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Abstract

Cytometry is a versatile and powerful method applicable to different fields, particularly pharmacology 

and biomedical studies. Based on the data obtained, cytometric studies are classified into high-throughput 

(HTP) or high-content screening (HCS) groups. However, assays combining the advantages of both are 

required to facilitate research. In this study, we developed a high-throughput system to profile cellular 

populations in terms of time- or dose-dependent responses to apoptotic stimulations, since apoptotic inducers 

are potent anti-cancer drugs. We previously established assay systems involving protease to monitor live cells 

for apoptosis using tuneable FRET-based bioprobes. These assays can be used for microscopic analyses or 

fluorescence-activated cell sorting. In this study, we developed FRET-based bioprobes to detect the activity of 

the apoptotic markers caspase-3 and caspase-9 via changes in bioprobe fluorescence lifetimes using a flow 

cytometer for direct estimation of FRET efficiencies. Different patterns of changes in the fluorescence lifetimes 

of these markers during apoptosis were observed, indicating a relationship between discrete steps in the 

apoptosis process. The findings demonstrate the feasibility of evaluating collective cellular dynamics during 

apoptosis. 

Keywords: FRET; fluorescence lifetime; apoptosis; flow cytometry; high-throughput assay  
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1. Introduction 

Cell-based assays are essential components of drug development and medicinal studies; these assays 

generally succeed in vitro experiments and precede animal trials [1–3]. Various assays have been developed to 

obtain additional information regarding cellular function; however, standardization and integration of data 

obtained from these assays present a challenge due to the variation between these assays. Depending on the 

instrumentation system used, these assays are static or dynamic, statistical or individual, and comprehensive 

(encompassing a range of measurements and observation targets) or focused. In this study, we developed a 

functionally-merged, customized cell-based assay that could facilitate drug discovery and basic omics studies. 

Flow cytometers are devices generally used in high-throughput (HTP) screening assays analysing 

heterogeneous cell populations [4–6]. Detection of specific intracellular or cell-surface components using a 

flow cytometer mainly relies on fluorescence, introduced by labelling the components (of interest) with a 

fluorophore. Static multi-index evaluation systems have also been established for the promotion of basic and 

clinical research [7–9]. Alternatively, high-content screening (HCS) for cell-based assays facilitates 

cellular-imaging analysis with high spatial resolution [10–13]. In HCS, carefully designed sensing molecules 

are introduced into the cells to enable quantitative evaluation of the conditions within each cell. These 

evaluations are performed using imaging cytometers or microplate readers developed specifically for this 

purpose [10–13]. 

In this study, we combined the advantages of both, HTP and HCS, thus integrating cellular dynamic 
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characterization with authentic high-throughput analysis in the context of cell population profiling. In addition 

to the applicable equipment, we used fluorescence resonance energy transfer (FRET)-based chimeric sensing 

molecules, known as chimeric FRET bioprobes [14, 15]. All analyses were performed using a flow cytometer 

designed to measure fluorescence lifetimes. This device allowed for rapid, sensitive, and statistical 

measurement of the average fluorescence lifetime of a cellular population (several thousand cells per second, 

lifetime accuracy � 0.02 ns), in the presence of adequate optical filters. FRET-based analyses are generally used 

to determine changes in fluorescence intensities of all components of the relevant sensing molecules, in order to 

quantify targets [16–18]. While the apparent changes in fluorescence intensities must be calibrated in order to 

estimate the net change in fluorescent properties of all components in some cases, other cases require an 

elaborate technological setup [19–21]. 

Fluorescence lifetimes of the energy-donor components of FRET pairs reflect the appearance or 

disappearance of FRET. Systems developed for FRET-based measurement of equivalent performances can be 

moderately simple and direct [22–26]. Consequently, samples containing FRET-based sensing molecules are 

judged suitable for HTP fluorescence-lifetime measurements using appropriate apparatus. Numerous attempts 

have been made to monitor the cellular events using flow cytometry and FRET-based sensing molecules 

[27–29]; however, these methods have not been exploited or developed chiefly because of the complexity of 

FRET-based sensing. We have previously fabricated FRET bioprobes for live-cell imaging and common FACS 

systems [30]. Quantitative analyses of the reaction kinetics of these bioprobes also revealed their functionality 
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as artificial substrates in several systems [14, 31, 32]. The developed FRET bioprobes are chimeric molecules 

consisting of a donor fluorescent protein and an acceptor organic fluorescent dye. These bioprobes can be used 

in a wide range of analytical systems because of their ease of handling under in vitro and in vivo conditions, as 

well as the ease with which their fluorescent properties can be tuned to conform to specific conditions. In fact, 

we previously tuned the emission profiles of these bioprobes by selecting appropriate donor and acceptor 

molecules, allowing for the simultaneous utilization of some bioprobes. 

Caspase-3, a key protease affecting apoptosis, was before selected as a FRET bioprobe target [33–35]. 

Apoptosis, or programmed cell death, involves a complicated signal transduction cascade, which includes the 

activation of a number of kinases and proteases, and alterations in redox states and membrane potentials 

[36–38]. Cancer cells display anti-apoptotic conditions [39, 40]; therefore, a number of apoptosis-inducing 

agents have been reported to function as anti-cancer drugs. On the other hand, anti-apoptotic agents that 

mitigate neurodegeneration caused by apoptosis are known to prevent the spread of neuronal diseases [41–43]. 

