This approach allowed us to summarize brain 

networks into a limited number of dominant networks over given time period.  

Briefly, the averaged connectivity matrices over all subjects were first obtained. K networks 

(varies from 3 to 12) were then randomly selected and the spatial correlations between the K 

networks and all the T networks were computed. This gives a spatial correlation value for 

each K at each time instant and for any of the T networks only one of the K networks 

produces the highest spatial correlation. Finally, the cross-validation criterion, first introduced 

by (Pascual-Marqui, Michel, & Lehmann, 1995), was used to determine the optimal number 

of networks that explained the best the ongoing cognitive task. To investigate the inter-subject 

variability, we added an index called ‘network presence’ which calculate the ratio (in %) of 

the identified networks/clusters among all the subjects (see Supplementary document for 

detailed description of the algorithm). 
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Statistical tests 

The segmentation algorithm based on k-means, produces a number of functional connectivity 

states (clusters). We assume that these clusters reflect changes in the cognitive state. To verify 

this assumption, we compare our results with an appropriate null model. The identified 

clusters are compared with those obtained by shuffling the original data using surrogates 

(procedure detailed in (Hlinka & Hadrava, 2015)). Briefly, we use multivariate Fourier 

transform surrogates (nsur=100) generated from the original EEG data for all trials. Such 

surrogates correspond to realizations of linear stationary process with conserved auto-and 

cross-correlation characteristics. The same processing steps were performed on these 

surrogates as on the original data: filtering in the gamma band: 30-45Hz, computing the 

functional connectivity using phase locking values at this frequency band, thresholding the 

connectivity matrices and segmenting into clusters using k-means algorithm. We then 

compared the spatial distributions (Sd) and the temporal profiles (Tp) of the original clusters 

with those obtained using surrogates.   

Concerning the Tp, when a cluster is significant (i.e. related to the cognitive process and not 

to chance), the value of Tp for the surrogate data (Tpsurr) will be different than the one of the 

original cluster (Tporg). The underlying null hypothesis is that the obtained clusters are 

significantly different from the spurious networks states that can be always observed in 

random data or white noise (Hlinka & Hadrava, 2015). The null hypothesis is tested by 

comparing the Tpsurr and Tporg using a statistical test. The “Rank test” is used to reject or 

accept the null hypothesis. Basically, [Tporg; Tpsurr] is sorted in increasing order and the rank 

index for Tporg is returned. With a number of surrogates (n_surr =100 for example), if this 

rank is > 95 and < 5 (significance level at 95%), this means that it lies in the tail of the 

distribution, and that the null hypothesis can be rejected (two-tailed test) with a significance 
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of p=2*(1/ (n_surr+1)) =0.019. A similar test is used for Sd. For multiple tests and to deal 

with the family wise error rate (FWER), we used the well-known Bonferroni correction 

test, which is considered as the simplest and most conservative method to control the 

FWER problem 

Regions of interest and network measures 

We used Freesurfer (Fischl, 2012) to register a labeled mesh from an average brain, where 

each label corresponded to one of 148 anatomical cortical regions (Destrieux, Fischl, Dale, & 

Halgren, 2010). This output provided a standardized partition of the cortex into 148 regional 

areas. Each of these areas was then subdivided into a set of small sub-regions using 

Brainstorm (Tadel, Baillet, Mosher, Pantazis, & Leahy, 2011), resulting in 1000 ROIs 

covering the whole cortex. This segmentation provided us with high resolution connection 

matrices (see figure 1A). These ROIs were then considered as In order to obtain a sparse, 

weighted, undirected graph, the adjacency matrices were thresholded. For each matrix, 10000 

edges were retained. All corresponding weight values were positive. Then, the strength 

measure was used to characterize the nodes in the obtained weighted networks. This measure 

is defined as the sum of all edge weights for each node. For any node i, the strength 
w

ik  is 

defined as: 

w

i ij

j N

k W


  

where N is the set of all nodes in the graph and ijW is the connection weight between two 

nodes i and j. This measure was computed using the Brain Connectivity Toolbox (BCT)  

(Rubinov & Sporns, 2010).  
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Software 

We used MATLAB ® (2007a, MathWorks Inc.) in the entire process: from EEG 

preprocessing, source reconstruction, functional connectivity analysis, and computation of the 

graph parameters and visualization of the brain networks. These processing steps were carried 

out by using several tools mainly Freesurfer http://surfer.nmr.mgh.harvard.edu/ for surface 

parcellation, Brainstorm http://neuroimage.usc.edu/brainstorm/ for source reconstruction, 

EEGLAB http://sccn.ucsd.edu/eeglab/ for EEG preprocessing, and other homemade codes. 

