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Abstract

We use symmetry analysis, density functional theory calculations and k · p modeling to

scrutinize Rashba and Dresselhaus effects in hybrid organic-inorganic halide perovskites. These

perovskites are at the center of a recent revolution in the field of photovoltaics but have also

demonstrated potential for optoelectronic applications such as transistors and light emitters.

Due to a large spin-orbit coupling of the most frequently used metals, they are also predicted

to offer a promising avenue for spin-based applications. With an in-depth inspection of the

electronic structures and bulk lattice symmetries of a variety of systems, we analyse the ori-

gin of the spin splitting in two-and three-dimensional hybrid perovskites. It is shown that

low-dimensional nanostructures made of CH3NH3PbX3 (X=I, Br) lead to spin splittings that

can be controlled by an applied electric field. This new findings further open the door for a

perovskite-based spintronics.
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Introduction

Since 2009 and the pioneer work of Miyasaka and coworkers,1 3-dimensional (3D) solution-

processed hybrid organic-inorganic halide perovskites AMX3 (where A is an organic cation, M

= Pb, Sn, Ge and X = I, Br, Cl) have attracted increasing attention from the photovoltaic commu-

nity. Such a craze arises from the early successes met in improving the efficiency in the solar-to-

electricity conversion, from 3.8%1 up to 20.1%2 in only five years, combined with low costs of

production.3–5 Prior to the solar cell intense activity, hybrid halide perovskites were most popular

in their 2-dimensional (2D), i.e. layered, form as they have shown good potential for applications in

optoelectronics and microelectronics.6–8 The wide range of applications of these materials results

from the impressive diversity of structures that can be obtained by varying their composition.

Although perovskites have been studied for decades, it is only recently that the major role of

spin-orbit coupling (SOC) has been underlined by calculations based on density functional theory

(DFT).9–11 Besides an improved description of their band structures and optoelectronic proper-

ties, it has led to the prediction of Rashba and/or Dresselhaus spin splitting in these hybrid sys-

tems. Dresselhaus12 and Rashba13 effects originally correspond to spin splittings in zinc-blende

and würtzite structures, respectively. Later, Bychkov and Rashba pointed out that the Rashba

term also occurs in quasi-2D systems.14 These effects have been extensively studied15–19 and

have been observed in various systems such as heterostructures,20,21 quantum wells (QWs),22–25

bulks,26–28 heavy atoms and alloys surfaces,16,27,29–36 or nanowires (NWs).37–39 The control of

spin-dependent band structure provide with the opportunity to manipulate the spin with potential

applications in spintronics.40–43 Rashba and Dresselhaus effects have also raised interest in the re-

alization of topological superconductors for topological quantum information processing through

the generation of Majorana fermions.44,45 In the case of hybrid halide perovskites, a Rashba spin

splitting has been predicted in methylammonium-based perovskites CH3NH3MX3,11,46–48 and in

formamidinium tin iodide CH(NH2)2SnI3.49 A hybrid halide perovskite-based spintronics is also

supported by recent experimental studies on ferroelectric domains in thin films50 and on the spin

dynamics in CH3NH3PbI3 that determined a spin relaxation lifetime around 7 ps.51
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In this work, we conduct a survey on two- and three-dimensional hybrid halide perovskites.

On the basis of symmetry analysis and DFT calculations we discuss the possibility of designing

spintronic devices based on these materials. We start by recalling general features of Rashba

and Dresselhaus spin splittings. We focus then on systems presenting a non-centrosymmetric

space group, which naturally exhibit a Rashba or Dresselhaus splitting. Finally, we show that

centrosymmetric system can present a tunable splitting through external electric field. The latter

result opens the way for perovskite-based spintronics applications.

Spin-orbit coupling and symmetry point groups: Rashba and

Dresselhaus spin splittings

In the presence of SOC, we consider the following Hamiltonian

H =
p

2

2m
+V +HSO,

where V is the lattice periodic crystal potential and HSO the spin-orbit interaction term

HSO =
h̄

4m2c2 (—V ⇥p) ·s ,

where h̄ is Planck’s constant, m the mass of an electron, c the velocity of light, p the momen-

tum operator and s = (sx,sy,sz) the vector of Pauli spin matrices. Starting from a Bloch states

description

ynk

(r) = eik·rfnk

(r),

the eigenvalue problem for fnk

reads

�
H 0(k)+HSO(k)

�
fnk

(r) = en(k)fnk

(r),
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with

H 0(k) =
(h̄k+p

2)

2m
+V

HSO(k) =
h̄

4m2c2 (—V ⇥ (h̄k+p) ·s) .

