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Abstract 

Ring-opening polymerization (ROP) of racemic-benzyl -malolactonate (MLABe) 

initiated by an alcohol such as 1,3-propanediol (PPD) or 2-hydroxymethyl-1,3-propanediol 

(TMM), and catalyzed by a metal triflate M(OTf)3 with M = Nd, Bi, proceeded under mild 

operating conditions (in bulk at 60 °C). The functionality of the alcohol dictates the topology 

of the resulting hydroxyl telechelic PMLABe. The ROP promoted by the neodymium-based 

catalytic system afforded a satisfactory activity and control in terms of molar mass and 

dispersity values (Mn,NMR up to 7000 g.mol1, ÐM < 1.35). Mechanistic insights revealed that 

ring-opening of MLABe took place through the selective oxygenacyl bond cleavage without 

undesirable side reactions such as transesterification or crotonisation, as evidenced by NMR 

and mass spectrometry analyses of the recovered polyesters. The structure of the 

corresponding ,-hydroxy telechelic PMLABes was ascertained by 1H and 13C{1H} NMR, 

SEC, and MALDI-ToF mass spectrometry analyses. In comparison, methane and 

trifluoromethane sulfonic acids did not allow the formation of well-defined PMLABe diols. 

Differences in the behavior of MLABe and the related -butyrolactone are highlighted. The 

present Nd(OTf)3/PPD or TMM catalytic ROP of MLABe thus represents a valuable direct 

synthesis of PMLABe diols and triols, respectively, without requiring chemical modification 

of a preformed PMLABe precursor. 

 

 

Keyword: hydroxy telechelic polymer, PHA, polyester, poly(hydroxyalkanoate), polymer 

diol, ring-opening polymerization (ROP), poly(benzyl -malolactonate)  (PMLABe)
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Introduction 

Hydroxy telechelic polymers are highly valuable building blocks for both academic 

and industrial applications. They are widely used as elementary constituents for the 

elaboration of copolymers combining other monomer(s) with various architectures (linear, 

star, branched, comb), by step-growth polymerization. In particular, one major valorization of 

polyols lies in the preparation of polyurethanes upon reaction of the reactive hydroxyl end-

groups with poly(isocyanate)s, a major market in polymers manufacturing.1,2,3,4  

Poly(hydroxyalkanoate)s (PHAs) are biocompatible and (bio)degradable aliphatic 

polyesters which are being developed for their applications as commodity plastics, as well as 

in the environment, and in the medical field.5,6,7,8,9,10,11,12,13 One major drawback of natural 

PHAs, although quite extensively investigated, is their still unsatisfactorily productive 

preparation method from bacterial fermentation process, and their limited thermo-mechanical 

properties which somewhat restrain their extensive use. In this regard, the development of 

ring-opening polymerization (ROP) of four-membered ring cyclic -lactones towards the 

formation of synthetic PHAs, enables to tackle both issues. Indeed, one can synthesize the 

monomers featuring the desired substituents on the -position of the lactone. Next, provided 

the suitable efficient catalytic system is implemented, one can most conveniently access by 

ROP to finely tuned PHAs with adjusted chemical, macromolecular (in particular targeted 

molar mass values, low dispersity (ĐM = Mw/Mn), evidence of limited undesirable side 

reactions (transesterification and transfer reactions), chain-end fidelity, microstructure – i.e. 

tacticity, hydrophilicity, degradation), and physical (especially thermal transition 

temperatures, crystallinity, elasticity) characteristics.14,15,16 Whereas the most common and 

ubiquitous PHA is poly(3-hydroxybutyrate) (PHB; derived by ROP from -butyrolactone 

(BL) which bears a methyl substituent),14,15,16 the importance of poly(benzyl -malolactonate) 