3D brain networks were visualized using a recently developed tool in our team called 

EEGNET. The network measures were computed from the brain connectivity toolbox (BCT) 

https://sites.google.com/site/bctnet/ that was integrated in EEGNET. 

Results 

Functional connectivity states identified from dense-EEG recordings. We have recently 

developed a new clustering algorithm to detect the brain network states (BNSs) at millisecond 

scale from dense EEG recordings (Mheich et al., 2015) (figure 1B). A BNS is defined by a 

transiently-stable brain network in which nodes are associated with distributed neuronal 

assemblies and in which edges denote significantly high phase synchronization of their 

oscillatory activity in the gamma band (30-45 Hz) (see Materials and Methods for details 

about the algorithm). In order to assess brain dynamics during information processing (from 

perception to behavioral response), this algorithm was applied to high-resolution group 

averaged connectivity matrices obtained from dense EEG signals recorded in 21 subjects 

performing a picture naming task.  

Results are shown in figure 2 and they revealed that the cognitive process could be divided 

into 6 BNSs. To globally characterize the networks for each of these 6 BNSs, we show the 

http://surfer.nmr.mgh.harvard.edu/
http://neuroimage.usc.edu/brainstorm/
http://sccn.ucsd.edu/eeglab/
https://sites.google.com/site/bctnet/
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number of nodes for five macroscopic regions (occipital (O), parietal (P), temporal (T), 

frontal (F) and central (C)) expressed in percent (with respect to the total number of nodes).  

The first BNS corresponds to the time period ranging from 0 (stimulus onset) to 119 ms. This 

network mainly involves the occipital pole (L: 62%, R: 64%), the temporal lobe (L: 30% and 

R: 14%) and the parietal lobe (L: 1% and R: 22%). A second stable state (BNS2) was then 

observed between 120 and 150 ms where the network is mainly located in the occipital (L: 

88%, R: 79%) and temporal (L: 12% and R: 14%) lobes. The third state (BNS3) was 

identified over the time period 150-190 ms. It was found to be very similar to the previous 

network in term of spatial location of nodes. However, a main difference relates to 

appearance, in BNS3, of nodes located in the right frontal lobe (L: 0% and R: 5%). A 

dominant network (BNS4) was then later identified over the period 190-320 ms. This network 

is characterized by long-range connections between the occipital (L: 44% and R: 61%) and 

the frontal lobe (L: 28% and R: 22%). This network was then followed by BNS5 over the 

time period 320-480 ms in which connections with the pre-central region appear (L: 18% and 

R: 13%). Finally, the last network BNS6 was obtained over the period 481-535 ms. This 

functional network mainly involved the temporal lobe (L: 39% and R: 31%) and central 

region in each hemisphere (L: 26% and R: 36%). In addition, our results showed also strong 

inter-hemisphere connections mainly between the occipital lobes at BNS1, BNS2, BNS3 and 

BNS4 and between frontal lobes at BNS4 and BNS5. (See figure S2 for multiple view -left, 

right, top, front and back- of the obtained networks). 

The identified BNSs were compared with clusters obtained from null model (surrogate data). 

Typical examples of the results corresponding to the BNS2 and BNS3 are shown in figure 3. 

To evaluate the temporal profiles of the identified BNSs, we compared the duration of both 

networks with those obtained by the 100 surrogates. Figure 3 shows significant differences 
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between the duration of clusters identified from surrogates data and the original ones 

(p<0.01). To evaluate the spatial distributions of the BNSs, we chose to compare the number 

of nodes identified in the occipital regions (involved mainly in the visual information at this 

period) for the original and surrogates data. Results also show significant differences (p<0.01) 

for both BNS2 and BNS3. The same results were obtained for all the other BNSs. 

