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ABSTRACT 

KAT6B sequence variants have been identified previously in both patients with the Say-Barber-

Biesecker type of blepharophimosis mental retardation syndromes (SBBS) and in the more 

severe genitopatellar syndrome (GPS) . We report on the findings in a previously unreported 

group of  57 individuals with suggestive features of  SBBS or GPS. Likely causative variants 

have been identified in 34/57 patients and were commonly located in the terminal exons of 

KAT6B. For those where parental samples could be tested, all occurred de novo. 30/34 had 

truncating variants,  1 had a missense variant and the remaining three had the same synonymous 

change predicted to affect splicing. Variants in GPS tended to occur more proximally to those in 

SBBS patients  and genotype/phenotype analysis demonstrated significant clinical overlap 

between SBBS and GPS. The de novo synonymous change seen in three patients with features of 

SBBS occurred more proximally in exon 16.  Statistical analysis of clinical features 

demonstrated that KAT6B variant-positive patients were more likely to display hypotonia, 

feeding difficulties, long thumbs/great toes and dental, thyroid and patella abnormalities than 

KAT6B variant-negative patients. The few reported patients with KAT6B haploinsufficiency have 

had a much milder phenotype, though with some features overlapping those of SBBS. We report 

the findings in a previously unreported patient with a deletion of the KAT6B gene to further 

delineate the haploinsufficiency phenotype. The molecular mechanisms giving rise to the SBBS 

and GPS phenotypes are discussed. 

  

INTRODUCTION 

The Say-Barber-Biesecker syndrome (SBBS, MIM 603736), also referred to as the Say-Barber-

Biesecker variant of Ohdo syndrome1 is a rare multiple congenital anomaly syndrome which is 

usually diagnosed clinically on the basis of a striking facial phenotype. Typically, patients have a 



distinctive mask like face with severe blepharophimosis and  ptosis, a broad nasal bridge, 

bulbous nasal tip, small mouth, thin upper lip and small, low set ears. Long thumbs and long 

great toes may be present along with congenital heart defects, thyroid abnormalities, hypoplastic 

teeth and absent or hypoplastic patellae 2. Genital anomalies, usually cryptorchidism are 

universally present in males and cleft palate has been observed in a number of cases .  All 

individuals with SBBS reported so far have had global developmental delay and severe 

intellectual disability. Patients with features overlapping those of  SBBS were reported by Young 

and Simpson 3 in 1987 and it is now generally agreed that Young-Simpson syndrome and SBBS 

are in fact the same entity. Young and Simpson were the first to draw attention to the presence of 

hypothyroidism in this condition. Clayton-Smith et al 4 identified KAT6B, a histone 

acetyltransferase, as the causative gene for SBBS by a whole exome sequencing approach and 

reported sequence variants in 13 individuals. Subsequently, Szakszon identified a further two 

SBBS individuals with KAT6B sequence variants5 and another individual was reported recently 

by Yu et al 6 . In addition, KAT6B sequence variants have been reported in 11 patients with 

genito-patellar syndrome (GPS, MIM 606170), a further multiple anomaly phenotype previously 

considered to be quite distinct from SBBS 7,8. In GPS the overall clinical picture tends to be more 

severe than in SBBS 9. The main diagnostic features of GPS include the presence of large joint 

contractures, ambiguous genitalia and absent patellae. Agenesis of the corpus callosum, 

hydronephrosis and congenital heart disease are frequently present and thyroid abnormalities 

have been reported in rare cases. The facial phenotype of GPS has not been well described but is 

not considered so distinctive as in SBBS, with the diagnosis usually being made based on the 

other clinical features.  

To further delineate the clinical and molecular spectrum of KAT6B we have studied a new cohort 



of 57 patients with a clinical diagnosis of SBBS (n = 47), GPS (n = 5), or features overlapping 

both of these entities (n=5). We have gathered detailed clinical information on this group and 

screened for sequence variants in the coding exons of KAT6B by Sanger sequencing. Our study 

aimed to define differences in clinical features between KAT6B variant-positive and KAT6B 

variant-negative patients and to explore the breadth of the phenotypic spectrum, examining  in 

particular, the clinical overlap between SBBS and GPS.    

