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Abstract

Spermatogenesis is a complex and tightly regulated process leading to the continuous

production of male gametes, the spermatozoa. This developmental process requires

the sequential and coordinated expression of thousands of genes, including many that

are  testis-specific.  The  molecular  networks  underlying  normal  and  pathological

spermatogenesis have been widely investigated in recent  decades,  and many high-

throughput  expression  studies  have  studied  genes  and  proteins  involved  in  male

fertility.  In  this  review,  we  focus  on  studies  that  have  attempted  to  correlate

transcription  and  translation  during  spermatogenesis  by  comparing  the  testicular

transcriptome and proteome. We also discuss the recent development and use of new

transcriptomic approaches that provide a better  proxy for the proteome, from both

qualitative  and  quantitative  perspectives.  Finally,  we  provide  illustrations  of  how

testis-derived transcriptomic  and proteomic  data  can be  integrated  to  address  new

questions and of how the “proteomics  informed by transcriptomics” technique,  by

combining RNA-seq and MS-based proteomics,  can contribute significantly to the

discovery  of  new protein-coding  genes  or  new protein  isoforms  expressed  during

spermatogenesis.
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Introduction: Unraveling testis specificities with omics technologies

From  a  genomist’s  point  of  view,  spermatogenesis,  especially  in  mammals,  is

arguably  one  of  the  most  exciting  objects  of  study available.  Not  only  does  this

developmental  process  offer  incredible  molecular  dynamics,  but  it  also  embodies

several expression specificities and striking genomic features.

To  make  motile  sperm  capable  of  fertilization,  germ  cells  must  undergo  unique

processes,  such  as  meiosis,  and  develop  specific  organelles  and  cell  structures,

including the acrosome, the flagellum, and a highly condensed nucleus. This extreme

differentiation process involves the functions of specific molecular factors, many of

them  expressed  only  during  spermatogenesis.  High-throughput  tissue-profiling

experiments thus regularly identify the testis as the organ that expresses the greatest

number of tissue-specific genes and proteins (Chalmel et al., 2007, 2012; Kouadjo et

al., 2007; Fagerberg et al., 2014; Uhlen et al., 2015).  Similarly, the finding that the

testis contains the highest number of alternative splicings (Xu et al., 2002; Yeo et al.,

2004; Kan et al., 2005; de la Grange et al., 2010) indicates that what is true for genes

and proteins also applies to isoforms.

Evolutionarily speaking, genes involved in male germ cell development are also quite

remarkable.  For  instance,  testis-expressed  genes  show the  highest  divergence  rate

between species for both sequence and expression (Khaitovich et al., 2005; Voolstra

et al., 2007). Additionally, testicular transcripts have, yet again, the highest number of

diverged alternative splicings (Kan et al., 2005). This fast evolution of male fertility-

related factors is thought to result from sexual selection, a specific pressure selection

that  enables  mutations  providing a  reproductive  advantage  to  be transmitted  more

easily to progeny and thus fixed within a species relatively quickly.
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Another striking genomic feature observed during germ cell development concerns

sexual  chromosomes  and  especially  X-linked  genes  (for  review,  see  Hu  and

Namekawa, 2015). Throughout the evolution of eutherian species, the Y chromosome

has become progressively shorter, thus preventing the X and Y chromosomes from

aligning/pairing with any precision during meiotic prophase I. Accordingly, to prevent

misalignments  and  recombinations,  sexual  chromosomes  condense  into  a  specific

nuclear  structure  named  the  sex-  or  XY-body  (Solari,  1974;  McKee  and  Handel,

1993). The strong condensation of X and Y chromosomes within this structure leads

to their complete transcriptional silencing (Turner, 2007). This so-called meiotic sex

chromosome inactivation (MSCI) has been demonstrated clearly at the genome-wide

level: several high-throughput expression studies have failed to find the expression of

a single X-linked gene during the meiotic phase of spermatogenesis  (Namekawa et

al.,  2006;  Chalmel et  al.,  2007).  Additionally,  to  compensate  for  the cessation  of

transcription of crucial genes for any cell,  a large number of X-linked genes have,

over the course of evolution, been transposed onto autosomes and acquired specific

meiotic  and  post-meiotic  expression  (Potrzebowski et  al.,  2008,  2010).  Finally,

because  the  heterozygous  nature  of  sexual  chromosomes  in  males  allows

advantageous  reproductive  traits  to  be  fixed  quickly,  X-linked  genes  are

overrepresented  among  those  preferentially  expressed  in  testicular  somatic  cells,

spermatogonia, and post-meiotic spermatids (Khil et al., 2004; Chalmel et al., 2007;

Mueller et al., 2008).