Therefore, to establish a dynamic system to study the cellular population, we generated a FRET bioprobe for 

caspase-9, an upstream mediator of caspase-3 activity during apoptosis; the signal transduction properties of 

caspase-9 were compared to those of caspase-3 [44, 45]. In this study, we also demonstrated the feasibility and 

future applicability of the FRET bioprobe in an apoptotic protease inhibitor/activator screening assay. 
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2. Material and methods 

2.1. Production of green fluorescent protein (GFP) variants for chimeric FRET bioprobes 

Mutant GFP was isolated as previously described [30]. Briefly, the previously constructed plasmid 

pUV5casS22tag, which encodes a GFP derivative for the detection of caspase-3 activity, was transfected into 

Escherichia coli BL21(DE3) (BioDynamics Laboratory Inc., Tokyo, Japan). The transfected bacteria were 

cultured in Luria-Bertani medium containing 75 �g/mL ampicillin; the expression of the GFP derivative was 

induced by isopropyl �-D-1-thiogalactopyranoside. The bacteria were harvested and lysed with a sufficient 

amount of bacterial protein-extraction reagent, B-PER II (Thermo Scientific Pierce, Rockford, IL). The target 

protein was separated from the lysate via centrifugation and purified by affinity chromatography using a 

Ni
2+

-NTA resin; the purified protein was reconstituted in phosphate-buffered saline (PBS) by gel permeation. 

A plasmid encoding a different GFP derivative was generated through inverse polymerase chain reaction 

(PCR). This newly constructed plasmid was based on pUV5casS52tag, where the caspase-3 recognition 

sequence DEVD was replaced with the caspase-9 recognition sequence LEHD, allowing for the assessment of 

caspase-9 activity [44-46]. PCR performance was confirmed by ordinal sequencing; the resulting plasmid 

(pUV5cas12-1) was transfected into E. coli BL21(DE3). All subsequent procedures, such as bacterial culture, 

protein production, extraction, and purification were performed as described above in this section for 

pUV5casS52. We also verified whether this newly established recognition sequence for caspase-9 functioned 

with our probes in the same way as for caspase-3 mentioned in the paragraph 2.4.  
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2.2. Preparation of chimeric FRET bioprobes by modification of GFP variants with fluorescent dyes 

Purified fluorescent proteins were chemically modified with various fluorescent dyes such as Alexa Fluor 

546, Alexa Fluor 594, Alexa Fluor 750 C5-maleimide, BODIPY 630/650 methyl bromide, QSY 7 C5-maleimide 

(Life Technologies, Carlsbad, CA), or DyLight 680 Maleimide (Thermo Scientific Pierce). The naming 

convention followed for the resulting complexes was bioprobe-xx, for e.g. bioprobe-QSY 7. Appropriate GFP 

(100 �L of 20 �M solution) was reduced with 1 mM dithiothreitol (DTT) for 10 min at room temperature. 

Excess DTT was removed by gel filtration (NICK column; GE Healthcare, Buckinghamshire, UK); an aliquot 

of the eluate (400 �L) was immediately incubated with 2 �L of the corresponding fluorescent dye (10 mg/mL; 

in dimethyl sulfoxide) at 37°C for 4 h. The resulting solution was subjected to centrifugal filtration (EMD; 

Millipore Corp., Billerica, MA) in order to remove any unreacted dye and to concentrate it to an appropriate 

volume for use in subsequent analyses. 

2.3. Investigation of fluorescent properties of the FRET bioprobes 

The FRET bioprobes were assessed by fluorescence spectroscopy, using a Shimadzu RF-5300PC 

spectrophotometer (Shimadzu, Kyoto, Japan) at 488 nm (excitation). Fluorescence lifetimes of the FRET 

bioprobes were determined by confocal time-resolved microscopy, using a MicroTime 200 (PicoQuant GmbH, 

Berlin, Germany). This microscope is equipped with a picosecond pulse-diode laser that produces an excitatory 
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pulse at 470 nm, as well as a time-correlated single-photon counting (TCSPC) detector (Single Photon 

Avalanche Diodes; Micro Photon Devices, Bolzano, Italy) coupled to a TimeHarp 300 PC board (PicoQuant 

GmbH), which is operated in a time-tagged, time-resolved mode. Data acquisition was performed for 1 min at a 

fixed confocal position in the solution and the data obtained was subsequently fitted to a fluorescence-decay 

curve using SymPhoTime 64 software (PicoQuant GmBH) to determine lifetimes and proportions of the 

various components. 