PATIENTS AND METHODS 

Ascertainment of study patients 

In 2011 we ascertained a cohort of 19 patients with SBBS for genetic studies and identified 

likely pathogenic KAT6B sequence variants in 13 of these 4. For this current study we have 

gathered a cohort of a further 57  patients with features suggestive of SBBS or GPS who were 

recruited via clinical geneticists from within the UK or abroad. Forty-five patients were tested 

for KAT6B sequence variants as part of a research study exploring the genetic basis of 

blepharophimosis syndromes (REC reference 10/H1016/12).  Variants in a further nine patients 

were identified in the diagnostic laboratory within the Manchester Centre for Genomic Medicine. 

Three further individuals (23, 24, 25) were referred to our study after KAT6B variants had been 

identified in laboratories in Ulm (2) and Freiburg (1). Individuals 23 and 24 had originally been  

ascertained as part of a study of  the UBE3B gene10 but were consider to have features more 

suggestive of a  KAT6B phenotype. Referring clinicians provided  detailed  phenotypic 

information and photographs of participants for review. Consent to publish clinical details was 

obtained from all participating families and consent to publish photographs was obtained for 

those included in this report 

Sequencing of  KAT6B 



Samples from the 54 individuals studied in Manchester were screened for sequence variants in 

all 18 exons of  KAT6B  by Sanger sequencing.  Details of primer design and synthesis are given 

in Supplementary Information Table 1. The coding exons and the intron-exon boundaries of 

KAT6B were amplified by polymerase chain reaction. Post-PCR purification was conducted to 

remove unwanted reaction components using the Agencourt AMpure XP (Beckman Coulter 

Genomics, Takeley, UK) system on a Biomek NX Liquid Handler (Beckman Coulter). The 

purified PCR products were then subjected to sequencing using BigDye Terminator v3.1 

(Invitrogen). Reactions were purified using Agencourt CleanSEQ solution (Beckman Coulter) by 

Beckman Coulter NX robotics. Automated capillary electrophoresis was conducted on the ABI 

3730XL Genetic Analyzer (Applied Biosystems) using POP-7 polymer (Life Technologies) 

according to local protocols. The reference sequence of KAT6B NG_032048.1, covering 

transcript NM_012330.3 was uploaded as a txt.file to Staden package Pregap4 1.4b1. The 

sequence data was aligned and analysed graphically using the DNA sequence analysis software, 

STADEN (http://staden.sourceforge.net/). Any variants identified were checked against the 

NCBI SNP database (dbSNP, http://www.ncbi.nlm.nih.gov/SNP/) and against the Exome Variant 

Server (http://evs.gs.washington.edu/EVS/) to distinguish common variants from likely 

pathogenic variants. The variant interpretation software Alamut, (http://www.interactive-

biosoftware.com/software/alamut/features) was used to interpret and predict the consequences of 

identified variants. Sequence variants identified were reported according to the Human Genome 

Variation Society nomenclature. Where available, DNA from the parents of the patients with 

possible pathogenic variants was screened to investigate if the change was de novo. Three 

patients (numbers 23, 24 and 25) were sequenced in other genetic laboratories as reported above 

using similar methodology, but in cases 23 and 24 only exon 18 was sequenced.  Taking into 

http://staden.sourceforge.net/
http://www.ncbi.nlm.nih.gov/SNP/
http://www.ncbi.nlm.nih.gov/SNP/
http://evs.gs.washington.edu/EVS/
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account the clinical context i.e. all patients had been selected based on a clinical diagnosis of 

SBBS or GPS,  sequence variants were classified as causative or not. Variants resulting in a 

truncated protein were classified as causative. Variants deemed to be likely causative were 

missense changes which were proven to be de novo or if in silico analysis predicted them to 

affect splicing or highly conserved amino acids. Sequence changes which were synonymous and 

did not affect splicing, missense changes reported in EVS or those seen in a parent were 

classified as being unlikely to cause diasease. Details of causative variants were submitted to the 

LOVD public  database at  http://databases.lovd.nl/shared/genes/KAT6B, ( patient IDS  

00018483-00018515)  

 

Genotype-phenotype analysis 

Patients were classified as having either a SBBS phenotype (n =47) a GPS phenotype (n=5) or an 

overlapping phenotype (n=5) by dysmorphologists from the Manchester Centre For Genomic 