EEG source localization vs. functional connectivity. We compared the above-described 

source connectivity results with those obtained from the more classical source localization 

analysis, as reported in Figure 4. The distributions of sources were obtained from dense-EEG 

recordings using the weighted Minimum Norm Estimate (wMNE) algorithm. They were 

averaged over subjects and over time, for each of the 6 periods identified with the 

segmentation algorithm. Results show that both approaches lead to dramatically different 

results regarding involved brain regions. The main differences are described hereafter. During 

time periods t1, t2 and t3, the source localization method disclosed a pronounced bilateral 

activation of the dorsolateral frontal cortex. Interestingly, this region was not present in the 

networks associated with the BNSs identified over the same three periods by the source 

connectivity method. To some extent, the same result holds for t4, for the right hemisphere. 

Another discrepancy was observed for the inferior occipital and the occipito-temporal regions 

that were not disclosed by the wMNE algorithm over period t5 while the same regions were 

not part of the network associated with BNS5 revealed by the source connectivity method. 

Finally, over t6, differences between both methods relate to the central and insula regions, as 

they did not appear in localized sources but were present in the network associated with 

BNS6. 

Spatiotemporal dynamics of brain networks and associated neocortical areas. In order to 

further precise characterization of the spatiotemporal dynamics of identified networks and in 
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order to accurately identify the neocortical areas involved in these networks, we combined a 

quantitative network measure with the high-resolution anatomical parcellation of the brain 

surface (~ 1000 ROIs). First, the “strength” was used as network measure (high “strength” 

means “strong” connections at a given node). Second, the parcellation/labelling step allowed 

us to establish a direct link between spatially distributed nodes showing significantly high 

strength values (> mean + 1SD), on the one hand, and the corresponding cortical areas 

(labelled ROIs) on the other hand. Results are presented in figure 5A for the 6 periods 

identified during the cognitive process. First, it was found that 3 (minimum) to 5 (maximum) 

brain areas are involved in a given BNS. Second, the highest strength values were observed 

for t2 (L: 0.85±0.1 and R: 0.71±0.1) and t3 (L: 0.9±0.13 and R: 0.91 ± 0.12) as compared 

with t1 (L: 0.3±0.08 and R: 0.32 ±0.11), t4 (L: 0.42±0.04 and R: 0.4±0.4), t5 (L: 0.21±0.03 

and R: 0.17±0.04) and t6 (L: 0.39±0.08 and R: 0.41±0.071). Third, and very interestingly, the 

same cortical areas (denoted by the same colors) were found to be present in the networks 

associated with 2 consecutive BNSs. This is typically the case for the left occipital pole (red 

color) and the left/right inferior occipital gyrus and sulcus (blue) that were identified at BNS1, 

BNS2, BNS3 and BNS4. Similarly, the left inferior temporal sulcus (cyan) remained present 

in networks associated with BNS3 and BNS4 while the anterior occipital sulcus (dark blue) 

was found to be active during BNS2 and BNS3.  

These results suggest that the spatiotemporal brain dynamics of picture naming are 

characterized by transitions between overlapping networks associated with transiently stable 

states (from 30 ms to 160 ms), as summarized in Fig. 3B.  Indeed, as depicted, four transitions 

(T1-T4) are characterized by a “continuous” flow of information processing as some network 

nodes common to consecutive BNSs were revealed by the proposed source connectivity 

approach. In addition, as detailed in the discussion, we could relate i) the timing of the 6 
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periods and ii) the identified networks associated with BNSs to well-established 

neuropsychological phases of the picture recognition/naming task (visual recognition, 

memory access and categorization, semantic processing, phonological encoding and 

articulation).  

Discussion  

Appropriate dense-EEG processing reveals the spatiotemporal dynamics of functional 

brain networks. 