Taken together, the specificities of the male germ cell expression program provide a

rich environment for studying regulatory mechanisms of gene expression at various

levels as well as for the discovery of new genes and protein isoforms. 
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As many past studies investigating spermatogenesis with high-throughput approaches

have been reviewed elsewhere (Rolland et al., 2008; Calvel et al., 2010; Chocu et al.,

2012), here we focus on studies that have attempted to link the transcriptome and

proteome in spermatogenesis or have combined transcriptomic and proteomic data to

gain insight into testicular functions and germ cell biology (Table 1).

Integrative omics strategies to study spermatogenesis

The  integration  of  various  types  of  omics  data,  e.g.,  epigenomic,  transcripomic,

proteomic, interactomic, or regulomic, represents a powerful tool for going far beyond

basic  descriptive  analyses.  Combining  information  from  different  samples  and

technologies  makes  it  possible  to  improve  data  consistency by refining  candidate

selection, as well as to address more specific questions and to build new hypotheses

(Figure 1A).

For example, microarray and proteomic data from mouse testes lacking DICER in the

Sertoli  cells  (DCRfx/fx;MisCre)  were  compared  to  investigate  the  miRNA-mediated

post-transcriptional regulation in these cells (Papaioannou et al., 2011). This approach

allowed  the  authors  to  identify  miRNA-targets  within  Sertoli  cells,  i.e.,  proteins

whose  abundance  increases  in  KO  mice,  even  though  the  expression  of  their

corresponding  mRNAs  does  not  change.  Subsequently  they  performed  3’UTR

luciferase assays to validate SOD-1 as a likely direct target of miR-125a-3p, miR-872

and miR-24.

Many studies have also combined proteomic and transcriptomic data to improve the

characterization of the expression landscape during spermatogenesis. Chalmel et al.,

using biopsies from infertile patients with spermatogenesis arrested at various stages

of germ cell development, first identified genes preferentially expressed in each type

of testicular cell (Chalmel et al., 2012). 
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Gene expression data from various tissues and antibody-based profiling data from the

Human Protein Atlas (http://www.proteinatlas.org; Uhlen et al., 2010) were then used

to  identify,  respectively,  the  genes  and  gene  products  showing  testis-specific

expression, most of them being found to be expressed in meiotic and post-meiotic

germ  cells.  Finally,  taking  advantage  of  available  information  on  protein-gene

interactions  (i.e.,  regulomic  data),  these  authors  filtered  for  a  core  network  of

transcription factors and DNA-binding proteins that are likely to drive the germ cell-

specific  expression  program.  Conversely,  Djureinovic  and  colleagues  sought  to

determine the human testis-specific proteome, beginning with the RNA-seq analysis

of 27 tissues  (Djureinovic et al., 2014). They then interrogated the Human Protein

Atlas  about  the  testis-enriched  transcripts  they  identified  to  confirm  the  testis-

specificity of corresponding protein products and to identify the testicular cell type(s)

in which they were expressed. 

The  combination  of  transcriptomic  and  proteomic  approaches  has  also  been  very

successful in helping to interpret the content of biological fluids or transcriptionally-

inactive  cells,  such as  spermatozoa.  For  instance,  Rolland  et  al. compiled  several

human seminal  plasma proteomic  studies  and compared the resulting proteome to

gene expression data for the organs contributing to this biological fluid, i.e., the testis,

epididymis,  seminal  vesicle,  and prostate  (Rolland et  al.,  2013).  This  allowed the

identification  of  protein  biomarkers  for  each  of  the  male  genital  tract  organs;

importantly these biomarkers, including germ cell markers, can thus be monitored in

semen.