Medicine on the basis of clinical information and photographs. In accordance with previous 

literature, large joint contractures, patellar abnormalities and ambiguous genitalia/severe genital 

anomalies were considered core features of GPS9. For SBBS the chracteristic facial features of 

blepharophimosis and mask-like face were the key diagnostic features. To analyse differences in 

phenotypic features between variant-positive and variant-negative patients we studied 45 variant-

positive patients for which we had detailed clinical information ( Supplementary Table 2a). This 

group included the 13 patients we had reported previously 4. We compared their clinical 

phenotypes with those of 23 variant-negative patients (Supplementary Table 2b) including 5 

reported previously (patients 71-75) 4.  Differences between the presence of eleven commonly 

presenting features in SBBS and GPS were analysed using the Fisher’s Exact test.  We noted the 

http://databases.lovd.nl/shared/genes/KAT6B


type and position of   the causative and likely causative variants within the SBBS group, the GPS 

group and the group with the overlapping phenotype. Comparison was also made with sequence 

data from 28 patients with KAT6B sequence variants previously reported in the literature ( 11 

GPS and 17 SBBS).  

 

RESULTS 

Sequence analysis 

Sequencing of all 18 coding exons and intron-exon boundaries of   KAT6B in our new cohort of 

57 patients identified  34 causative or likely disease-causing KAT6B variants.  Of these, 26/47 

SBBS individuals had such variants, 4/5 GPS patients and 4/5 of those with an overlapping 

phenotype. The majority (29/34) were truncating variants, but 1 was a missense variant, 1 was a 

synonymous change shared by 3 unrelated SBBS  patients  and 1 was an in-frame deletion.  The 

sequence variants are summarised in Supplementary Table 3 which also incorporates the findings 

from our original cohort3 and previous reports4,5,6 . In addition, we observed a  recurrent 

sequence variant which we considered not causative of disease,  consisting of a 12bp sequence in 

exon 16  c. 3252_3263 p.(Glu1086_1089) which was either deleted or duplicated.  The majority 

of the causative sequence variants identified clustered at the C-terminal end of the gene in exon 

18, as documented previously. This exon encodes a highly conserved serine and methionine-rich 

transcriptional activation domain. However, we also identified variants that occurred more 

proximally in exon 18 and in exons 15, 16 and 17.  Three individuals shared an identical de novo 

synonymous variant in exon 16, c.3147G>A  p.(Pro1049Pro). The Alamut 2.2 prediction 

programme suggested that this change was likely to create a cryptic splice site. All three 

individuals had the typical SBBS phenotype. One patient had a   missense variant in exon 15, 



c.2959T>C p.(Trp987Arg). The parents of this patient were not available for study so the 

question as to whether this variant is causative remains but it  has not been reported as a SNP on 

dbSNP and the amino acid 987 is well conserved. In silico analysis predicted that this variant 

may be causative.  In 18/34 cases where parental samples could be tested, all of the sequence 

changes identified had occurred de novo. Several of the variants were recurrent, having been 

seen in more than one individual or reported previously in the literature ( see supplementary 

Table 3). 

 

Genotype/phenotype correlation 

The position of the variants   in the GPS patients relative to the SBBS patients is shown in Figure 

1. In previously reported cases the sequence variants in GPS patients have tended to cluster more 

proximally to those in SBBS7,8. This was the case overall  in our four GPS patients who had 

variants in exon 17 and more proximally in exon 18. However, we observed that  patient 54 who 

had patellar abnormalities, contractures, genital anomalies and agenesis of the corpus callosum 

(all features which overlap between GPS and SBB) had the c.4205_4206del p.(Ser1402Cysfs*5) 

variant. This variant has been reported in patients with typical SBBS4 who lacked the features of 

large joint contractures, agenesis of the corpus callosum and renal anomalies,  although one 

patient with this variant had patellar abnormalities. The variant occurs more distally to the other 