2.4. In vitro confirmation of freshly introduced bioprobe specificity for caspase-9  

We prepared bioprobe-Alexa Fluor 532, 546 and 555 using fluorescent protein UV5cas12-1. 1 unit active 

caspase-3 (MBL Co. Ltd., Nagoya, Japan) or caspase-9 (Abcam plc, Cambridge, UK) was added to an aliquot 

of 1 �M of any bioprobe-Alexa Fluor dye solution reconstituted in an assay buffer containing 50 mM 

2-[4-(2-hydroxyethyl)piperazin-1-yl] ethanesulfonic acid (HEPES), 50 mM NaCl, 0.1% 

3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS) detergent, 10 mM DTT, 5% glycerol, 

and 10 mM ethylenediaminetetraacetic acid (EDTA), and incubated at 37°C for 2 h. We also arranged similar 

sample without caspase as a control. Fluorescence spectra for all samples were measured to check caspase-9 

specificity by changes in emission ratios [30] (Supplementary Fig. S1) with Jasco Spectrofluorometer, FP-8500 

(Jasco Corp., Tokyo, Japan).  
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2.5. In vitro monitoring of caspase-3 activity by fluorescence-lifetime analysis   

The bioprobe concentration was estimated based on the recovery rate of the preparation process. A 

solution of bioprobe-Alexa Fluor 546 or bioprobe-Alexa Fluor 750 (approximately 10 �M) was added to an 

assay buffer containing 20 mM 2,2�-piperazine-1,4-diyldiethanesulfonic acid (PIPES), 100 mM NaCl, 0.1% 

CHAPS detergent, 10 mM DTT, 10% sucrose, and 1 mM EDTA and incubated at 30°C for 2 h with or without 

1 U active caspase-3 to monitor caspase-3 activity. Subsequently, the solution was diluted to an appropriate 

level and fluorescence-lifetime was measured for each sample.  

2.6. Introduction of chimeric FRET bioprobes into HeLa cells s 

A solution of the FRET bioprobe (approximately 25 �M) in PBS (30 �L) was added to a tube containing 

a 3-�L dry film of BioPORTER reagent (Gene Therapy Systems, San Diego, CA). The mixture was hydrated 

for approximately 10 min at room temperature. The solution was then suspended in 270 �L HyClone 

Dulbecco's Modified Eagle Medium (DMEM)/High Glucose culture medium (Thermo Fisher Scientific, 

Massachusetts, MA) without foetal bovine serum (FBS) and added to HeLa cells in a 24-well culture plate. The 

cells were incubated for 4 h at 37°C with 5% CO2. The residual FRET bioprobes and BioPORTER conjugates 

were removed by washing the cells with culture medium containing 10% FBS. The cells were then incubated 

for 1 h in the culture medium; subsequently, the culture medium was replaced with serum-free culture medium 

containing apoptosis-inducing reagents.  
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�

2.7. Flow cytometry of HeLa cells 

The culture supernatant from the apoptosis-induced HeLa cells was recovered; the cells were then rinsed 

with 250 �L 0.2 mM EDTA. The chelating solution was removed and combined with the culture supernatant. 

The remaining cells were incubated with 250 �L each of Accutase and Accumax (Innovative Cell Technologies, 

Inc., San Diego, CA) cell-detachment mixtures for 10 min at 37°C. The detachment mixtures with the detached 

cells were added to the whole recovered solution. Trypsin (0.25%; 250 �L) was then added to the culture plate 

for complete cell detachment. The solutions containing cell debris were combined with those previously 

recovered and the resulting solutions were filtered and subjected to flow cytometry analysis, using a 

Flicyme-300 instrument (Mitsui Engineering and Shipbuilding Co., Ltd., Tokyo, Japan). The fluorescence 

lifetime, fluorescence intensity, and other optical data displayed by the harvested cell population (50,000 cells) 

were monitored by excitation using a 440-nm semiconductor laser (60 mW). The data obtained was processed 

using FlowJO software (FlowJO LLC, Ashland, OR). 

2.8.  Induction of apoptosis in HeLa cells 

HeLa cells with internalized bioprobes were incubated in HyClone DMEM/High Glucose culture medium 

supplemented with 10% FBS for 1 h. The medium was then replaced with FBS-free culture medium. 

Appropriate amounts of tumour necrosis factor-� (TNF-�; 100 ng/mL) and low (0.5 mg/mL) or high (2 mg/mL) 
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doses of 4-{(2R)-2-[(1S,3S,5S)-3,5-dimethyl-2-oxocyclohexyl]-2-hydroxyethyl}piperidine-2,6-dione 

(cycloheximide) were added to the fresh medium. The treated cells were incubated for 6 h before harvesting for 

Flicyme analysis. Cells were also collected after 2 and 4 h in the case of the high-dose treatment. 

3. Results 

Several chimeric FRET bioprobes were prepared for caspase-3 detection (bioprobe-Alexa Fluor 546, 

bioprobe-Alexa Fluor 594, bioprobe-Alexa Fluor 750, bioprobe-BODIPY 630/650, and bioprobe-QSY 7) using 

the pUV5casS22tag plasmid and the original unmodified GFP variant, in order to investigate their 

fluorescence-lifetime components. Fluorescence decay was determined from the TCSPC histograms and good 

trail-fits were obtained using mono- or multi-exponential decay models. In most cases, well-fitted 

bi-exponential curves corresponding to unmodified GFP variants and their complexes, were obtained with the 

various dyes (the decay curves are not shown). Fluorescence lifetime [�] was defined as the average time that 

the fluorophore remained in the excited state before returning to ground state by emitting a fluorescence photon. 