It is common to treat SOC as a perturbation of the H 0 zero-order Hamiltonian, which is solved

following the k · p expansion around a given k0 leading to f 0
nk

, which is the solution of the un-

perturbed Hamiltonian with eigenvalue e0
n (k). It is completed by a spin function cs (s = ±1/2),

keeping f 0
nks = f 0

nk

cs an eigenvector of H 0(k). We will denote f 0
nk", f 0

nk# the spinors and e0
n"(k),

e0
n#(k) the corresponding eigenvalues for s =+1/2 and �1/2, respectively.

The time reversal symmetry is conserved by SOC and delivers general conditions for conju-

gated spinors (Kramers’ degeneracy)

e0
n"(k) = e0

n#(�k) and e0
n#(k) = e0

n"(�k).

Inversion symmetry yields additional conditions

e0
n"(k) = e0

n"(�k) and e0
n#(k) = e0

n#(�k).

Combining both symmetries leads to a double spin degeneracy

e0
n"(k) = e0

n#(k)

across all the dispersion diagram within the Brillouin zone (BZ). When inversion symmetry is lost,

the later spin degeneracy condition can be lost for a general wave vector, except for special high

symmetry points leading to a band splitting.11,52

We consider k0, a special symmetry point of the BZ for which the spin degeneracy is conserved.

The in-plane wave vector k|| is naturally defined for a 2D electron gas. In a 3D system, it belongs

5
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to the plane normal to a high symmetry axis defining k?. Then one can apply the quasi-degenerate

perturbation theory with the perturbative Hamiltonian, i.e. the Rashba Hamiltonian15

HR = a(k) ·s (1)

with

a(k) = hfnk

| h̄
4m2c2 (—V ⇥ (h̄k+p)) |fnk

i.

Taking advantage of the symmetry allows to sort terms and identify the vanishing ones. The

polynomial form of a has been previously derived in different works.15,17,53 Clearly, due to time

reversal symmetry, only odd power terms are relevant in the development. Vajna and coworkers53

have precisely described how to determine the linear and cubic terms of HR thanks to irreducible

representations of relevant point groups for Cn and Cnv (n = 2, 3, 4). It has been recently completed

for the D2d point groups.17

Let us illustrate these results with the example of a quasi-2D system in C2v symmetry. Limiting

the expansion to linear terms, only four contributions have to be considered: kxsy, kysx, kxsx and

kysy. It leads to the Rashba-Dresselhaus Hamiltonian:

HRD(k||) = lR(kxsy � kysx)+lD(kxsx � kysy), (2)

where k|| = (kx,ky) and k? = kz. For lD = 0, we retrieve the pure Rashba effect (also known as

Bychkov-Rashba effect) that traces back to Site Inversion Asymmetry (SIA) found in conventional

semiconductor quantum structures.15 For lR = 0, the remaining term is commonly found in zinc

blende structures and related to the so-called Bulk Inversion Asymmetry (BIA).15 It is labelled here

as the Dresselhaus effect. The solution of the eigenvalue problem gives us the dispersion relations

for the upper (ERD+) and lower (ERD�) branches away from k

0

, as well as the corresponding

6
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eigenvectors:

ERD±(k||) =
h̄k2

||
2m

±
q

(l 2
D +l 2

R)(k2
x + k2

y)�4lDlRkxky (3)

YRD±(k||) =
eik||·r

2p h̄
1p
2

0

BB@

⌥
�lD(kx + iky)+ ilR(kx � iky)q
(l 2

D +l 2
R)(k2

x + k2
y)�4lDlRkxky

1

1

CCA (4)

If lD = 0, then the energy splitting DER = ER+�ER� is given by

DER(k||) = 2lR

q
k2

x + k2
y . (5)

The same relation exists with lD if lR vanishes. Then, in both limiting cases the non-zero coeffi-

cient l is related to the band splitting away from the high symmetry point and reads

l =
DE(k||)

2
q

k2
x + k2

y

, (6)

with DE = E+�E� (Figure 1-a). In mixed cases, the band splitting alone cannot discriminate the

relative strength of Rashba and Dresselhaus effects and the expectation value of the Pauli operator

hsiRD± = hYRD±|s |YRD±i must also be considered.