A recent investigation of the intricate question of Sertoli-germ cell communication

used  another  such  integrative  approach  (Chalmel et  al.,  2014a);  it  analyzed  the

testicular fluid proteome of rats and rams and then combined it with transcriptomic

data  from isolated  testicular  cells  (Chalmel et  al.,  2007) and with protein-protein

interaction data. 
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The  authors  were  therefore  able  to  identify  testicular  fluid  proteins  likely  to  be

secreted  by  Sertoli  cells  and  to  interact  with  germ  cell  membrane  proteins  and,

conversely,  proteins  secreted  by  germ  cells  that  might  interact  with  Sertoli  cell

membrane proteins. Among these, the interactions of APOH and CDC42 and of APP

and  NGFR  were  further  investigated  and  validated  in  situ. Finally,  Wang  et  al.

compiled several proteomic studies to determine the proteome of human spermatozoa

and  used  gene  expression  tissue-profiling  data  to  identify  the  sperm  proteins

specifically expressed in the testis  (Wang et al., 2013). With this candidate list they

next queried the drug target information available in Drugbank (Wishart et al., 2008)

to  identify  potential  male  contraceptive  molecules.  Disulfiram  and  propofol,  two

molecules thought to target cilia proteins, were then shown to inhibit sperm motility.

Correlating transcription and translation rates during spermatogenesis

Transcriptomic studies often assume that the abundance of mRNAs and that of their

corresponding proteins are well correlated.  This hypothesis  is considered to justify

extrapolation from changes in gene expression to changes in protein expression and,

ultimately, to their potential functional impact. The rationale of this hypothesis may

appear quite reasonable: typical microarray or RNA-seq protocols involve an oligo-dT

selection  of  polyadenylated  mRNAs,  which  are  thought  to  be  actively  translated,

unlike those that are not polyadenylated.

The  fate  of  an  mRNA,  however,  is  tightly  regulated  by  a  complex  interplay  of

modification, processing, storage, decay, and translation, all involving protein-RNA

interactions through messenger ribonucleoprotein (mRNP) complexes. Some of these

assembled complexes are conducted directly to translation while other are diverted

towards  storage  and translational  repression  (for  review see  Müller-McNicoll  and

Neugebauer, 2013).
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While post-transcriptional and translational gene regulation is a common mechanism

in all cell types, it is especially striking during spermatogenesis. As spermatids start to

elongate,  nuclear  histones  are  sequentially  replaced  by  transition  proteins  and

protamines  (for  review  see  Rathke et  al.,  2014).  This  substitution  allows  the

progressive condensation of chromatin and thus leads to the complete cessation of

transcription from mid-spermiogenesis onwards (Kierszenbaum and Tres, 1975). As a

consequence, many genes that are required for the development and/or functioning of

spermatozoa  are  transcribed  much  earlier  during  germ  cell  differentiation,  then

translationally  repressed,  and  finally  translated  several  days  after  the  mRNA

production, thanks to a complex interplay of RNA-binding proteins and non-coding

RNA (for  review,  see  Kleene,  2013).  In  this  context,  it  is  interesting  to  note  the

existence  of  the  chromatoid  body,  a  germ  cell-specific  RNA  processing  center

suggested to be involved in the sequestration and translation repression of several

mRNAs during spermiogenesis  (Kotaja and Sassone-Corsi, 2007) and whose RNA

and protein content was recently analyzed (Meikar et al., 2014). However, the direct

contribution  of  this  organelle  to  translational  regulation  remains  to  be  clearly

demonstrated (for review, see Kleene and Cullinane, 2011). More importantly, the use

of  cross-linking  immunoprecipitation  (CLIP)  together  with  microarray  analysis

(CLIP-chip) or high-throughput sequencing (HITS-CLIP or CLIP-seq) has allowed

some potential direct targets of RNA-binding proteins to be identified in male germ

cells (Reynolds et al., 2005; Grellscheid et al., 2011; Vourekas et al., 2012; Zhang et

al., 2015).  The combination of such approaches with proteomic analyses of mutant

mice would in turn help identify which mRNAs are actually translationally regulated

by these specific factors during spermatogenesis. 