GPS variants. Patient 56 whose sequence change occurred more proximally in exon 18 had 

significant genital anomalies and   was  also considered to have an overlapping phenotype. The 

remaining two patients with overlapping phenotypes (53 and 55) had the variants 

c.4320_4321del p.(Lys1441Glyfs*23) and c.4074_4079del  p.Glu1367_Glu1368.  Patients 1 and 17 

had truncating variants occurring more proximally to those seen in GPS yet they had a working 



diagnosis of SBBS and patient 20 who had one of the more proximal variants in exon 17 did not 

have any abnormalities of the patellae, genitalia, kidneys or corpus callosum. The three 

individuals (12,13,14)  who all shared the same exon 16 de novo synonymous variant fitted 

better with SBBS as all had the typical facies, normal patellae and none had significant 

contractures, agenesis of the corpus callosum or  renal anomalies. All of the above observations 

suggest that the clinical distinction between GPS and SBBS is not always clear and it might be 

more important   for the clinician to recognise when a patient has clinical findings within the 

broader KAT6B spectrum rather than to only consider the possibility of a KAT6B phenotype if 

the clinical features fit clearly within either the GPS or SBBS entities. This broader presentation 

of a KAT6B spectrum disorder was the basis upon which testing KAT6B was suggested in case 

51, a 24 week fetus with contractures, agenesis of the corpus callosum and hydronephrosis. 

 

Comparison of individuals with and without KAT6B sequence variants 

Comparison and analysis of clinical features from variant-positive and variant-negative patients 

indicated that dysmorphic facial features, in particular blepharophimosis, severe intellectual 

disability and developmental delay were common to both groups ( Figure 2,  Supplementary 

Figure 1). Genital anomalies, usually cryptorchidism, was universal in males with KAT6B 

sequence variants and tended to be more severe in GPS, where the genitalia may be ambiguous. 

Genital anomalies (hypoplastic labia) were noted in one affected female but we suspect that 

genital anomalies in females are under-ascertained. Significant features  which predicted whether 

a pathogenic KAT6B variant would be found were the presence of hypotonia, thyroid 

abnormalities, patellar abnormalities, long thumbs, and great toes, feeding difficulties and dental 

anomalies. A pathogenic KAT6B sequence variant was much more likely to be identified if the 



latter features were present (Table 4). The commonest cardiac anomalies observed in the KAT6B 

positive group were atrial and ventricular septal defects and patent ductus arteriosus, though one 

patient had a Tetralogy of Fallot, and right-sided aorta and pulmonary stenosis were seen in 

several patients. Dental anomalies, particularly hypoplastic teeth, emphasised as a salient feature 

of SBBS in the early literature, were reported as present in only 21/44 individuals with KAT6B 

variants though they were a significant distinguishing feature.  Hearing loss, often remarked 

upon in the early literature on SBBS was present in around a third of individuals with likely 

pathogenic KAT6B variants and was usually sensori-neural in origin. Cleft palate was seen in 

14/44 patients, drawing attention to the fact that SBBS and GPS deserve consideration as a 

differential diagnosis for syndromic clefting. Thyroid abnormalities were present in 22/42 

KAT6B-positive patients where these had been searched for and only 1/22 KAT6B-negative 

patients, again making this one of the most important distinguishing features. The commonest 

abnormality was congenital hypothyroidism with raised TSH and thyroid agenesis was also 

documented in some patients. There was considerable clinical overlap between the clinical 

features of the SBBS and the GPS patients. Blepharophimosis was less striking in GPS ( Figure 

3) though this group did still have a distinctive, but less obvious facial phenotype. Several 

patients with SBBS had either agenesis of the corpus callosum, hydronephrosis and joint 

contractures, features more typical of GPS. In SBBS the joint contractures were less severe and 

manifested more frequently as talipes and overlapping fingers and toes ( Supplementary Figure 

2) rather than large joint contractures.  Renal anomalies and agenesis of the corpus callosum 

were probably under-ascertained in the SBBS patients where MRI brain and renal scans had not 

always been undertaken. Several GPS patients have had the long, straight thumbs and great toes 

seen in SBBS, and this was even a feature in the fetus observed at 24 weeks gestation. An 



interesting observation was the presence of malrotation of the bowel in two patients with KAT6B 

sequence variants. A further patient had a laryngeal cleft. When analysing the relationship 

between the position of KAT6B variants and individual clinical features no genotype/phenotype 

correlation could be established. For patients with thyroid and patellar abnormalities, for 

example, sequence changes were found across the region from exon 15 to the distal part of exon 

18. The three patients who all shared the same exon 16 synonymous change had a similar facial 

gestalt (Figure 2 f,g,h) which had been easily recognisable as that of SBBS by their referring 

geneticists, though ptosis was not as prominent in these three patients as others with SBBS. All 

three had small, low set ears, intellectual disability, global developmental delay, feeding 

abnormalities and genital anomalies but lacked some of the other structural malformations such 

as congenital heart defects, cleft palate and patellar abnormalities.    