To our knowledge, this study is one of the very few attempts to characterize the 

spatiotemporal dynamics of brain networks over a short duration cognitive task (<1 second) 

from scalp EEG data. Results show that appropriate processing of dense-EEG recordings 

allows for identification of networks that are in agreement with brain regions involved in the 

same cognitive task and identified from other modalities (mainly fMRI and PET, (Price, 

2012), see below for details). However, these results go beyond those obtained with classical 

neuroimaging techniques, as the proposed method offers the unique advantage to track the 

network dynamics with high temporal (in the order of ms) and spatial (~1000 ROIs) 

resolution.  

The good performance of this processing can be explained by three key steps to obtaining 

relevant networks, in terms of time and space features. The first step is the reconstruction of 

cortical sources distributed over a high-resolution mesh by solving the EEG inverse problem. 

We previously realized a multifactor analysis to analyze the effect of the different factors that 

intervene in the EEG source connectivity analysis. This methodological study showed that the 

wMNE algorithm combined with dense electrode array (180 scalp electrodes) leads to optimal 

results (Hassan et al., 2014). The second step is the estimation of the functional connectivity 
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using phase synchronization among gamma oscillations present in the time-course of 

reconstructed sources. Our results demonstrate that this step is crucial for identifying 

networks with high specificity in regard to the performed task. The third step is the 

segmentation, in time, of the cognitive process into brain network states (BNSs). Based on the 

k-means clustering of brain networks, we have developed an algorithm, originally at scalp 

EEG level at ms scale (Mheich et al., 2015). This algorithm was used here for the first time on 

cortical level networks. This segmentation procedure automatically leads to a timing that 

strongly matches the successive steps previously reported of brain processing from image 

perception to naming. This ‘switching behavior’ of the function connectivity networks has 

been very recently reported for resting states data using modeling approach (Hansen et al., 

2014). However, this time varying characteristics of the functional brain networks should be 

taken with caution as similar behaviors could be observed in random data (noise) as reported 

in Hlinka (Hlinka & Hadrava, 2015), hence the importance of testing the results against null 

models which was performed in our paper. 

Source functional connectivity vs. source localization  

A major question that is addressed in this paper relates to the difference between the proposed 

network-based approach and the previously-used approach aimed at localizing the sources of 

activated regions during cognitive tasks (Miozzo, Pulvermüller, & Hauk, 2014; Salmelin, 

Hari, Lounasmaa, & Sams, 1994). Although both methodologies (source-based and network-

based) lead to similar results regarding the involvement of the occipital and frontal lobes 

during the cognitive task, this study shows that the information extracted from dense-EEG 

recordings in both cases is dramatically different.  

Conceptually, the fundamental difference between both approaches is that the source 

localization totally ignores all possible interactions between brain regions. When performing 
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source localization analysis, the sources with highest amplitude (averaged at given time 

period or computed at the instant of peak amplitude of the signal) were classically retained 

(Salmelin et al., 1994). However, to some extent (depending on threshold), this approach 

neglects the possible contribution of “low energy” sources. As shown in the supplementary 

figure S3, the threshold process can dramatically modify the results of the localization. For 

instance, when only the highest 50 or 75% amplitude sources are kept in the wMNE 

algorithm, the temporal lobe is not retained as being activated although it has been reported to 

participate in semantic processing in the exact same task (Patterson, Nestor, & Rogers, 2007; 

Price, 2012). 

Conversely, the hypothesis behind the network-based approach is that sources can be 

synchronized regardless their amplitude. Our results show that edges represented in identified 

networks correspond to connections both among sources with high amplitude (occipital) and 

sources with low amplitude (temporal). We believe that the network-based approach allows 

revealing networks that are more specific to the performed task. An illustrative example is the 

absence of the dorsolateral prefrontal cortex in identified networks during the first 200 ms 

while this region is particularly active over the entire task in the source-localization approach, 

probably due to sustained attentional processes that are not strictly related to picture 

visualization, decoding and naming.  