(PMLABe) and its parent benzyl-deprotected poly(malic acid) (PMLA), has significantly 
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grown over the past few years.17,18,19,20,21,22 Indeed, these latter two PHA members are 

synthesized by ROP of benzyl -malolactone (MLABe) followed by abstraction of the  

-benzyloxycarbonyl substituents upon hydrogenolysis, respectively (Scheme 1).1421 The 

significant advantage of PMLABe/PMLA is that they are derived from aspartic or malic acids, 

two bio-renewable sugar-derived components listed in the top ten value-added chemicals 

established by the US Department Of Energy.1820,23,24 In this regard, MLABe and PMLABe 

thus appear as potential valuable environmentally-friendly (bio)degradable alternatives to 

commodity plastics such as petrochemical polyolefins. Thanks to their biocompatibility, 

PMLABe and PMLA are also used in the biomedical field.21,22,25 The ease of the chemical 

modification of hydrophobic PMLABe into its hydrophilic PMLA homologue upon 

hydrogenolysis under mild conditions (H2, Pd/C, 23 °C) without backbone 

alteration,18,20,21,25,26 and the availability of the thereby resulting CO2H as anchoring sites for 

biologically active molecules,27,28 is a rather unique characteristic among PHAs which is 

attracting much consideration, in particular for the design of amphiphilic self-assembling 

PMLA-based copolymers as drug delivery systems.1722,25,29 

 

Scheme 1. Synthesis of poly(benzyl -malolactonate) (PMLABe) by ROP of benzyl  

-malolactonate (MLABe). 

 

The past decade has witnessed a resurgence of interest in the ROP of MLABe to 

synthesize PMLA(Be) (co)polymers.17 Besides the purely cationic and anionic 
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catalysts/initiators used in earlier investigations, recent catalytic systems based on either 

organic components such as guanidines, amidines, or phosphazenes, or discrete metal 

derivatives, have been demonstrated as effective for the preparation of PMLABe 

(co)polymers.20,30 To our knowledge, only a few metal-catalyzed ROPs of MLABe have been 

reported. Apart from the first established Omethoxy tetraphenylporphyrin aluminium 

((TPP)Al(OCH3)),
31 methylaluminoxane (MAO), ethylaluminoxane (EAO),32,33 and tin(II) 

bis(2-ethylhexanoate) (Sn(octoate)2 = SnOct2)
34 ones, the more recently unveiled zinc  

-diketiminate compound [(BDI)Zn(N(SiMe3)2)] (BDI = CH(CMeNC6H3-2,6-iPr2)2) or 

M(OTf)3 (with M = Al, Nd, OTf = CF3SO3
) associated to an alcohol (typically isopropanol 

(iPrOH) or benzyl alcohol (BnOH)), or the in situ generated yttrium isopropoxide complex 

supported by a tetradentate dichloro-substituted bis(phenolate) ligand, promoted the ROP of 

MLABe at 2060 °C in bulk monomer, affording well-defined linear -hydroxy, 

-alkoxycarbonyl telechelic PMLABes.26,35,36  

Polymer diols are often prepared upon post-polymerization chemical modification of a 

mono-hydroxyl end-capped polymer. The main reason is that direct synthetic routes to  

,-dihydroxy telechelic polymers are less often encountered.4 The first example of PMLABe 

diol has thus been obtained by chemical transformation of a preformed -hydroxy, 

-carboxylic acid PMLABe sample.37 More recently, we evidenced the straightforward one-

step synthesis of PMLABe diol by ROP of MLABe using rare earth borohydride initiators, 

Ln(BH4)3(THF)3 (Ln = La, Nd, Sm), a strategy similarly implemented to access PHB 

diols.38,39,40,41,42 The one drawback of this approach is the sensitivity of these rare earth 

borohydride complexes to air and moisture. Therefore, a more convenient (easy to handle) 

initiator and a more straightforward strategy are desirable for the synthesis of hydroxy 

telechelic PMLABe. 
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To that end, given the successful synthesis of BnOPMLABeOH by ROP of MLABe 

with Al(OTf)3/BnOH,35 and the efficiency of catalyst systems derived from metal triflates 

M(OTf)3/
iPrOH (M = Nd, Bi) to promote the copolymerization of MLABe and BL,36 metal 

triflates combined to several higher alcohols such as 1,3-propanediol (PPD), and  

2-hydroxymethyl-1,3-propanediol (tris(hydroxymethyl)methane (trimethylolmethane, TMM), 

were thus investigated in the present study towards the synthesis of PMLABe-n-ols  