It is convenient to write k|| = k||(cosq ,sinq ,0), then the eigenvectors of HRD are given by

YRD± =
eik||·r

2p h̄
1p
2

0

BBB@

⌥ �lDeiq + ilRe�iq
q

l 2
D +l 2

R �2lDlR sin2q

1

1

CCCA
. (7)
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In the pure Rashba case (lD = 0), the expectation value becomes

hsiR± µ ±

0

BBBB@

�sinq

cosq

0

1

CCCCA
. (8)

We recover the well-known Rashba feature (Figure 1-b) with an in-plane orientation always or-

thogonal to the momenta direction. On the other hand, in the case of a pure Dresselhaus effect

(lR = 0), one obtains

hsiD± µ ±

0

BBBB@

cosq

�sinq

0

1

CCCCA
, (9)

which leads to very different spin textures (Figure 1-c) for the inner and outer branches, character-

istic of a BIA spin splitting. The general case reads

hsiRD± µ ±

0

BBBB@

lD cosq �lR sinq

�lD sinq +lR cosq

0

1

CCCCA
. (10)

Thus, once hsi± is computed, one can deduce the relative strength of each effect. In the case of

C2v symmetry the spin distribution remains in-plane, even going to cubic terms. The situation is

different with C3v and D2d point groups where the Hamiltonian can contain cubic terms depending

on sz. In that case, non-zero out-of-plane components of the spinors can occur.

The computational observation of the spin splittings is performed by computing the band struc-

ture around a high-symmetry point of the BZ. One has to be careful to properly define k|| based

on the symmetry of the system. In addition, the spin texture is computed as well to identify and

assess the existence and relative amplitudes of Rashba and Dresselhaus effects. In the following,

we conduct a survey on various hybrid organic-inorganic perovskites structures.

8
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Figure 1: (a) Dispersion for the inner (E+, red line) and outer (E�, blue line) branches for a
system in C2v symmetry ruled by the Rashba-Dresselhaus Hamiltonian. The minimum momentum
displacement is denoted kR and the amplitude of the energy DE and momentum Dk splittings are
also shown. (b) Scheme of spin orientations for the corresponding eigenstates YRD± in the case of
pure Rashba effect (or SIA), i.e. lD = 0. (c) Same in the case of pure Dresselhaus Hamiltonian (or
BIA), i.e. lR = 0.

Rashba-type splittings have been designed and observed among QWs22–25 and heterostruc-

tures20,21 of conventional semiconductors.15 Hybrid organic-inorganic perovskites appear to be

promising candidates in that respect since they present giant SOC.9,10 Moreover, this family of

compounds can be found in many different crystal structures. To conduct our survey we decided

to start from the highly symmetrical Pm3̄m (n� 221) reference phase,52 observed in the high tem-

perature phase of numerous hybrid perovskites.54–57 From this point we follow different phase

transitions (Figure 2). A key point in the observation of a SOC induced spin splitting is the loss

of inversion symmetry. Therefore, we take interest in non-centrosymmetric structures, such as fer-

roelectric structures. We consider 3D bulk examples belonging to P4mm (n� 99), R3m (n� 160)

and Amm2 (n� 38) crystal groups. Then, we consider the case of a temperature induced ferroelec-

tric transition in a bulk 2D perovskite. Finally, we investigate the effect of an external electric

field starting with a structure having inversion symmetry that should not be suitable candidates for

Rashba or Dresselhaus effect. With the example of CH3NH3PbX3 we show that a controllable spin

splitting can be reached.

9
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Figure 2: Phase transitions from Pm3̄m.

Halide organic-inorganic perovskites are hybrid materials and often show important distortions

from the ideal octahedron. These deformations are a contributing factor to the different properties

of this class of perovskite.58,59 However, if the loss of inversion symmetry is a requirement for

the spin splitting, we stress that the loss of too many symmetry operations can lead to an unusable

Rashba effect with uncharacteristic spin rotations.