The major � value of the GFP variant used in this study was 2.6 ns, which was close to previously determined 

values [47–49]. However, the bioprobes displayed much shorter lifetimes because of their high FRET 

efficiencies: the fluorescence lifetimes of the complexes containing Alexa Fluor 546, 594, and 750, BODIPY 

630/650, and QSY 7 were 0.14, 0.18, 0.65, 0.25, and >> 0.1 ns, respectively. Upon enzymatic digestion, the 

bioprobes showed decreased FRET efficiency as a result of their conversion into unmodified GFP-like 
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structures through proteolysis (Scheme 1). Therefore, the fluorescence lifetime was observed to increase to 

2.6 ns when the activity of caspase-3, a cysteine protease, was investigated in vitro using bioprobe-Alexa Fluor 

546 and bioprobe-Alexa Fluor 750 under the experimental conditions mentioned in Section 2. Based on the 

fluorescence decay curves, the bioprobe samples were originally estimated to contain a reasonable quantity of 

the 2.6-ns component, attributed to the inseparable unmodified-GFP fraction. This amounted to a maximum of 

40%, which depended on the kind of fluorescent dye used for modification. Even though we introduced 

thiol-reactive fluorescent dye derivatives that were supposed to bind to thiol groups equally, their reaction 

efficiencies fluctuated under the same conditions. However, the bioprobes, fluorescent protein-bound 

fluorescent dyes, with shorter lifetimes, showed sufficient changes in percentage occupation to facilitate the 

quantification of FRET increase from the initial unmodified-GFP component without any calibration. Using 

comparable data processing, the 2.6-ns component present in the bioprobe-Alexa Fluor 546 sample was found 

to increase from 14% to 73% during proteolysis. A similar change (from 40% to 98%) was observed for 

bioprobe-Alexa Fluor 750 (Fig. 1). These results show that the measured fluorescence lifetimes of the FRET 

bioprobes have greater applicability in quantitative assays of biological events compared to ordinary FRET 

measurements. Moreover, Alexa Flour 750 is a fine acceptor molecule, free from supposed compensation, 

which would facilitate the expedient and direct use of our system for high-throughput assays. 

Having demonstrated the evaluation of FRET bioprobes in vitro, the probes were introduced into cells and 

their fluorescence lifetime within the cells was measured statistically using Flicyme. A verified GFP variant for 
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caspase-3 monitoring [15] and an additional variant for caspase-9 sensing were constructed; these fluorescence 

proteins were modified with selected dyes. The modified proteins were then incorporated into cells using the 

BioPORTER reagent as per the manufacturer instructions. Flicyme analysis measures the average fluorescence 

lifetimes of all components within each cell within a population; therefore, we attempted to use cells in a steady 

state for all analyses, to maintain a constant cell microenvironment and account for the sensitivity of 

fluorescence lifetime to various factors such as ionic strength, pH, or temperature [25, 26]. Eventually, 

DyLight 680 (bioprobe for caspase-9) and Alexa Fluor 750 (bioprobe for caspase-3) were selected as acceptor 

molecules. This was further ascribed to the relative robustness of the bioprobes’ fluorescence lifetime absolute 

values, as a result of the inevitable fluctuations in cellular conditions. DyLight 680 is also ideal for FRET-based 

high-throughput analysis compared with calibration-free Alexa Fluor 750, described above. Following the 

incorporation of bioprobes into the cells, the simple diffusion capacity of the probes was analysed by 

determining the quantity of expressed proteins within the cells by microscopic analysis [15]. For this purpose, 

apoptosis was induced, by the action of chemical reagents, in pre-treated cells; the cells were subsequently 

harvested, as described in Section 2. The cells were then analysed using Flicyme. The obtained data was 

processed using FlowJO software and analysed by careful gating (Supplementary Fig. S2). Firstly, parameters 

were set for the intensity thresholds of the donor and acceptor fluorescence, in order to eliminate cell 

populations that demonstrated no uptake of bioprobes. The fluorescence lifetime distributions of the gated cell 

populations were then explored and the results were plotted as representative histograms (Fig. 2). Time-point 
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data for the lifetime distribution of the bioprobes for caspase-9 and caspase-3 obtained from the histograms, 

demonstrated time-dependent shifts toward longer fluorescence lifetimes (Fig. 2A). Dose-response data for the 

fluorescence-lifetime distributions of the bioprobes also exhibited comparable shifts to longer fluorescence 

lifetimes (Fig. 2B). The longer lifetimes implied a progress in FRET cancellations upon protease activation. 

The shift patterns of the histograms were very similar; however, absolute time or dose dependencies of the 

apoptotic responses were observed for all trials. The shift patterns of the respective enzymes were compared in 

greater detail by calculating the median values of the fluorescence lifetimes from individual histograms for 

3 experimental runs. The median, and not the mean values exemplify the distinctive feature of populations 

during the handling of such asymmetric histograms. The average of median values obtained from 3 histograms 

were plotted as a function of time or dose (Fig. 3). Caspase-9 activation was relatively reproducible and was 

almost saturated within 2 h, remaining constant thereafter. On the other hand, caspase-3 activation varied for 

each experiment; however, the activation was generally initiated at around 2 h and proceeded gradually 

(Fig. 3A). The dose-dependency histograms (Fig. 3B) appeared to show oscillations in caspase-9 activation 

upon treatment with various quantities of inducers. The extent of caspase-3 activation appeared to show a closer 

relationship to the dose. Relatively large errors in processed data for each distinct parameter response during 

apoptotic activity (Fig. 3) may indicate actual oscillation in each cell. This suggests that the relationship 

between 2 significant apoptotic proteases could be interpreted by high-throughput measurement of the 

fluorescence lifetimes of FRET bioprobes, similar to the analysis of the corresponding performances by 
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live-cell imaging, rather than using the usual bulk assay. 