(Scheme 2). Also, the reported synthesis of the related PHB and PHB diol from the ROP of 

BL catalyzed by trifluoromethane43,44,45 and methane sulfonic45 acids (HOTf and MSA, 

respectively) in combination to an alcohol or diol initiator, prompted the similar investigation 

of these related organic sulfonic acids in the preparation of PMLABe-n-ols. The ,-hydroxy 

telechelic PMLABes were characterized by 1H, 13C{1H} NMR, SEC, and MALDI-ToF mass 

spectrometry analyses.  

 

Scheme 2. Synthesis of PMLABe-n-ols by ROP of MLABe from metal triflate/alcohol systems. 

 

Experimental section 

Methods and Materials 

All polymerizations were performed under inert atmosphere (argon) using standard 

Schlenk, vacuum line, and glove box techniques. Racemic benzyl -malolactone (MLABe) 

was synthesized from (R,S)-aspartic acid according to the reported procedure.29 Metal triflates 

M(OTf)3 with M = Nd, Bi, trifluoromethanesulfonic acid (triflic acid, HOTf, > 99%), 
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methanesulfonic acid (MSA, > 98%, Alfa Aesar), 1,3 propanediol (PPD, 98%),  

2-hydroxymethyl-1,3-propanediol (tris(hydroxymethyl)methane, or trimethylolmethane, 

TMM, 97%), and all other reagents were used as received (Aldrich unless otherwise 

mentioned). 

Instrumentation and measurements 

{1H} (125 and 100 MHz) NMR spectra were recorded 

on Bru

phy (SEC) giving number-average molar mass (Mn,SEC) 

and dis

ined from 1H NMR spectra of the crude polymer 

samples, from the integration (Int.) ratio Int.PMLABe/[Int.PMLABe + Int.MLABe], using the methine 

hydrogens –CH2CH(CO2Be)O (PMLABe= 5.50–5.55 ppm, MLABe= 4.88 ppm).  

1H (500 and 400 MHz) and 13C

ker Avance AM 500 and Ascend 400 spectrometers at 25 °C. Chemical shifts (δ) are 

reported in ppm and were referenced internally relative to tetramethylsilane (δ 0 ppm) using 

the residual 1H and 13C solvent resonances. Note that the 1H NMR spectra of PMLABe 

systematically featured broadened signals (typically 1/2 = ca. 26 Hz), as commonly 

encountered in the literature.30,35-38  

Size-exclusion chromatogra

persity (ÐM = Mw/Mn) values of the PMLABes was carried out in THF at 30 °C (flow 

rate 1.0 mL.min1) on a Polymer Laboratories PL50 apparatus equipped with a refractive 

index detector and a set of two ResiPore PLgel 3µm MIXED-D 300 × 7.5 mm columns. The 

polymer samples were dissolved in THF (2 mg.mL1). All elution curves were calibrated with 

11 monodisperse polystyrene standards (Mn range = 580  380,000 g·mol1); all Mn,SEC values 

of the PMLABes were uncorrected for their potential difference in hydrodynamic radius vs. 

polystyrene. The SEC traces of the polymers all exhibited a non-Gaussian shaped peak tailing 

at longer elution times, inducing relatively large dispersities which yet remained below 1.58. 

The Mn,SEC values thus obtained often remained lower than the calculated values or the values 

determined by NMR (Mn,NMR, vide infra).  

Monomer conversions were determ
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The molar mass values of PMLABe samples were determined by 1H NMR analysis in 

CDCl3 from the relative intensities of the signals of the main-chain methylene hydrogens 

(CH2CH(CO2Be) = 2.92 ppm), relative to the methylene hydrogens (CH(CH2O)x = ca. 4.004.20, 

1.802

 in the positive-ion 

mode u

erization can be 

.10 ppm) of the PPD (x = 2), or TMM (x = 3) initiator (Table 1). The good resolution 

of the signals of the chain-end groups allowed their fairly reliable integration (Figures 2, 4, 

S1S2). The number-average molar mass values thus obtained by 1H NMR (Mn,NMR) were in 

close agreement with the ones calculated (Mn,theo), as reported in Table 1. 