Non-centrosymmetric structures

As a first case, we consider the methylammonium lead iodide perovskite CH3NH3PbI3 in the

P4mm crystal group.60 Starting from the Pm3̄m structure, it corresponds to a simple translation

of the ions along the z axis. The resulting structure shows a C4v point group. The C4 axis lies

along the [001] crystallographic direction. Thus, [001] naturally defines the special quantization

axis k?, k|| is contained in the plane that can for instance be defined by the two vectors kx=[100]

and ky=[010]. The critical point k0 is the point A (1/2,1/2,1/2). Figure 3-a displays the band

structure of CH3NH3PbI3 calculated with and without SOC in the k|| plane. The SOC has three

major contributions: (i) the gap is greatly reduced, (ii) the conduction band minimum (CBM) and

the valence band maximum (VBM) are displaced away from A, (iii) the conduction and valence

bands are split away from A. The four resulting bands present similar spin textures (Figure 3-d)

with spins orthogonal to the crystal momenta.

This pure Rashba picture is consistent with the predicted form of the spin-orbit Hamiltonian

10
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Figure 3: Hybrid organic-inorganic halide perovskites crystallized in phases corresponding to a fer-
roelectric phase transition from Pm3̄m. (a) Band structure and structure (insert) of CH3NH3PbI3
in the P4mm phase. Blue and red lines stand for the occupied and unoccupied bands for a calcu-
lation including SOC, respectively. Black dashed lines are the results without SOC. (b) Same for
CH3NH3GeI3 in the R3m phase. (c) Same for CH(NH2)2SnI3 crystallized in the Amm2 group. (d),
(e) and (f) Spin textures for the inner and outer branches for both occupied and unoccupied bands
of CH3NH3PbI3, CH3NH3GeI3 and CH(NH2)2SnI3, respectively.

for a C4v symmetry.53 The apparent absence of deviation from the model (Figure 1-b) indicates

weak or vanishing contributions from cubic terms. From the momentum shift kR and the energy

splitting DE we deduce the strength of the Rashba effect lR = DE/(2kR) and find a Rashba coef-

ficient of lCBM
R = 3.76 eV.Å for the conduction band and lV BM

R = 3.71 eV.Å for the valence band.

These Rashba splittings are of the same order of magnitude as the largest splittings experimentally

observed in bulk materials, e.g. lR = 3.80 eV.Å for BiTeI,26,27 or surface alloys, e.g. lR = 3.05

eV.Å for Bi/Ag(111).31

From the Pm3̄m reference structure simultaneous translations of the ions along the three crys-

tallographic axes lead to a R3m structure. The corresponding point symmetry is C3v. In the case

of methylammonium germanium iodide CH3NH3GeI3,60 the C3 quantization axis (k?) is parallel

to the [111] crystallographic direction. Hence, the relevant plane to observe a Rashba-like spin

11
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splitting (k||) contains the [1-10] and [11-2] directions. In Figure 3-b, we plot the band structure

following the relevant path around the critical point L (-1/2,1/2,1/2). Once more, splittings are

observed for conduction and valence bands. The effect appears more pronounced in the conduc-

tion band. The spin textures (Figure 3-e) are again characteristic of a pure Rashba spin splitting as

predicted by the symmetry reduction of the k ·p Hamiltonian in the case of a C3v point group.53

There is no measurable out-of-plane component of the spin vectors, as it was for CH3NH3PbI3.

We extract again the values of lR and find lCBM
R = 0.89 eV.Å, lV BM

R = 0.45 eV.Å. These values are

much weaker than those obtained for CH3NH3PbI3, but still sizeable. The lowering of the Rashba

spin splitting is expected as the atomic SOC splitting is much more important for the Pb2+ ion than

for Ge2+ (1.75 vs. 0.22 eV).59

CH3NH3GeCl3 also crystallizes in a R3m structure.56 With chlorine, the structure is more

distorted than in the case of iodine (Figure S1-a in Supporting Information). The band structure re-

mains similar with a band splitting in conduction and valence bands (Figure S1-b). The difference

is quantitative with lCBM
R = 1.18 eV.Å and lV BM

R = 0.23 eV.Å. The Rashba effect appears stronger

in the conduction band than in the case of CH3NH3GeI3. The Rashba effect is thus resilient to

important lattice distortions. However, in addition to the expected shape, the spin textures show

important out-of-plane components even for small values of the momentum (Figure S1-c and d).

This strain-induced alteration of electronic eigenvectors is a detrimental effect that may hinder the

definition of purely intricated spin states for device applications (vide infra).