Because of this prominent uncoupling between transcription and translation, the testis

is often seen as an organ in which transcriptome and proteome are not necessarily

linked. 
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This low correlation between mRNA and protein concentrations within the testis was

clearly evidenced in a tissue-profiling experiment that used multidimensional protein

identification technology (MudPIT) for human tissue  (Cagney et al., 2005). In this

study,  the  abundance  of  683  proteins  and  their  corresponding  transcripts  were

measured and compared in eight organs. Interestingly, the gene profiles of all organs

clustered  together,  as  did  their  protein  profiles.  This  finding  suggests  that

transcriptomes  or  proteomes  from  different  organs  are  more  similar  than  the

transcriptome and proteome of the same organ. Importantly, the correlation between

transcriptome and proteome data was weakest for the testis, and highest for the liver

(correlation coefficients of 0.138 and 0.432, respectively). To investigate the relation

between proteins and mRNA levels during spermatogenesis in more detail, Gan and

collaborators  used isolated type  A spermatogonia,  pachytene  spermatocytes,  round

spermatids, and elongated spermatids for an iTRAQ-based proteomic analysis of male

germ cell differentiation (Gan et al., 2013a) and compared their results with those of a

previously published microarray dataset (Namekawa et al., 2006). While they found a

consistent  match  for  a  subset  of  transcriptomic  and  proteomic  profiles,  they  also

observed  that  several  regulation  mechanisms  -  including  transcript  degradation,

translation  repression,  translation  de-repression,  and protein  degradation  -  affected

most genes and may account for the low correlation between mRNAs and proteins, at

both the mitosis/meiosis transition (Pearson correlation of 0.55) and the meiosis/post-

meiosis transition (Pearson correlation of 0.41).

Investigating the translatome of testicular cells

Another exciting possibility for bridging the gap between gene expression and protein

abundance  lies  in  methods  that  allow  investigation  of  the  translatome,  i.e.,  the

measurement of transcripts that are actively processed by the translational machinery

(Figure 1B). 
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These analyses usually involve the purification of ribosomes or polysomes and the

subsequent  measurement  of  associated  transcripts.  Iguchi  and  collaborators  first

applied one such approach to address the question of translational regulation during

the meiotic and post-meiotic phases of male germ cell  development  (Iguchi et al.,

2006). The authors monitored the mRNAs associated with free RNPs and polysomes

in the testes from mice at various postnatal stages and identified translationally up-

and down-regulated transcripts,  i.e., mRNAs significantly redistributed between free

RNPs  and  the  polysomal  fraction  during  testis  development.  Not  surprisingly,

translation increased for most of these mRNAs, in elongating spermatids; this increase

reflects a common mechanism compensating for the cessation of transcription from

mid-spermiogenesis  onwards.  Nonetheless,  they  also  identified  a  small  cluster  of

meiotically-induced mRNAs that were actively translated only in post-meiotic stages.

More recently,  the development  of genetically modified organisms that express an

affinity-tagged ribosomal protein has provided a straightforward means of isolating

ribosomes  along  with  their  bound  mRNAs.  Interestingly,  the  expression  of  these

tagged proteins can be driven by a tissue/cell-specific promoter, such as the Cre-lox

system in mice, which enables the capture of tagged ribosomes from an entire organ

or tissue without the need to isolate the cells of interest (for review, see  King and