MALDI-ToF mass spectra were recorded at the CESAMO (Bordeaux, France) on a 

Voyager mass spectrometer (Applied Biosystems) equipped with a pulsed N2 laser source 

(337 nm) and a time-delayed extracted ion source. Spectra were recorded

sing the reflectron mode and with an accelerating voltage of 20 kV. A THF solution (1 

mL) of the matrix (ditranol, Aldrich, 99 %) and a MeOH solution of the cationisation agent 

(NaI, (10 mg.mL1)) were prepared. A fresh solution of the polymer sample in THF (10 

mg.mL1) was then prepared. The three solutions were next rapidly combined in a 1:1:10 

volume ratio of matrix-to-sample-to-cationisation agent. One to two microliters of the 

resulting solution were deposited onto the sample target and vacuum-dried. 

Typical MLABe homopolymerization. In a typical experiment (Table 1, entry 5), Nd(OTf)3 

(10 mg, 16.9 mol) and a solution of 1,3 propanediol (PPD, 6.1 L, 84.5 mol, 5 equiv vs. 

Nd(OTf)3) in toluene (0.1 mL; in light of this small volume, the polym

considered as a bulk procedure) were charged in a Schlenk flask in the glove box, prior to the 

addition of MLABe (0.35 g, 1.69 mmol, 100 equiv). The mixture was then stirred at 60 °C for 

the appropriate reaction time (reaction times were not systematically optimized). The 

polymerization was quenched by addition of acetic acid (ca. 10 L of a 1.6 mol·L1 solution 

in toluene). The resulting mixture was concentrated to dryness under vacuum and the 

conversion was determined by 1H NMR analysis of the residue in CDCl3. The crude polymer 
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was then dissolved in CH2Cl2 (2 mL) and precipitated in cold pentane (10 mL), filtered and 

dried under vacuum at 45 °C overnight (typical isolated yield 90–95%). The final polymer 

was then analyzed by NMR, SEC and MALDI-ToF analyses (Table 1).  

PMLABe diol : 1H NMR (500 MHz; CDCl3, 25 °C):  7.30 (br m, 5n, C6H5), 5.50 (br m, 1nH, 

CH2CH(CO2Be)O), 5.12 (br s, 2nH, OCH2C6H5), 4.18 (br m, 4H, CH2(CH2OPMLABe)2), 3.63 

(br s, 2H, OH), 2.92 (br m, 2nH, CHCH2C(O)O), 1.80 (br m, 2H, CH2(CH2OPMLABe)2) 

 (br m, 2nH, CHCH2C(O)O), 2.05 (br m, 2H, 

y metal triflates, trifluoromethane and methane sulfonic 

cids. The ring-opening polymerization (ROP) of racemic-MLABe (MLABe) was investigated 

 Nd, Bi, or trifluoromethane and methane sulfonic acids (HOTf and 

(Figure 2). 13C{1H} NMR (125 MHz; CDCl3, 25 °C):  C=O), 134.9 (C8), 126.6-

127.0 (C9-11), 68.5 (OCH(CO2Be)CH2C(O)), 67.7 (OCH2C6H5), 65.4 

(CH2(CH2OPMLABe)2), 38.6 (CH2(CH2OPMLABe)2), 35.5 (OC(O)CH2CH), (Figure 3). 

MALDI-ToF MS (Figure 6). 

PMLABe triol : 1H NMR (500 MHz; CDCl3, 25 °C):  7.30 (br m, 5n, C6H5), 5.50 (br m, 

1nH, CH2CH(CO2Be)O), 5.12 (br m, 2nH,OCH2C6H5), 4.52 (br s, 3H, OH), 4.06 (br m, 4H, 

CH(CH2OPMLABe)3), 2.92

CH(CH2OPMLABe)2) (Figure 4). 13C{1H} NMR (125 MHz; CDCl3, 25 °C):  

C=O), 135.1 (C8), 128.7128.3 (C9-11), 68.8 (OCH(CO2Be)CH2C(O)), 67.7 (OCH2C6H5), 

67.4 (CH(CH2OPMLABe)3), 38.7 (CH(CH2OPMLABe)3), 35.4 (OC(O)CH2CH), (Figure 5). 