As a final example of ferroelectric structures we investigate CH(NH2)2SnI3 in the Amm2

group.49,61 It corresponds to twin translations of the ions along the x and y directions. The re-

sulting point group symmetry is C2v, with the C2 axis in the [011] direction. We plot the band

structure around R (1/2,1/2,1/2) probing the [100] and [01-1] directions. The splitting of bands oc-

curs for both the conduction and valence bands. However, the spin textures close to the CBM and

VBM for the inner and outer branches (Figure 3-f) are very different from the previous examples,

even if no out-of-plane contribution can be extracted. It does not correspond to any of the limiting

cases presented in Figure 1. As detailed previously, a system belonging to the C2v symmetry can
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exhibit both Rashba and Dresselhaus terms (Eq. (2)). Using Eq.(3), (10) and the spin orientations

for different momentum, we get the relative contributions of both effects: lCBM
D = 2.59 eV.Å and

lCBM
R = 0.50 eV.Å. Our results are in good agreement with previous GW calculations (where the

Rashba and Dresselhaus parameters are computed as DE/kR, accounting for the factor 2 discrep-

ancy between their and our results).49 The effect is too weak in the valence band and no parameter

can be computationally assessed in this case.

Ferroelectric transitions: temperature-controlled Rashba spin

splitting

The ideal reference structure for bulk 2D hybrid perovskites corresponds to the D4h point group.62

However, high temperature centrosymmetric crystal phases of 2D hybrid perovskites usually ex-

hibit a cell doubling in a plane perpendicular to the stacking axis, associated to antiferrodistorsive

tilts of the octahedra. This lattice distortion leads to a reduction of the point group symmetry from

D4h to D2h and a BZ folding from the M point at the BZ boundary to the G point at the BZ center.

Such a structure is observed at high temperature for the 2D hybrid perovskite Bz2PbCl4 (Bz = ben-

zylammonium),63,64 which crystallizes in a Cmca (n� 64) centrosymmetric phase.64 The structure

is layered with slabs of single octahedra sandwiched by slabs of organic cations (Figure 4). Below

T = 438 K, the crystal undergoes a ferroelectric phase transition to a Cmc21 non-centrosymmetric

structure.

In the low temperature phase, the C2 quantization axis is along the [001] crystallographic di-

rection and thus no spin splitting occurs on the G ! Z path (Figure 4-a). Following the previous

scheme, k|| should be defined by [100] and [001]. As [100] corresponds to the stacking direction,

there is no dispersion of the bands due to the inorganic part in this direction.9 The spin splitting

can be observed following G !Y . This situation notably differs from the Rashba effect in conven-

tional semiconductor QW and heterostructures where the stacking and quantization axes coincide.

13
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Therefore, the problem becomes analog to a 1D problem with contributions involving only ky:

H (kx) =�lRkysx +lDkysy. (11)

The eigenvalues and eigenvectors become

ERD±(ky) =
h̄k2

y

2m
±
q
(l 2

D +l 2
R)k2

y (12)

Y1D± µ

0

BB@

⌥ lR � ilDq
l 2

R +l 2
D

ky

|ky|

1

1

CCA , (13)

and the spin textures read

hsi± µ

0

BBBB@

⌥
ky

|ky|
0

0

1

CCCCA
. (14)

Only one spin component is obtained along the stacking direction. Clearly, there is no differen-

tial impact on the observables (band splitting and s expectation values) of the nature Rashba vs.

Dresselhaus of the spin splitting. Then, one can note l the effective amplitude:

l =
DERD(ky)

2ky
. (15)

The band structure calculated for the low-temperature structure (93 K) of Bz2PbCl4 (Figure 4-

a) shows a large effect on the conduction band (lCBM = 2.14 eV.Å) and much weaker on the valence

band (lV BM = 0.41 eV.Å). The spin textures for both branches of the conduction band (Figure 4-b)

display the expected features with a single component whatever the momentum.

Recently, Liao et al. have characterized the crystal structure of Bz2PbCl4 at various tempera-

14
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Figure 4: (a) Band structure of Bz2PbCl4 in the low temperature Cmc21 phase, computed with
SOC. Blue and red bands correspond to occupied and unoccupied bands, respectively. (b) Spin
textures for the inner and outer branches of the conduction band. (c) Temperature dependance of
the Pb displacement along y (see text) and computed Rashba parameters for the conduction and
valence bands.

tures.64 The crystal remains in the Cmc21 group for temperatures from 93 K up to 423 K. The high

temperature structure (453K) presents a Cmca symmetry, i.e. a D2h point group and, therefore,

does not exhibit spin splitting. We compute the electronic structure for each experimental struc-

ture and determine the evolution of the Rashba parameter l with temperature (Figure 4-c). The

temperature induced variation of the Rashba parameter can be related to the order parameter of the