4. Discussion 

Statistical, versatile, and specific assays of cellular events are essential tools for omics studies and drug 

development; therefore, there is a continuous increase in the demand for such assays. In this study therefore, we 

developed a combination of high-throughput assay and dynamic characterization of living cells. Our aim was to 

establish an advanced system for dynamic studies of various cell populations. This method was applied for 

high-throughput analysis of apoptosis-induction processes, using a varied signal transduction model. In order to 

ensure the reliability and ease-of-use of our system, robust and sensitive FRET-based, chimeric sensing 

molecules, or chimeric FRET bioprobes, were prepared and applied to a fluorescence-lifetime detection 

apparatus. Each chimeric FRET bioprobe consisted of a fluorescent protein linked to an organic dye through a 

covalent bond; while afforded ease of replacing the dye [30] and thus, we demonstrated control of fluorescence 

lifetime by an appropriate choice of dye. The fluorescence lifetimes of chimeric FRET bioprobes were shown, 

by in vitro experiments, to be suitable for use in quantitative monitoring of biological events. Furthermore, 

different bioprobes with distinctive fluorescence properties for different targets were believed to display 

independent fluorescence lifetimes (despite being in a mixture), allowing for their use as discriminatory sensor 

molecules in mixed samples. The developed FRET bioprobes are also useful as normalized sensor molecules. 

These features prompted the comparison of divergent phenomena in cellular dynamics using various FRET 
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bioprobes (simultaneously). 

The chimeric nature of the bioprobes permits a wide choice of components; therefore, bioprobes that are 

not overly affected by cell conditions during the measurement of their fluorescence lifetimes can be conducted 

for cell-based experiments. The apparatus employed in this study for lifetime measurements, Flicyme, delivered 

average fluorescence lifetimes for single cells; therefore, we constructed histograms depicting the distributions 

of fluorescence lifetimes in significant cell populations stimulated to undergo apoptosis by drug treatment, after 

gating with fluorescence intensities. We observed shifts in the histograms corresponding to longer fluorescence 

lifetimes, which could be attributed to dose- and time-dependent cancellation of FRET. We selected median 

values (rather than mean) for all further population analyses because of the asymmetry of the resulting 

histograms. Thus, we determined the median values from 3 repeated runs, as shown in Fig. 3. Subtle 

distinctions in dose-dependencies were observed between the two caspases (Fig. 3B). This appeared to indicate 

greater oscillation, especially in the case of caspase-9 activation, upon treatment with various amounts of 

inducers. The extent of caspase-3 activation was directly dependent on the dose. The time-dependence of 

caspase activation was recognizable for caspase-9, but not for caspase-3 (at the same stage). We previously 

demonstrated that multiplications of caspase-9 enhanced levels and their duration programmed times to activate 

caspase-3 that were average in 3 h after apoptotic induction we introduced here (unpublished data). So unique 

factor seemed to be much fluctuated in a cell. Consequently, activation characteristics of the 2 caspases 

(identified in this study) upon induction of apoptosis appeared to be consistent with their different roles (as a 
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mediator or as an executor) in the signalling pathway [33–38]. Therefore, we suggest that coupling of the 

chimeric FRET bioprobes and high-throughput fluorescence lifetime measurements might provide a reliable 

system for the evaluation of cellular signal transduction. The use of these FRET bioprobes could also be 

extended to new targets; therefore, this system could be utilized as a conventional cell-based assay in the future. 

5. Conclusions 

The dynamic responses of cell populations to agents that stimulate apoptotic signal transduction were 

quantitatively and statistically analysed. This was achieved by a combination of flow cytometry and 

fluorescence-lifetime measurements of FRET bioprobes within cells; the FRET-based sensing molecules 

targeted various cellular events and the currently established component technologies were carefully compared 

and adjusted. The main objective of this study was to confirm the effectiveness of a novel analytical method 

developed using the advances in both HTP and HCS systems, and the results obtained achieved this purpose. 

Furthermore, this system could be applied to versatile signal transduction pathways. Therefore, we conclude 

that the system developed in this study could be applied as a common approach. 

Acknowledgements 

We would like to thank Mr. Shigeyuki Nakata, Mr. Hironori Hayashi, and Ms. Yumi Asano of Mitsui 

Engineering and Shipbuilding Co. Ltd. for their technical support.  



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

18 

References 

[1] A. Yano, S. Oda, T. Fukami, M. Nakajima, T. Yokoi, Development of a cell-based assay system considering 

drug metabolism and immune- and inflammatory-related factors for the risk assessment of drug-induced liver 

injury, Toxicol. Lett. 228 (2014)13-24. 

[2] R. Edmondson, J.J. Broglie, A.F. Adcock, L. Yang, Three-dimensional cell culture systems and their 

applications in drug discovery and cell-based biosensors, Assay Drug Dev. Technol. 12 (2014) 207-218. 

[3] M.J. Wawer, K. Li, S.M. Gustafsdottir, V. Ljosa, N.E. Bodycombe, M.A. Marton, K.L. Sokolnicki, M.A. 