MALDI-TOF MS (Figure 7). 

 

Results and Discussion 

ROP of MLABe promoted b

a

using M(OTf)3 with M =

MSA, respectively) as catalyst, in association with 1,3 propanediol (PPD), or  

2-hydroxymethyl-1,3-propanediol (tris(hydroxymethyl)methane or trimethylolmethane 

(TMM)), under a standard set of conditions viz. in bulk at 60 °C (refer to the Experimental 
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Section). The most significant data are gathered in Table 1. In order to get low molar mass 

samples suitable for NMR spectroscopy and MALDI-ToF mass spectrometry analyses (vide 

infra), the alcohol was used in excess (5 equiv.) under immortal ROP conditions.46,47 

 

Table 1. ROP of MLABe catalyzed by M(OTf)3 with M = Nd, Bi, or MSA, in presence of 

PPD or TMM initiator.a 

Entry Catalyst Initiator 

[MLABe]0: 

[Catalyst] : 

Reaction

Timeb 

MLABe 

Conv.c 
Mn,theo

d Mn,NMR
e Mn,SEC

f 
ÐM

g 0

[Initiator]0 
a (h) (%) 

(g·mol1) (g·mol1) (g·mol1) 

1 50:1:5 1 100 2100 1200 1000 1.34  Bi(OTf)3 PPD 
2 Bi(OTf)3 PPD 100:1:5 2 100 4200 1400 1200 1.43 

3 Bi(OTf)  PPD : 1.39 

5 Nd(OTf)3 PPD 1700 1800 1000 1.36 

a A act for ulk at 6 r to the E rimental Section). b The reaction time was not necess timi
M er co  deter y 1H N ysis of th de reactio ixture (ref the Expe tal Secti heor
mo ass value calculated Be]0/[Initiat r]0 × conv. e × MMLA Initiator, with ABe = 206 g 1, 
= ·mol1

TMM = ol1. e E al molar lue de ined by R analys e isolat mer,
th ative i s of the ances o  chain m e or meth e hydrogens to the meth ydrogens of the in
(r to the ental S ). f Num e molar  value de ined by HF at vs. poly  stan
(uncorrected refer to perime n). g Dis y value (M n) determined by SEC  at 30 °

3

Nd(OTf)3 

200:1 5 4 

12 

91 

100 

7600 1900 1100 

4 PPD 10:1:2 1100 1000 800 1.18 

20:1:2 16 83 

6 Nd(OTf)3 PPD 50:1:5 16 93 2000 2300 2300 1.19 

7 Nd(OTf)3 PPD 100:1:5 26 89 3700 4200 3200 1.19 

8 Nd(OTf)3 PPD 200:1:5 96 81 6800 7000 3700 1.35 

9 Nd(OTf)3 TMM 60:1:5 18 91 2400 2300 1600 1.34 

10 Nd(OTf)3 TMM 120:1:5 48 66 3400 2600 1900 1.34 

11 Nd(OTf)3 TMM 240:1:5 96 60 6000 5700 3800 1.36 

12 MSA PPD 20:1:5 20 81 750 800 1300 1.58 

13 MSA PPD 30:1:5 20 91 1200 1000 1000 1.57 

14 MSA PPD 100:1:5 50 94 3900 2100 1700 1.30 

15 MSA PPD 200:1:5 50 42 3500 2300 500 1.38 

ll re ions were per med in b 0 °C (refe xpe arily op zed. c 

onom
lar m

nversion mined b
 from the relation

MR anal
: [MLA

e cru
o

n m er to 
M

rimen
M

on). d T
·mol

etical 
M  MLAB

term
Be + 

1H NM
ML

is of th
PPD

 from 76 g , and M 106 g·m xperiment  mass va ed poly
e rel
efer 

ntensitie
Experim

 reson
ection

f the main
ber averag

ethan
 mass

ylen
term

ylene h
 30 °C 

itiator 
dards SEC in T styrene

 values,  the Ex ntal Sectio persit w/M  in THF C. 
 