Gerber,  2014).  These  methodologies,  initially  called  translating  ribosome  affinity

purification (TRAP) in the mouse (Doyle et al., 2008; Heiman et al., 2008), have been

used several  times  to  capture  the  translatome  of  various  testicular  cell  types.  For

instance, Sanz and collaborators took advantage of Cyp17iCre and Amh-Cre mice to

investigate the translatome of adult Leydig cells and Sertoli cells, respectively (Sanz

et al., 2013). They also used this approach to investigate the regulation of Leydig cells

by LH and that of Sertoli  cells  by FSH and testosterone in gonadotropin-depleted

mice. 
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They notably found that the early response to LH (within one hour) was characterized

by the induction of several transcription factors and genes involved in cell cycle while

the secondary response to LH (after four hours) involved the up-regulation of genes

involved in steroid metabolism and FGF signaling and the down-regulation of several

transcription  repressors.  The  regulatory  role  of  testosterone  was  also  successfully

examined by De Gendt and colleagues who combined a TRAP approach that used

Amh-Cre mice, a mouse model lacking a functional androgen receptor (AR) in Sertoli

cells, and RNA-seq analysis (De Gendt et al., 2014). After determining the Sertoli cell

translatomes of prepubertal and adult mice, which they found to be very similar, the

authors  compared  these  wild-type  Sertoli  cell  translatomes  to  that  of  Sertoli  cells

lacking the AR and identified androgen-regulated genes at the onset of meiosis, which

included many plasma membrane and cytoskeleton factors involved in cell junction

and adhesion. Finally, another study took advantage of this method to investigate the

translatome of neonatal  testicular  germ cells  at  the onset of meiosis  (Evans et  al.,

2014).  Using  a  synchronized  spermatogenesis  model,  the  authors  identified  the

changes  in  ribosome-bound  mRNAs  taking  place  in  both  differentiating

spermatogonial cells (with Ngn3-Cre and Stra8-Cre mice) and maturing Sertoli cells

(with Amh-Cre mice) after retinoic acid restoration.

Note  that  these  ribosomal  profiling  analyses  not  only help  to  evaluate  translation

efficiency  and  estimate  corresponding  protein  abundance  more  accurately  than

classical transcriptomic approaches, but, when coupled with RNA-seq, they can also

provide information about ribosome occupancy, translation initiation, elongation, and

termination at near-nucleotide resolution (for review, see Ingolia, 2014). 
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From gene expression measurement to new testicular protein isoform prediction

As  mentioned  above,  the  measurement  of  steady-state  gene  expression  does  not

necessarily estimate the actual proteome well. This is true from both the quantitative

and qualitative points of view and especially for microarray experiments. Specifically,

because  microarrays  measure  gene  expression  through  the  sequence-specific

hybridization  of  RNAs  to  DNA  probes,  they  cannot  gather  information  about

transcript structure outside the sequence targeted by the probes. Furthermore, because

most  probes  recognize  several  transcript  isoforms,  they  report  average  gene

expression and fail  to identify the specific  isoforms actually expressed in  a given

sample.

In  this  regard,  the  recent  advance  of  RNA-sequencing  (RNA-seq)  technologies,

together with the development of associated analysis pipelines, has revolutionized the

field  of  transcriptomics.  RNA-seq is  an efficient  and cost-effective  way to obtain

large amount of transcriptome data and identify both new genes and new isoforms, by

the sequencing of novel exons and/or novel exonic junctions. RNA-seq thus makes it

simultaneously possible to determine the structure of thousands of transcripts and to

measure  their  abundance.  It  thus  provides  a  more  accurate  prediction  of  all

corresponding protein isoforms (Figure 1B). Several RNA-seq analyses have already

been conducted to investigate spermatogenesis in rodents, with either isolated cells

(Gan et al., 2013b; Soumillon et al., 2013; Chalmel et al., 2014b) or testes at various

stages of the first wave of spermatogenesis (Laiho et al., 2013; Schmid et al., 2013;

Margolin et al., 2014). All these studies have led to the reconstruction of a plethora of

transcripts, including known isoforms but also thousands of new isoforms of known

genes  and  hundreds  of  uncharacterized  transcripts  that  correspond  to  either  new

coding or non-coding genes. The amount of information generated in such RNA-seq

studies  is  so  huge  that  a  single  study  cannot  undertake  and  report  on  all  the

exploration possibilities. 
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For example, Chalmel and colleagues restricted their analysis to novel unannotated

loci (Chalmel et al., 2014b) and used four different bioinformatics tools to distinguish

between transcripts with high and low coding potential. Margolin and collaborators

initiated a broad analysis of splicing events by identifying transcripts that contained

novel  splice  junctions  in  which  the  open  reading  frame  (ORF)  was  maintained