Bray, M.M. Kemp, E. Winchester, B. Taylor, G.B. Grant, C.S. Hon, J.R. Duvall, J.A. Wilson, J.A. Bittker, V. 

Dan�ík, R. Narayan, A. Subramanian, W. Winckler, T.R. Golub, A.E. Carpenter, A.F. Shamji, S.L. Schreiber, 

P.A. Clemons, Toward performance-diverse small-molecule libraries for cell-based phenotypic screening using 

multiplexed high-dimensional profiling, Proc. Natl. Acad. Sci. USA 111 (2014) 10911-10916. 

[4] A.B. Lyons, C.R. Parish, Determination of lymphocyte division by flow cytometry, J. Immunol. Methods 

171 (1994) 131-137.  

[5] K.E. Howard, I.L. Fisher, G.A. Dean, M. Jo Burkhard, Methodology for isolation and phenotypic 

characterization of feline small intestinal leukocytes, J. Immunol. Methods 302 (2005) 36-53. 

[6] G. Freer, L. Rindi, Intracellular cytokine detection by fluorescence–activated flow cytometry:basic 

principles and recent advances, Methods 61 (2013) 30-38. 

[7] H.T. Maecker, Multiparameter flow cytometry monitoring of T cell responses, Methods in Mol. Biol. 485 



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

19 

(2009) 375-391.  

[8] H.J. Mayerson, A practical approach to the flow cytometric detection and diagnosis of T-cell 

lymphoproliferative disorders, Laboratory Hematology 16 (2010) 32-52.  

[9] G. Freer, Intracellular staining and detection of cytokines by fluorescence-activated flow cytometry, 

Methods Mol. Biol. 1172 (2014) 221-234. 

[10] J.T. Wessels, K. Yamauchi, R.M. Hoffman, F.S. Wouters, Advances in cellular, subcellular, and nanoscale 

imaging in vitro and in vivo, Cytometry A 77 (2010) 667-676. 

[11] C. Radu, H.S. Adrar, A. Alamir, I. Hatherley, T. Trinh, H. Djaballah, Designs and concept reliance of a 

fully automated high-content screening platform. J. Lab. Autom. 17 (2012) 359-369. 

[12] M. Haller, E. Bier, P.C. DeRose, G.A. Cooksey, S.J. Choquette, A.L. Plant, J.T. Elliott, An automated 

protocol for performance benchmarking a widefield fluorescence microscope, Cytometry A (2014) 

doi:10.1002/cyto.a.22519  

[13] C.R. Thoma, M. Zimmermann, I. Agarkova, J.M. Kelm, W. Krek, 3D cell culture systems modeling tumor 

growth determinants in cancer target discovery, Adv. Drug Deliv. Rev. 69-70 (2014) 29-41. 

[14] M. Suzuki, Y. Ito, E.H. Savage, Y. Husimi, K.T.n Douglas, Protease-sensitive signaling by chemically 

engineered intramolecular fluorescent resonance energy transfer mutants of green fluorescent protein, Biochim. 

Biophys. Acta. 1679 (2004) 222-229. 

[15] M. Suzuki, Y. Ito, I. Sakata, T. Sakai, Y. Husimi, K.T. Douglas, Caspase-3 sensitive signaling in vivo in 



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

20 

apoptotic HeLa cells by chemically engineered intramolecular fluorescence resonance energy transfer mutants 

of green fluorescent protein, Biochem. Biophys. Res. Commun. 330 (2005) 454-460. 

[16] A. Miyawaki, Visualization of the spatial and temporal dynamics of intracellular signaling, Dev. Cell 4 

(2003) 295-305. 

[17] B.H. Hou, H. Takanaga, G. Grossmann, L.Q. Chen, X.Q. Qu, A.M. Jones, S. Lalonde, O. Schweissqut, W. 

Wiechert, W.B. Frommer, Optical sensors for monitoring dynamic changes of intracellular metabolite levels in 

mammalian cells, Nat. Protoc. 6 (2011) 1818-1833. 

[18] C.F. Kaminski, E.J. Rees, G.S. Schierie, A quantitative protocol for intensity-based live cell FRET imaging, 

Methods Mol. Biol. 1076 (2014) 445-454. 

[19] E. Galperin, V.V. Verkhusha, A. Sorkin, Three-chromophore FRET microscopy to analyze multiprotein 

interactions in living cells. Nat. Methods 1 (2004) 209-217. 

[20] D.R. Matthews, G.O. Fruhwirth, G. Weitsman, L.M. Carlin, E. Ofo, M. Keppler, P.R. Barber, I.D. Tullis, B. 

Vojnovic, T. Ng, S.M. Ameer-Beg, A multi-functional imaging approach to high-content protein interaction 

screening, PLoS One 7 (2012) e33231. 

[21] T. Su, S. Pan, Q. Luo, Z. Zhang, Monitoring of dual bio-molecular events using FRET biosensors based on 

mTagBFP/sfGFP and mVenus/mKOk fluorescent protein pairs, Biosens. Bioelectron 46 (2013) 97-101. 

[22] J. Korczynski, J. Wlodarczyk, Fluorescence lifetime imaging microscopy (FLIM) in biological and 

medical research, Postepy. Biochem. 55 (2009) 434-440.  



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

21 

[23] H. Wallrabe, A. Periasamy, Imaging protein molecules using FRET and FLIM microscopy, Curr. Opin. 