Cmca (D2h) to Cmc21 (C2v) ferroelectric phase transition. This order parameter corresponds to the

B1u irreducible representation (IR) of the D2h point group and to a polarization along the C2 axis

([001] direction). The analysis of the Cmca phonon modes shows that the B1u IR appears both in

15
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the mechanical representations of the Pb and Cl atoms, with a parallel motions of two Pb (or Cl)

atoms along the z axis and antiparallel motions along the y axis. The low temperature Cmc21 phase

can thus be partly described as a displacive distortion from the Cmca phase with the corresponding

atomic displacements in the inorganic layer from their high temperature positions. We shall point

out that the phase transition is also related to an order-disorder character in relation with the disor-

dered orientations of the organic molecules in the Cmca phase. The splitting in the valence band is

weakly affected by the structural changes occurring from 93 to 423 K with a lV BM slowly varying

from 0.41 eV.Å to 0.32 eV.Å. On the other hand, the Rashba effect in the conduction bands is

stronger This smooth variation is related to the atomic displacement in the low temperature phase.

Indeed, the decrease from 2.14 eV.Å to 0.90 eV.Å can be traced back to structural characteristics

such as the displacement of Pb atoms along y (Figure 4, S2 and S3).

The effect of octahedron distortions (CH3NH3GeCl3) and of the in-plane and out-of-plane tilts

(Bz2PbCl4) have illustrated the delicate balance of symmetry/asymmetry required to observe a

Rashba effect in this class of hybrid materials. In the following, we consider the case of spin

splitting induced by an external electric field.

Field-controlled Rashba spin splitting

In this section, we examine electric field-controlled Rashba splitting starting from 3D hybrid per-

ovskites. An electric field applied to the Pm3̄m reference structure correspond to a G�
4 perturbation,

and may lead to one of the three ferroelectric distortion already described in the first part. How-

ever, given that the organic cations are dynamically disordered in the Pm3̄m, we perform DFT

simulations of this effect for the low-temperature Pnma structure, which corresponds to an anti-

ferrodistorsive distortion of the Pm3̄m phase. This centrosymmetric structure is often encountered

among hybrid organic-inorganic perovskite56,57,65 and corresponds to the low-temperature phase

of CH3NH3PbI3.65 The Pnma space group corresponds to a D2h point symmetry. Therefore, no

Rashba effect can be expected in this case. Nevertheless, when a transverse external electric field
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Eext is applied, the inversion symmetry is lost and a spin splitting is expected to show up. The

same goes for the cubic Pm3̄m or tetragonal I4/mcm phases.

Control of spin splitting, and thus of the Rashba parameter, by a gate voltage, i.e. an external

electric field, has been under intense investigation since the mid-1990s.21–23,32 In the early 2000s,

theoretical investigations significantly contributed to rationalize the effect. In particular, tight-

binding models have provided essential support to evaluate the Rashba parameter as a function of

microscopic quantities.15,66–69 Recently, Kim and coworkers have adapted such models to hybrid

organic-inorganic perovskites in the case of non-centrosymmetric structures, but without consid-

ering an external electric field.46 Altough the complete description of such models is beyond the

scope of this work, let us recall here that they describe a Rashba parameter that depends linearly

on the atomic SOC and on the effective potential gradient, and decreases with an increasing band

gap.

In order to apply the electric field, we start from the bulk structure of CH3NH3PbI3 in the

Pnma phase, and construct slabs terminated by the [010] surface, containing ncell octahedra in

the packing direction. Two cases occur: (i) ncell is even (Figure 5-a) and the resulting structure

belongs to the non-centrosymmetric group Pmc21 (n� 26) corresponding to the C2v point group,

(ii) ncell is odd (Figure 5-e), and the structure presents a centrosymmetric P21/c (n� 14) space

group corresponding to the C2h point group. The consequence of this odd/even effect is illustrated

by the band structures calculated for slabs with ncell = 2 and 3 (Figure 5-b and f) around G in both

in-plane directions [100] and [010]. Indeed, no splitting is observed for the conduction and valence

bands when ncell = 3, whereas ncell = 2 leads to a small splitting along G ! X (1/2,0,0). However,

this is not the case when going to thicker slabs: for slabs with ncell � 4 no splitting is retrieved in

our calculations.

A spin splitting is observed when applying a transverse electric field Eext (Figure 5-c and g).