(Margolin et al., 2014). Finally,  Schmid and colleagues focused their study on the

splicing  dynamics  of mRNAs in male  germ cells,  with a special  emphasis  on the

newly identified splicing events that might affect protein isoform production during

mouse  meiosis,  and identified  significantly  enriched motifs  for  PTB, TRA2B and

STAR proteins  in  and around meiotically-regulated  cassette  exons  (Schmid et  al.,

2013). Therefore, although all these RNA-seq studies have highlighted many potential

new protein-coding  transcripts  expressed  in  male  germ cells,  a  thorough  analysis

aimed  specifically  at  identifying  the  variants  that  actually  code  for  specific

proteoforms  with  distinct  biological  functions  is  still  needed.  Most  important,  the

functional relevance and validity of these findings still require experimental validation

at the protein level.

Proteogenomic approaches applied to spermatogenesis

Compared with microarrays, which are intrinsically limited to studying the expression

of genes for which probes are spotted on their surface, MS-based proteomics has long

been considered to be more powerful in the sense that theoretically it can detect and

quantify any protein entity within a given sample.  Protein identification,  however,

typically  involves  the  comparison  of  experimental  masses  obtained  by  mass

spectrometry  to  that  of  in  silico-digested  protein  databases.  Therefore  proteomic

studies  are  also  limited  to  the  sequence  content  of  the  database  that  is  used  for

identification purposes. 
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Several methods, called proteogenomics, have emerged to overcome this limitation

and help identify novel peptides not present in reference protein sequence databases

(for review, see  Hernandez et al., 2014). These methods rely on the construction of

customized protein sequence databases that include, for example, products resulting

from the 6-frame translation of the reference genome or the 3-frame translation of

transcripts, or both, regardless of whether these correspond to known mRNAs, non-

coding  RNAs,  or  pseudogenes.  Large  consortia  seeking  to  decipher  the  complete

human proteome through the analysis of several human tissues, including the testis

(Kim et al., 2014; Wilhelm et al., 2014), have recently used such approaches.

Among  the  most  promising  proteogenomic  methods  is  RNA-seq-based

proteogenomics, also called “proteomics informed by transcriptomics” (PIT). The PIT

strategy  derives  the  customized  protein  sequence  database  queried  for  protein

identification directly from RNA-seq data of the same or a similar sample (Evans et

al., 2012). It therefore limits protein products in the custom database to those resulting

from  the  3-  or  6-frame  translation  of  the  assembled  transcripts  that  are  indeed

expressed  in  the  organ,  tissue,  or  cell  type  of  interest.  Compared  with  other

proteogenomic approaches, PIT offers the advantage of a smaller database, which in

turn reduces the number of false positives and increases sensitivity (Figure 1A).

Recently,  this  strategy was applied to the identification of new proteins expressed

during late stages of rat spermatogenesis  (Chocu et al., 2014). In this study, protein

extracts from isolated rat pachytene spermatocytes and round spermatids were first

trypsin-digested  and  analyzed  by  nano  LC-MS/MS.  Next,  MS/MS  spectra  were

queried against a customized database derived from a previous RNA-seq analysis of

rat testicular cells  (Chalmel et al., 2014b), which had identified almost 12,000 new

transcript isoforms. It also reported the existence of more than 1400 completely new

unannotated  loci,  most  of  them  preferentially  expressed  in  spermatocytes  and/or

spermatids. 
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Because  of  this  high  gene  discovery  potential,  Chocu  and  colleagues  voluntarily

restricted their PIT approach to meiotic and post-meiotic germ cells. This experiment

led  to  the  identification  of  44  novel  coding  genes  expressed  during  rat

spermatogenesis, including 14 that were initially thought to correspond to non-coding

RNAs. This approach has also been used to study the testicular proteome of the red

abalone,  Haliotis  rufescens  (Palmer et  al.,  2013) and allowed the identification of

almost  1000 proteins.  This  number  of  proteins  is  especially  remarkable  when we

consider that the number of UniProt entries still does not exceed 140 for this non-

model species (Release 2014_11).