Brain networks involved in picture naming task 

Regarding the successive steps of the picture naming task, our findings corroborate previous 

studies based on other modalities, mainly fMRI and PET (see (Price, 2012) for review). For 

the first BNS (BNS1, 0:119 ms), results showed a network involving the inferior occipital, the 

lateral occipito-temporal sulcus and occipital pole. This period was shown to be related to the 

visual feature extraction preceding the object category recognition (Thorpe, Fize, & Marlot, 
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1996; Vanrullen & Thorpe, 2001). Interestingly, the visual features obtained by Vanrullen et 

al. revealed response peaking at 120 ms after the onset which is very comparable to our limit 

for the first BNS (119 ms). For BNS2 (120:150 ms), the identified functional network mainly 

comprises the occipital regions (the bilateral inferior occipital, the left occipital pole, right 

anterior occipital and the left middle occipital and Lunatus). These regions are well known to 

play a capital role in the processing of visual information and object recognition (Engel, 

König, Kreiter, & Singer, 1991; Müller & Gruber, 2001). Moreover, the gamma activity in 

this time period was shown to marker of object recognition and binding (Martinovic, Gruber, 

Ohla, & Müller, 2009; Müller & Gruber, 2001).  

For BNS3 (151:190 ms), results also indicate a mainly occipital network but with an 

implication of the bilateral inferior temporal sulcus. This system is known to be related to 

lexical retrieval, lemma retrieval and lemma selection (Indefrey & Levelt, 2004). It is also 

involved in semantic working memory system when someone tries to remind the name of the 

objects (Martin & Chao, 2001). In their study, the authors show a discrepancy in the temporal 

lobe involvement for objects versus animals with more activity in the inferior temporal sulcus 

for objects and in the superior temporal sulcus for animals. Our picture set comprises 39 

animals versus 109 objects or non-animal images. The dominant representation of objects in 

our experimental set could have shaped this part of the graph favoring the inferior temporal 

sulcus at the expense of the superior temporal sulcus. During BNS4 (191:320 ms), the 

network involves the left inferior temporal gyrus in addition to the inferior temporal sulcus. 

These regions were stated to be in direct relation to semantic processing (Martin & Chao, 

2001). It is also the time window in which the N200 classically appear. The N200 is a marker 

of semantic processing in go/no-go tasks (Thorpe et al., 1996). Together with the appearance 

at this stage of frontal nodes, we assume that this large BNS could also integrates the access 
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to phonological forms during overt naming which has been shown by Graves et al. (Graves, 

Grabowski, Mehta, & Gordon, 2007). In a somewhat interesting way, we found that this BNS 

ends 10 ms before the syllabification step in the model of Indefrey and Levelt (Indefrey & 

Levelt, 2004). 

At BNS5 (321:480 ms), the functional network involves the left superior precentral and the 

right postcentral sulcus along with the left orbital sulci and the left superior insula. This 

network, near to the sensory-motor cortex was reported to be engaged into phonetic and 

articulatory process of speech (Dronkers, 1996; Levelt et al., 1998). Finally, for the last BNS 

(BNS6, 481:535 ms), the network was found at the left insular gyrus, the left inferior insular 

circular sulcus and the right orbital sulcus. This network is typically associated with the 

beginning of the naming process and the speech articulation as well as listening to own 

speech (external self-monitoring) (Indefrey & Levelt, 2004; Levelt et al., 1998). At this stage, 

the variability between subject’s response latencies has become incredibly strong and those 

results should be considered with caution. A backward analysis of the EEG records and the 

corresponding BNSs (not presented here) can give us more precise results about the last 

graphs. 

The occipital cortex remains active during several BNSs.  

Strikingly, our results indicated that the occipital visual areas (especially the inferior occipital 

area) remain active for 400 ms, over the first four BNSs. This is likely not an artifact due to 

open eyes for instance because left occipital region was found to be inactive for the last BNS 

whereas the pictures are still present on the screen. Also, it cannot be due to a variable delay 

in the behavioral response as the timing of the very early steps of the occipital activity for 

object identification is only very slightly modified due to attentional effects and the N1 is not 

modified at all (Mangun & Buck, 1998). Those regions are part of what the literature calls the 
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lateral occipital complex (LOC) (Grill-Spector, Kourtzi, & Kanwisher, 2001). They are 

particularly involved in object representation and for analyzing objects shape independently 

of other low level characteristics such as color texture. Those characteristics not only serve to 

address the mental lexicon but also form a part of the large-scale network that builds the 

semantic representation of objects (Grill-Spector et al., 2001; Huth, Nishimoto, Vu, & 

Gallant, 2012). Those representations are held in visual working memory during the complete 

process (Harrison & Tong, 2009). It could then take part of a large-scale network 

characterized by high gamma synchronization contributing to information processing during 

almost the whole cognitive process of naming. 