The metallic triflates Nd(OTf)3 and Bi(OTf)3 were both found active catalysts in the 

ROP of MLABe initiated by 1,3-propane diol (Table 1, entries 1). Under the same 

conditions, the bismuth catalyst was more active than the neodymium, converting 100 equiv. 

of the lactone within 2 h as opposed to more than 26 h required with the rare earth metal 
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system (Table 1, entries 2 vs. 7). However, the control of the polymerization was significantly 

better using the Nd(OTf)3/PPD catalytic system, as evidenced by the close match of the 

anticipated molar mass values (Mn,theo) with the molar mass values determined from 1H NMR 

analysis of the precipitated polymer (Mn,NMR, refer to the Experimental Section; Figure S1), 

and by the slightly narrower dispersities measured by SEC analysis (ÐM,Nd(OTf)3 = 1.21.3 vs. 

ÐM,Bi(OTf)3 = 1.31.4).48 These dispersity values remained in the range of those obtained from 

the related ROP of MLABe promoted by Al(OTf)3/BnOH (ÐM = 1.2)35 or organic bases (ÐM = 

1.11.4).30 Furthermore, these values indicated the occurrence of few undesirable 

transesterification side reactions (reshuffling (intermolecular) and backbiting (intramolecular), 

and chain transfer reactions) often observed in ROP of cyclic esters,49 and/or a faster rate of 

initiation with respect to propagation. Furthermore, the molar mass value of the thus formed 

PMLABe increased linearly with ([MLABe]0 x conv.MLABe )/[PPD]0 ratio, as depicted Figure 1. 

All these data are indicative of a living polymerization. The similar ROP of MLABe catalyzed 

by Nd(OTf)3 in presence of a triol (TMM) afforded the corresponding PMLABe triol, with a 

similar control of the polymerization in terms of Mn,theo/Mn,NMR agreement and narrow 

dispersity (Table 1, entries 9). All these results allowed establishing the proof of this 

concept towards the synthesis of ,-hydroxy telechelic PMLABes from metallic triflates and 

hydroxylated initiators. 
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Figure 1. Variation of Mn,NMR () and Mn,theo (solid line) values of PMLABe, produced in the 

presence of Nd(OTf)3/PPD, as a function of ([MLABe]0 x conv.MLABe )/[PPD]0 (Table 1, 

entries 48). 

 

As initially investigated by Pohl and co-workers,43 the protic acid catalyzed ROP of  

-butyrolactone (BL) mediated by triflic acid (HOTf)43 or methane sulfonic acid (MSA)45 

in presence of an alcohol (ROH), afforded -hydroxy,-alkoxy telechelic PHBs. The 

polymerizations of BL proceeded at 3035 °C in an aprotic solvent (C6D6-NMR tube 

experiments, or toluene) with methanol or n-pentanol, via selective oxygenacyl bond 

cleavage, along with formation of a minor amount of macrocycles while crotonate chain-ends 

were observed at higher temperatures. In these ROPs of BL, HOTf showed a better activity 

and selectivity compared to MSA which led to some cyclisation and crotonisation reactions. 

Also, the use of a dihydroxylated initiator (1,4-butane diol) with HOTf catalyst gave the 

corresponding PHB diol.45 In comparison to these acid catalyzed ROPs of BL, ROP of the 

related MLABe -lactone mediated by HOTf/PPD at 60 °C did not enable the synthesis of 

PMLABe diol. Indeed, a white precipitate, possibly arising from some transesterification 

reactions, was then recovered from which no product besides some fumaric acid could be 
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identified. On the other hand, PPD effectively initiated the ROP of MLABe catalyzed by MSA 

under the same operating conditions (Table 1, entries 12). The polymerization proceeded 

also with oxygenacyl bond cleavage leading to PMLABe diol as characterized by 1H NMR 

analysis (vide infra, Figure S2). However, the polymers failed to show a good correlation for 

their molar mass between the theoretical values (Mn,theo) and the experimental ones as 

determined by 1H NMR (Mn,NMR, Table 1; vide infra). Thus, as opposed to the ROP of BL, 

neither HOTf nor MSA efficiently promoted the ROP of MLABe initiated by PPD at 60 °C. 