 

DISCUSSION 

This study confirms previous findings that both SBBS and GPS are caused by de novo truncating 

variants in KAT6B. However, it is clear that not all variants are confined to the terminal exon of 

this gene, making it important to screen other exons, too,   for diagnostic testing. The study 

identified several novel splice site variants including a common synonymous variant in exon 16. 

Sequence changes causing the more severe phenotype of GPS did appear overall to occur more 

proximally as seen in the previous reports 5,6 . Campeau et al11 have hypothesised that  features 

which occur commonly in both GPS and SBBS are due to either haploinsufficiency or loss of a 

function mediated by the C-terminal acidic domain with  the more severe features seen in GPS 

being  due to alterations in binding capacity of the proteins arising as a result of  specific GPS 

sequence variants.   Our results would partially confirm these hypotheses  as they suggest that 



the sequence variants cluster into three domains; a) those occurring more proximally which are 

subject to nonsense mediated decay (NMD). The phenotype is a milder SBBS phenotype caused 

by  haploinsufficiency. b) variants which are not subject to NMD but cause a more severe GPS 

phenotype if  they affect critical binding sites of KAT6B. c) variants which occur more distally 

and again escape NMD  but  cause the SBBS phenotype rather than GPS as they do not interfere 

with the critical binding sites associated with GPS. All of these three groups could share 

common features if, as Campeau suggest, haploinsufficiency for the very distal  C-terminal 

region is crucial but it is also possible that the more distal variants are also contributing to a more 

severe SBBS phenotype due to a gain of function effect. Further studies of the individual 

sequence variantss are needed to clarify the mechanisms involved. 

KAT6B deletions have been documented very rarely in the literature; Tzschach et al.12 described 

four patients with 10q22 deletions encompassing KAT6B. They had a mild phenotype with 

common features of hypotonia and developmental delay, especially in the area of speech. Facial 

features were non-specific, though on scrutiny of the available photographs blepharophimosis 

did appear to be a feature. Interestingly, one of the patients was noted to have unusually long and 

straight thumbs. The DDD study (DECIPHER@sanger.uk)13  identified a patient, DECIPHER 

number  258813 with a 2.5Mb deletion encompassing KAT6B , HGVS description chr10.hg19:g.75, 

971,593_78,526,861del. This deletion involved 9 genes, of which KAT6B is the only one known to 

be associated with a developmental disorder. This child, a male , weighed 2.1kg at 37 weeks and 

presented with hypotonia and developmental delay, particularly in the area of expressive speech.  

He had short palpebral fissures and prominent epicanthic folds ( Figure 2e) but the facial features 

were less striking than in SBBS.  He had normal patellae and a normal TSH level. He was 

macrocephalic and an MRI scan showed only mild frontal atrophy.  Thiel et al.14 have previously 

mailto:DECIPHER@sanger.uk


reported a patient with a translocation disrupting KAT6B  and went on to  demonstrate that this 

individual had lowered expression of  KAT6B. He had much milder features than patients with 

SBBS but did have blepharophimosis and was reported as being “Noonan-like.” Like the patients 

reported by Tzschach and the DDD patient there were no major malformations present.  The 

demonstration by Thiel et al. that  RAS-MAP pathway gene expression was affected in this 

patient is interesting in view of the fact that in two of our patients a diagnosis of Cardio-facio-

cutaneous syndrome had been suggested initially and that pulmonary stenosis and malrotation of 

the gut, both features seen in RAS-MAP disorders were documented as clinical features in our 

patient cohort. Only one convincing KAT6B   sequence variant has been seen in the proximal part 

of the gene (exon 3). This was documented in the series by Clayton-Smith et al. 4 in a patient 

with a much milder blepharophimosis-intellectual disability phenotype. Taken together all of the 

above observations strengthen Campeau’s case that a mild blepharophimosis-intellectual 

disability phenotype is caused by haploinsufficiency of KAT6B whereas disease-causing variants 

towards the terminal end interfere with the transcriptional activity of the gene and therefore 

cause a more severe phenotype through a gain of function effect. These hypotheses remain to be 

tested in further studies.  