This persistent occipital cortex activation suggests that the ventral stream does not simply 

correspond to a sequential Feed-Forward activation (Gilbert & Li, 2013) of involved brain 

regions but instead, to a resonance process within a large-scale network. From these results, 

we hypothesize that, in this network, the image is first processed in the occipital areas of the 

visual cortex, inducing a sustained gamma activity that lasts for on average 400 ms. This 

oscillatory activity is then progressively and sequentially compared to oscillations in the other 

areas. Finally, image categorization, memory access and semantic processing emerge from 

gamma synchronization among involved brain regions. These results are also in accordance 

with the resonance properties of specific networks of neurons that are able to selectively 

respond to inputs at preferred frequencies (Akam & Kullmann, 2014; Hutcheon & Yarom, 

2000). 

Methodological considerations 

In the present study, the whole processing was performed on group-averaged data. The 

connectivity matrix was computed using the phase locking value (PLV) method at each time 

instant for each subject and all matrices were averaged over the 21 subjects, yielding a group-
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averaged connectivity matrix at each time sample of the post-stimulus response. The 

segmentation algorithm was applied to this averaged data. The main advantage of this 

approach is that it preserves the networks common to all subjects of the group and reduces the 

inter-individual variability. Consequently, results obtained from this analysis represent the 

spatiotemporal dynamics of networks that occur most constantly within the group of subjects. 

It is also noteworthy that we assumed i) that there is an anatomical correspondence among 

subjects (a template 3D mesh was used as the source model) and ii) that the transitions 

between the functional connectivity states occur in a repeatable manner over subjects. 

However, the inter-subject variability was not totally ignored in our analysis. The index 

“network presence” (see supplementary materials) of each BNS was computed among all the 

subjects. The results show that the first three BNSs have the highest network presence (80%, 

82% and 81% for BNS1, BNS2 and BNS3 respectively). Conversely, the network presence 

values decreased after BNS3 to reach 64%, 62% and 41% for BNS4, BNS5 and BNS6 

respectively. We are aware that due to strong behavioral reaction time discrepancies, the 

resonance duration of the nodes within the occipital areas over the BNS4 and BNS5 depends 

on the variability of the cognitive steps that follows the object identification. Those cognitive 

steps are importantly modulated by attentional resources and the 400 ms resonance duration 

before the BNS6 could be due to a mix of long BNS4 in some individuals or for some specific 

events with short BNS5 of other faster subjects. 

Regarding the functional connectivity measure, we used the PLV method (Lachaux et al., 

1999) which provides high performance to detect the inter-trial synchronization at each time 

instant. However, the PLV method requires a relatively high number of stimuli (148 in our 

case for each subject) to be correctly estimated. Consequently, this method cannot be easily 

applied to on-going activity, as for the analysis of resting state networks for instance. 
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Although EEG source connectivity reduces the problem of field spread to a certain extent, it 

does not yet, provide a perfect solution. The field spread effect is an open question and 

unsolved issue and it is indeed one of the main challenges when performing EEG/MEG 

inverse solution. In the connectivity context, the main effect of the field spread is referred to 

‘source leakage’, which denotes the possible ‘artificial’ correlations that can exist between 

very close sources. In our study, we have considerably limited this problem. We firstly 

decided to use PLV, which has been shown to be very efficient to reduce field spread (REF). 

The second step is the ‘clustering’ or the anatomical parcellation, which consist of 

reconstructing the sources on a high spatial resolution cortex mesh then averaging the 

dynamics sources located in the same ROIs. The functional connectivity was then computed 

between these averaged sources. The averaging over ROIs increases the distance between the 

positions of the sub-regions, which reduces some artificial correlations between very close 

sources (at the same ROIs). In addition, our results showed high number of long range 

connections. Very few approaches have been proposed recently to deal with the source 

leakage by either normalizing the edges weights by the distance between the nodes or 

removing the very close edges. However, each of these approaches has its advantage and 

disadvantages and can remove ‘real’ connections in most cases (REF Shofflen 2009). 