This effect is almost null in the conduction band but can lead to lR of nearly 0.5 eV.Å in the valence

band. Noteworthy, whatever the thickness of the slab, bands close to the gap are not surface states

and the splitting is not a difference between up and down faces of the slab. The spin textures of the
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Figure 5: Electric field induced spin splitting in slabs of CH3NH3PbI3. The original bulk crystal
group is Pnma. Slabs with even and odd thickness (ncell) exhibit Pmc21 and P21/c symmetry,
respectively. (a) and (e) Structures of slabs of CH3NH3PbI3 with ncell = 2 and 3, respectively.
Pb, I, N, C and H are depicted in gray, purple, blue, brown and white, respectively. (b) and (f)
Corresponding band structure computed with SOC. Blue and red bands correspond to occupied
and unoccupied band, respectively. A small splitting is observed in the case of ncell = 2. (c)
and (g) Same with the application of an external electric field Eext = 0.075 VÅ�1. A splitting is
observed with corresponding spin textures depicted in (d) and (h) for the valence bands. (i) Rashba
parameter lR (eV.Å) as a function of the applied electric field Eext (VÅ�1) for CH3NH3PbI3 (red
circles) and CH3NH3PbBr3 (blue squares).

inner and outer branches of the valence band are similar for odd and even cases (Figure 5-d and h)

and correspond to Rashba spin splittings.

We monitor the evolution of the valence band Rashba parameter lR with the amplitude of

the applied transverse electric field Eext (Figure 5-i). Let us note that for ncell � 7, the bulk gap is

recovered and the Rashba parameter is no longer dependent on the thickness of the slab (Figure S4).

In other words, a bulk-like behavior is described. lR owes its increase to two electric field effects:

(i) the induced asymmetry, (ii) the band gap modulation due to the Stark effect that tends to close

the gap. We observe a linear dependance of lR with respect to the external field Eext for weak fields.

In addition to the external field, the amplitude of the Rashba parameter is affected by the atomic
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SOC and by the original (no field) band gap of the materials. This can be verified by applying

the same procedure to CH3NH3PbBr3 in the same Pnma phase.70 In this way the atomic SOC is

almost constant and only the band gap is modified. It varies from 1.03 eV for CH3NH3PbI3 to 1.38

eV for CH3NH3PbBr3 in our DFT+SOC calculations, whose underestimation of semiconductor

band gaps is well-known.10,11,47,71 We find a 28% diminution of lR when replacing I by Br that

is in line with the 33% increase of the band gap. When the field becomes stronger, a bending is

observed that might be the related to higher order terms.

The aspiration for a field-controlled Rashba spin splitting was first motivated by the design of

a spin FET following the original scheme proposed by Datta and Das in 1990 (Figure 6).72 In this

setup, the electron spins precess under the influence of the Rashba and/or Dresselhaus coupling.

Then, by tuning the amplitude of the effect, one will act on the phase and the electron leaving the

source can reach the drain in or out-of-phase. After the very first observations of tunable Rashba

splitting,21–23 several examples of devices have been produced38,39,73,74 or proposed on the basis

of theoretical inspections.75,76 More elaborated devices have been proposed based on the same

principle, adding a transverse magnetic field to the electric one and using more than one site for

SOC effect. In this manner a perfect spin filter can be achieved.77–79

Figure 6: Scheme of a sFET as proposed by Datta and Das72 based on hybrid organic-inorganic
perovskites with a representation of the spin precession from the source to the drain.

Based on our findings, a similar scheme can be proposed using, as an example, the low cost

hybrid organic-inorganic perovskite CH3NH3PbI3, in the Pnma structure. Contrary to the previous

examples,38,39,73–79 the suggested setup presents no manifestation of the SOC in terms of spin
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splitting (lR = 0 eV.Å) when the electric field is switched off, which makes less delicate the tuning

of the source-drain distance and of the amplitude of the transverse field.