From a clinical point of view, clinicians should be aware that the KAT6B phenotypic spectrum is 

broad, encompassing presentations from mild blepharophimosis and intellectual disability to the 

severe , life threatening phenotype seen in genitopatellar syndrome. Naming of the KAT6B 

related disorders has been problematic. Though it is possible to classify some patients as having 

typical SBBS or GPS, this is not possible in all cases and we propose that considering this whole 

group as “KAT6B spectrum disorders” may be more helpful. Good diagnostic handles which 

might indicate a causative KAT6B sequence variant include severe blepharophimosis, patellar 



abnormalities , thyroid abnormalities, hypothyroidism, long thumbs and toes and agenesis of the 

corpus callosum . There are some similarities with RAS-MAP disorders and abnormalities of 

KAT6B may act in part by influencing this pathway. The relatively broad clinical spectrum of 

KAT6B variants means that clinical diagnosis is not always easy and suggests that  affected 

individuals might be identified in large scale exome and genome sequencing programmes rather 

than as a result of targeted testing.  Apart from one family reported so far where two affected 

siblings were born to parents who did not carry the variant in blood, and where gonadal 

mosaicism was presumed, all KAT6B variants have occurred de novo and recurrence risks for 

most families are low, though prenatal testing should be offered as an option. 

  

No alternative diagnoses have yet been confirmed in those patients who did not have causative 

variants in KAT6B. On careful clinical review, we considered that the majority of these had some 

atypical features and that, rather than KAT6B variants or deletions being missed,  other 

diagnoses were more likely. A diagnosis of Cohen syndrome was suggested in patient 57 based 

on the facial features and additional finding of visual problems. Chromosomal abnormalities, one 

of the main differential diagnoses have been excluded by microarray analysis. A further  

differential diagnosis which was excluded in suggestive cases was that of a UBE3B phenotype10 . 

Verloes et al. reviewed the classification of the group of patients with blepharophimosis-

intellectual disability syndromes. He classified this group into five main groups, including both  

SBBS and chromosomal abnormalities . The remaining groups comprised the original patients 

reported by Ohdo et al.15 , The X-linked disorder originally reported by Maat-Kievit et al.16 and 

now known to be due to sequence variants within the MED12 gene17, and a recessive entity 

associated with microcephaly and multiple structural anomalies. None of our patients had 

features which were consistent with any of these other groups identified by Verloes. It is likely, 



therefore that there are other causes of blepharophimosis and intellectual disability which remain 

to be elucidated.  
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Table 1. Genotype–phenotype differences between KAT6B mutation-positive and 

KAT6B mutation-negative patients 

 KAT6B + (n1=47) KAT6B - (n2=23) p value 

 present 
not 

present 

not 

known 
present 

not 

present 

not 

known 
 

Hypotonia 44 2 1 9 14 0 < 0.0001 

Feeding 

difficulties 
42 3 2 15 8 0 0.0051 

Contractures 27 7 13 6 12 5 0.0020 

Dental 

anomalies 
28 14 5 7 16 0 0.0087 

Long thumbs 33 14 0 3 20 0 < 0.0001 

Long great 

toes 
31 16 0 5 18 0 0.0008 

Thyroid 

abnormalities 
23 22 2 1 22 0 0.0001 

Congenital 

heart defects 
27 19 1 12 11 0 0.6177 

Genital 

anomalies 
25 22 0 7 15 1 0.1237 

Abnormal 

patella 
15 31 1 1 22 0 0.0134 

Microcephaly 12 23 12 8 12 3 0.7734 

Cleft palate 14 33 0 2 21 0 0.0690 
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Figure 1. Schematic representation of the spectrum of KAT6B mutations identified in this study. All 

coding exons are shown in purple. Arrows point to the exonic location of the mutations identified. 

Mutation key:   frameshift variants, in-frame deletion, missense variants,  nonsense variants. Variants 

identified in other studies are in italics. The protein structure shows the protein domains. NEMM: highly 

conserved N-terminal domain with a role in transcriptional repression. PHD: zinc finger domain,  MYST: 

responsible for histone acetyltransferase activity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 2 

 

 

 

Figure 3 