Nevertheless, it is important to keep in mind that the source reconstruction algorithms can 

reduce the volume conduction problem but not address it completely. 

Conclusion  

We used dense-EEG recordings during a picture naming task to characterize the 

spatiotemporal dynamics of functional brain networks. We showed that the picture naming 

task can be divided into six brain network states (BNSs) characterized by significantly high 

gamma synchronization. Results revealed that fast transitions occur between these BNSs and 
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last from 30 ms to 160 ms. The spatial location of nodes and edges in the identified networks, 

as well as the precise timing of transitions, show a precise cognitive function (visual 

recognition, semantic processing and speech processing) can be associated with each network. 

In addition, networks associated with BNSs partially overlap. We hypothesized that the 

persistence of several brain regions in successive BNSs participates to fast and efficient 

information processing in the brain. 
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Figure 1:  

Structure of the investigation: A) Dense EEG (256 electrodes) were recorded during picture 

naming task. Structural MRI images were segmented and anatomically parcellated (Destrieux 

et al., 2010) using Freesurfer (Fischl, 2012) to obtain 148 regions. These 148 regions were 

subdivided using Brainstorm (Tadel et al., 2011) to obtain higher spatial resolution (about 

1000 regions of interests). The inverse problem was then solved using the weighted Minimum 

Norm Estimate algorithm. The time series of the reconstructed sources were obtained. The 

functional connectivity between the reconstructed sources was computed using the Phase 

Locking Value method. A high resolution functional connectivity matrix was obtained and the 

corresponding functional brain network was visualized. B) This procedure was carried out at 

millisecond scale and a high number of functional connectivity matrices were obtained. A K-

means clustering approach was used to obtain the brain network states (BNSs) using a 

segmentation algorithm (Mheich et al., 2015) summarized in materials and methods section 

and detailed in the supplementary document. 

 

 

 

 

 

 

 



29 
 
 

 

Figure 2:  

EEG source connectivity: The exact time periods of the six brain network states identified 

by the segmentation algorithm are reported (see Materials and Methods for more details about 

the algorithm). The high resolution networks associated with the BNSs are visualized in left 

(L) and right (R) view (see figure S2 for other views). Nodes have the same color with 

different sizes that indicate of the strength value of the node. Edge’s thickness represents the 

connection weight. The networks are ‘globally’ quantified and the number of nodes in each 

macroscopic region (O: occipital, P: parietal, T: temporal, F: frontal and C: central) are 

presented. 
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Figure 3:  

Statistical analysis: The identified BNSs are compared with null model represented by 

clusters obtianed from surrogate data. Typical examples of the difference between the 

temporal profiles (Up) and the spatial distributions (Bottom) of BNS2 (left) and BNS3 (right) 

and those obtained from surrogates data, are presented. The ‘*’ and ‘o’ represent the values of 

the surrogates and the horizontal dashed lines represent the original values. 
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Figure 4:  

EEG source localization: For the same time periods identified for the BNSs, the results of 

the source localization using wMNE are depicted. The sources were averaged at each time 

period. Red color represents the sources with the highest amplitude. 
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Figure 5:  

Spatiotemporal dynamics of brain networks and associated neocortical areas: A) The 

strength values of each node were calculated for all networks associated with the BNSs. The 

identified nodes (ROIs) were retained only if they provide significant strength value (> 

mean+1SD). The common ROIs between two consecutive BNS have the same color. B) The 

identified regions in part A were color-coded based on the anatomical parcellation of 

Destrieux Atlas (Destrieux et al., 2010) using Brainstorm Tool (Tadel et al., 2011). The 

underlying cognitive functions for each BNS are presented. For each transition (T) between 

two consecutive BNS, the common regions are reported. Abbreviations: L: left, R: Right, G: 

gyrus, S: Sulcus.   

 

 