Biothechnol. 16 (2005) 19-27.  

[24] S. Padilla-Parra, N. Audugé, H. Lalucque, J.C. Mevel, M. Coppey-Moisan, M. Tramier, Quantitative 

comparison of different fluorescent protein couples for fast FRET-FLIM acquisition, Biophys. J. 97 (2009) 236  

[25] M. Martin-Fernandez, S.V. Longshaw, I. Kirby, G. Santis, M.J.Tobin, D.T. Clarke, G.R. Jones, Adenovirus 

type-5 entry disassembly followed in living cells by FRET, fluorescence anisotropy and FLIM, Biophys. J. 87 

(2004) 1316-1327.  

[26] K. Suhling, J.A. Levitt, P.H. Chung, M.K. Kuimova, G. Yahioglu, Fluorescence lifetime imaging of 

molecular rotors in living cells, J. Vis. Exp. 60 (2012) pii:2025. 

[27] P. Nagy, L. Bene, W.C. Hyun, G. Vereb, M. Braun, C. Antz, J. Paysan, S. Damjanovich, J.W. Park, J. 

Szollsi, Novel calibration method for flow cytometric fluorescence resonance energy transfer measurements 

between visible fluorescent proteins, Cytometry A 67 (2005) 86-96. 

[28] X. Wu, J. Simone, D. Hewgill, R. Siegel, P.E. Lipsky, L. He, Measurement of two caspase activities 

simultaneously in living cells by a novel dual FRET fluorescent indicator probe, Cytometry A 69 (2006) 

477-486.  

[29] R. Fox, M. Aubert, Flow cytometric detection of activated caspase-3. Methods Mol. Biol. 414 (2008) 

47-56. 

[30] M. Suzuki, S. Tanaka, Y. Ito, M. Inoue, T. Sakai, K. Nishigaki, Simple and tunable förster resonance 



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

22 

energy transfer-based bioprobes for high-throughput monitoring of caspase-3 activation in living cells by using 

flow cytometry, Biochim. Biophys. Acta. MCR 1823 (2012) 215-226. 

[31] W. Zhang, M. Suzuki, Y. Ito, K.T. Douglas, A Chemically modified green-fluorescent protein that responds 

to cleavage of an engineered disulphide bond by fluorescence resonance energy transfer (FRET)-based changes, 

Chem. Lett. 34 (2005) 766-767. 

[32] T. Kihara, C. Nakamura, M. Suzuki, S.W. Han, K. Fukazawa, K. Ishihara, J. Miyake, Development of a 

method to evaluate caspase-3 activity in a single cell using a nanoneedle and a fluorescent probe, Biosens. 

Bioelectron 25 (2009) 22-27. 

[33] J.T. Pai, M.S. Brown, J.L. Goldstein, Purification and cDNA cloning of a second apoptosis-related cysteine 

protease that cleaves and activates sterol regulatory element binding proteins, Proc. Natl. Acad. Sci. USA 93 

(1996) 5437-5442. 

[34] H.S. Choi, S. Han, H. Yokota, K.H. Cho, Coupled positive feedbacks provoke slow induction plus fast 

switching in apoptosis, FEBS. Lett. 581 (2007) 2684-2690.  

[35] C. Maueröder, R.A. Chaurio, S. Platzer, L.E. Muño, C. Berens, Model systems for rapid and slow 

induction of apoptosis obtained by inducible expression of pro-apoptotic proteins, Autoimmunity 46 (2013) 

329-335. 

[36] R. Kim, M. Emi, K. Tanabe, Role of mitochondria as the gardens of cell death, Cancer Chemother. 

Pharmacol. 57 (2006) 545-553. 



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

23 

[37] I.N. Lavrik, Systems biology of death receptor networks: live and let die, Cell Death Dis. 5 (2014) e1259.  

[38] S.W. Ryter, K. Mizumura, A.M. Choi, The impact of autophagy on cell death modalities, Int. J. Cell Biol. 

2014 ( 2014) 502676. 

[39] A. Rasul, M. Khan, M.Ali, J. Li, X. Li, Targeting apoptosis pathways in cancer with alantolactone and 

isoalantolactone, Scientific World Journal 2013 (2013) 248532. 

[40] S. Zhang, M. Yu, H. Deng, G. Shen, Y. Wei, Polyclonal rabbit anti-human ovarian cancer globulins inhibit 

tumor growth through apoptosis involving the caspase signaling, Sci. Rep. 4 (2014) 4984. 

[41] E.J. Sohon, M.J. Shin, D.W. Kim, E.H. Ahn, H.S. Jo, D.S. Kim, S.W. Cho, K.H. Han, J. Park, W.S. Eum, 

H.S. Hwang, S.Y. Choi, Tat-fused recombinant human SAG prevents dopaminergic neurodegeneration in a 

MPTP-induced Parkinson’s disease model, Mol.Cells 37 (2014) 226-233. 

[42] G. Wendt, V. Kemmei, C. Patte-Mensah, B. Uring-Lambert, A. Eckert, M.J. Schmitt, A.G. 

Mensah-Nyangan, Gamma-hydroxybutyrate, acting through an anti-apoptotic mechanism, protects native and 

amyloid-precursor-protein-transfected neuroblastoma cells against oxidative stress-induced death, Neuroscience 

263 (2014) 203-215. 