Let us consider the case of a ferromagnetic source and drain with magnetizations along +x

being also the direction of propagation of the electron. In the semiconductor part of the transistor

we find the quantization axis along z, which is the orientation of the gate. The electron is injected

with a magnetization along x, i.e. presents a spinor of the form 1/
p

2(1,1), with an energy e . In the

case of a Rashba spin splitting, from Eq. (7), the basis on which the spinors are then decomposed

is given by

|+i= 1p
2

0

B@
�i

1

1

CA and |�i= 1p
2

0

B@
+i

1

1

CA . (16)

The +x oriented spin is then expressed as

|+ xi= 1
2

h
(1+ i)|+i+(1� i)|�i

i
. (17)

|+i and |�i eigenstates propagate with momentum k+ and k� given by Eq.(3), with (Figure 1-a)

Dk = k�� k+ =
2m
h̄2 lR (18)

and the wavefunction of the propagating electron is given by

Y(x) =
1
2

2
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and the expectation value hsi at the distance L is

hsi µ

0

BBBB@

cos(Dk.L)

0

�sin(Dk.L)

1

CCCCA
. (20)

One can see that the spin precesses in the (x,z) plane. To obtain a spin anti-align (off-state) with

the magnetization of the drain (Figure 6), the length should be tuned such as

Dk.Loff = (n+
1
2
)p, (21)

where n is an integer. And thus,

Loff = (n+
1
2
)

p h̄2

mlR
. (22)

If we consider a device with a thickness of 10 nm, then an applied field of 0.0125 V.Å corre-

sponds to a gate voltage of 1.25 V and a lR of about 0.1 eV.Å. Then, the lengths corresponding to

off-states are 12 nm (n = 0), 36 nm (n = 1), etc.

We stress that these lengths are qualitative estimates. In fact, a quantitative description of spin

transport is more complex and entails further developments. For instance, the investigation of spin

polarization in these materials remains to be conducted. It requires the use of the full multiband

Luttinger Hamiltonian instead of the effective 2⇥ 2 one.15,18,80–83 Concurrently, spin relaxation

phenomena, which necessarily occur and would limit the spin diffusion length, should also be taken

into account.42 Recent experimental data on solution-processed polycrystalline hybrid perovskites

have already shown spin relaxation lifetimes of 7 ps for holes and electrons, suggesting that longer

spin diffusion could be reached with crystalline samples.51
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Conclusion

Hybrid inorganic-organic perovskite have become extremely popular over the last five years, in the

field of photovoltaics. In this respect, they were initially regarded as dyes and, as such, related to

organometallic dyes. However, these materials were first considered, in their 2D form, for appli-

cations in optoelectronics, and related to conventional semiconductors.6–8 Here we pursue in line

with this and conduct a survey of the Rashba and Dresselhaus effects in these atypical semiconduc-

tors. We have recalled the general conditions to observe a Rashba and Dresselhaus spin splittings

based on symmetry analysis and k ·p expansion. We apply this approach to several examples in

non-centrosymmetric structures presenting C4v, C3v and C2v symmetries. Even for Ge-based com-

pounds we find Rashba parameters of nearly 1 eV.Å, proving that despite the important distortions

caused by the organic cation, the SOC effect prevails. By means of a 2D non-centrosymmetric

structure, we show how the amplitude of the splitting can be monitored with temperature, as a

result of the continuous polarization of the crystal structure from high to low temperatures. Finally

we inspect the case of centrosymmetric structure exhibiting a Rashba spin splitting under the in-

fluence of a transverse electric field. The possibility to control the spin precession in the material

thanks to a gate voltage constitutes the base for a hybrid organic-inorganic perovskite-based spin

FET.

Computational details

First-principles calculations are based on DFT as implemented in the SIESTA package.84,85 Cal-

culations have been carried out with the GGA functional in the PBE form,86 Troullier-Martins

pseudopotentials,87 and a basis set of finite-range numerical pseudoatomic orbitals for the valence

wave functions.88 Structures relaxation and electronic structure calculations have been done using

a double-z polarized basis sets.88 In our calculations, SOC is taken into account through the on-

site approximation as proposed by Fernández-Seivane et al.89 In all cases, an energy cutoff of 150

Ry for real-space mesh size has been used. In the case of CH3NH3PbI3 and CH3NH3PbBr3 slabs,
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the bulk has been relaxed, but no subsequent geometry relaxation has been conducted on slabs.

This strategy allows us to stay as close as possible from the bulk behavior of the materials.

We have repeated selected calculations using plane wave basis sets and the projected aug-

mented wave method as implemented in VASP.90,91 We have used the same structures relaxed by

SIESTA with the same exchange and correlation scheme and k-points sampling. The cutoff energy

has been chosen between 300 and 500 eV depending on the structure. The results obtained with

VASP confirm the main features previously obtained by SIESTA. We have also used the VASP

code to obtain the spin textures.
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