There  is  no doubt  that  the increasing  performance  of  mass  spectrometers  and the

decreasing cost of RNA-seq will allow the rapid democratization of PIT studies and

of  proteogenomics  in  general.  These  approaches  will  be  critical  to  the  full

characterization of both the transcriptome and the proteome of model organisms in

various  biological  contexts,  which in  turn will  help to  annotate  the corresponding

genomes.  PIT strategies  are  also  a  unique  opportunity  for  non-model  species,  for

which  reference  genome  sequences  are  not  available:  their  transcriptomes  and

proteomes can be thoroughly examined without requiring the use of nucleic or protein

sequence databases from phylogenetically distant species. Finally, regardless of the

model  of interest,  the combination of RNA-seq and mass spectrometry into a PIT

study  offers  a  straightforward  method  of  investigating  the  correlation  of

transcriptomes and proteomes, because protein profiles can be directly compared to

transcript profiles on which protein identifications are also performed (for review, see

Wang et al., 2014).
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Conclusion

The  recent  progress  in  next-generation  sequencing  technologies  together  with  the

improved performance of mass spectrometers has made possible a fruitful revisit of

the  testis  genomic  landscape.  While  we  are  now  getting  close  to  the  complete

identification of the molecular factors involved in spermatogenesis, an understanding

of all the regulatory mechanisms that drive gene and protein expression during germ

cell  development  and  the  identification  of  the  key  factors  for  male  fertility  both

require  additional  work.  This  will  notably  imply  the  combination  of  all  types  of

available  data,  i.e.,  from  epigenomic,  regulomic,  transcriptomic,  proteomic,  and

interactomic studies, in order to link the flow of information from DNA to functional

proteins and non-coding RNAs. The success of this integrative work will also depend

on the development of new types of web servers, such as the ReproGenomics Viewer

(http://rgv.genouest.org/;  Darde et al., 2015), which allows the visualization, mining,

and comparison of various types of omics data (e.g., ChIP-seq, RNA-seq, MS-based

proteomics)  in  a  multi-  and  cross-species  manner.  Finally,  a  current  challenge  in

biology  resides  in  the  development  of  methods  to  investigate  single  cells  at  the

genomic, transcriptomic, proteomic, and metabolomic level (for review, see Tsioris et

al., 2014). The use of these so-called single-cell approaches will mandate the more

detailed  study  of  the  kinetics  of  germ  cell  differentiation  and,  most  importantly,

enable us to gain insight into the biology of discrete cell populations within the testis,

such as the spermatogonial stem cell.
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Legends to figures

Figure 1: When transcriptomics meets proteomics

A) Typical  integrative  omics  approaches  involve  the  combination  of  datasets

originating from various technologies, most notably transcriptomics and proteomics.

Such  strategies  are  often  used  to  identify  more  reliable  candidates  (i.e. factors

evidenced at both the RNA and protein levels), but they can also be useful in order to

compare  and  correlate  transcription  and  translation  rates.  More  recently,  the

combination of RNA-seq and mass spectrometry (MS)-based proteomic has led to the

development  of  the  so-called  Proteomics  Informed  by  Transcriptomics  (PIT)

approach. In this approach, the protein sequence database (DB) queried for protein

identification purpose is directly derived from transcript sequences obtained following

RNA-seq analysis of the same or equivalent sample as that used for MS/MS analysis.

B) The characterization of the transcriptome has long been used as a proxy for the

proteome. However, depending on whether nuclear, total cytoplasmic or ribosome-

bound  RNAs  are  analysed,  the  captured  picture  will  reflect  either  more  the

transcriptional  rate  or  the  translational  rate.  Additionally,  while  both  approaches

perform  equivalently  from  a  quantitative  point  of  view,  RNA-seq  overcomes

microarray  technology  from  a  qualitative  point  of  view  as  it  allows  full-length

transcript  reconstruction  and can thus discriminate  between distinct  protein-coding

isoforms.
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