[43] Z. Qualls, D. Brown, C. Raminochansingh, L.L. Hurley, Y. Tozabi, Protective effects of curcumin against 

rotenone and saisolinol-induced toxicity implications for Parkinson’s disease, Neurotox. Res. 25 (2014) 81-89. 

[44] B. Fadeel, Z. Hassan, E. Hellström-Lindberg, JI Henter, S. Orrenius, B. Zhivotovsky, Cleavae of Bcl-2 is 

an early event in chemotherapy-induced apoptosis of human meyloid leukemia cells, Leukemia. 13 (1999) 



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

24 

719-728. 

[45] J. Liu, Y. Yao, H. Ding, R. Chen, Oxymatrine triggers apoptosis by regulating Bcl-2 family proteins and 

activating caspase-3/caspase-9 pathway in human leukemia HL-60 cells, Tumour Biol. 35 (2014) 5409-5415. 

[46] M.L. Wurstle, M.Rehm, A systems biology analysis of apoptosome formation and apoptosis execution 

supports allosteric procaspase-9 activation, J. Biol. Chem. 289 (2014) 26277-26289. 

[47] R. Swaminathan, C.P. Hoang, A.S. Verkman, Photobleaching recovery and anisotropy decay of green 

fluorescent protein GFP-S65T in solution and cells: cytoplasmic viscosity probed by green fluorescent protein 

translational and rotational diffusion, Biophys. J. 72 (1997) 1900-1907. 

[48] A. Sacchetti, R. Cioccocioppo, S. Alberti, The molecular determinants of the efficiency of green 

fluorescent protein mutants, Histol. Histopathol. 15 (2000) 101-107. 

[49] A.J. Visser, S.P. Laptenok, N.Y. Visser, A. van Hoek, D.J. Birch, J.C. Brochon, J.W. Borst, Time-resolved 

FRET fluorescence spectroscopy of visible fluorescent protein pairs, Eur. Biophys. J. 39 (2010) 241-253. 



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

25 

Footnotes 

1
Abbreviations used 

HTP, high-throughput screening, HCS, high-content screening, FRET, fluorescence resonance energy transfer, 

FACS, fluorescence activated cell sorter, GFP, green fluorescent protein, PBS, phosphate buffered saline, DTT, 

dithiothreitol, HEPES, 2-[4-(2-hydroxyethyl)piperazin-1-yl] ethanesulfonic acid, PIPES, 

1,4-Piperazinediethanesulfonic acid, TCSPC, time-correlated single-photon counting,    

CHAPS, 3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate,FBS, fetal bovine serum, TNF, tumor 

necrosis factor 
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Figure Legends 

Scheme 1. The mechanism of protease sensing by chimeric FRET bioprobes. FRET occurs between a green 

fluorescent protein and an organic dye containing a bioprobe. The protease recognition sequence is located 

between the GFP and the binding site for the dye; therefore, FRET disappears when the dye is released from the 

fluorescent protein, along with the digested protein fragments. 

Fig. 1. Fluorescence lifetime component analysis upon treatment with caspase-3. Chimeric FRET bioprobes for 

caspase-3, which utilised GFP as the donor and AlexaFluor 546 or AlexaFluor 750 as the acceptor molecule, 

were incubated in an assay buffer with or without 1 U caspase-3 at 30°C for 2 h. The fluorescence lifetime of 

each of the reaction products was measured using a MicroTime-200 (with excitation) at 470 nm; the results 

were analysed to fit one of several fluorescence-lifetime exponential decay curves (representative results from 3 

independent trials are shown here).

Fig. 2. (A) Time-dependent profiles of fluorescence lifetime distributions upon induction of apoptosis. HeLa 

cells containing FRET bioprobes for caspase-3 (left) or caspase-9 (right), were treated with 100 ng/mL TNF-�

and 2 mg/mL cycloheximide (in order to induce apoptosis) and subsequently cultured for 2 h (blue) or 4 h 

(green). The cells were harvested and subjected to flow cytometry to determine the fluorescence-lifetime 
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distributions of individual cell populations. Untreated HeLa cells were also harvested and subjected to a similar 

analysis (red, control). (B) Reagent-dose dependency of the fluorescence lifetime distribution upon induction of 

apoptosis. HeLa cells, containing the appropriate FRET bioprobes for caspase-3 (left) or caspase-9 (right), were 

treated with 100 ng/mL TNF-� and 0.5 mg/mL (low dose, blue) or 2 mg/mL (high dose, green) cycloheximide 

for 6 h to induce apoptosis. Cells were harvested for flow cytometric analysis. Untreated cells were also 

examined (red). 

�

Fig. 3. (A) Time-dependent shifts in the median values of the fluorescence lifetime distributions of HeLa cell 

populations containing caspase-3-sensing (right) or caspase-9-sensing (left) bioprobes. The median values of 

the fluorescence-lifetime distributions obtained from Fig. 3A (from 3 experiments) were plotted as a function of 

time. (B) Reagent dose-dependency of the changes in the median values of fluorescence-lifetime distributions 

of HeLa cell populations containing the caspase-3-sensing (right) or caspase-9-sensing (left) bioprobes. The 

median values of the fluorescence-lifetime distributions from Fig. 3B (from 3 experiments) are displayed for 

each dose. 
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Fig. 1 
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