The benzylester substituent of MLABe thus altered the reactivity of the -lactone as compared 

to the methyl group of BL, most likely as the result of its electronic contribution. Thus, 

Nd(OTF)3/PPD and Nd(OTF)3/TMM revealed as the most effective catalytic systems for the 

controlled ROP of MLABe towards hydroxyl end-capped PMLABes, as further evidenced by 

spectroscopic characterizations (vide infra). This direct strategy towards the synthesis of 

PMLABe diol and triol compares favorably well with the previously reported formation of 

PMLABe diol through the chemical modification of a pre-isolated -hydroxy, 

-carboxylic acid PMLABe sample. Indeed, this prior experiment reported that in presence of 

an excess of borane-tetrahydrofuran adduct (BH3.THF; 3.5 equiv.) at 0 °C in anhydrous THF 

over 5 h, the reduction of the carboxylic acid end-group into a hydroxyl one proceeded to 

afford the PMLABe diol (92% yield; Mn,NMR = 7900 g.mol1; ÐM = 1.5).37 

Characterization of the PMLABes. 1H NMR analysis of the precipitated PMLABe-n-

ols enabled to verify the presence of MLABe repeating units as well as to confirm the nature of 

the chain-end groups. The typical spectrum of a low molar mass PMLABe diol is illustrated 

Figure 2 with the sample isolated from the ROP of MLABe promoted by Nd(OTf)3 in the 

presence of 1,3 propanediol as initiator (Table 1, entry 1). Besides the expected ester 

backbone signals of the methine and methylene hydrogens observed in a 1:2 ratio ( = 5.50 

ppm (CH2CH(CO2Be)O), 2.92 ppm (CHCH2C(O)O), as well as the signals of the benzyloxy 
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pending substituent ( = 7.30, 5.12 ppm (OCH(CO2CH2C6H5)CH2C(O)), the central 

trimethylene moiety ( = 4.18, 1.80 ppm (OCH2CH2CH2O)), and the terminal hydroxyl  

( = 3.63 ppm) resonances were also observed (Figure 2). The signals of the chain-end groups 

and especially of the trimethylene central sequence being well resolved, this allowed a fairly 

reliable integration of the resonances as illustrated in Figure 2. Consequently, evaluation of 

the PMLABes molar mass (Mn,NMR) from the relative intensity of the chain-end and of the 

alcohol segment vs. the main chain signals, gave values in good agreement with the ones 

calculated from the monomer conversion and the initial amount of MLABe and initiator 

(Mn,theo), as reported Table 1. The corresponding 13C{1H} NMR spectrum also evidenced 

MLABe units30 along with the alcohol segment ( = 65.4, 38.6 ppm (OCH2CH2CH2O)) (Figure 

3). The same 1H and 13C{1H} patterns were obtained in the spectra of PMLABe diol and 

PMLABe triol, similarly synthesized from Bi(OTf)3,MSA/PPD and Nd(OTf)3/TMM, 

respectively. The only distinctive feature was the relative intensity of the 1H NMR signals 

corresponding to the hydrogens of the central alcohol moiety which differed from PPD (vide 

supra) to TMM ( = 4.06 ppm, 6H, (OCH2CH(CH2O)2)), 2.05 ppm, 1H, (OCH2CH(CH2O)2)) 

(Figures 4, 5). Also, the 1H NMR spectra of PMLABe diols synthesized using either Bi(OTf)3 

or MSA catalyst with PPD, showed the expected integral value for the methylene signal of the 

main chain ((CHCH2C(O)O), = 2.92 ppm), whereas the methine and methylene signals 

((CH(CO2CH2Ph)CH2C(O)O), = 5.50, 5.12 ppm, respectively) failed to provide the 

corresponding expected integral values (2:1:2 ratio, respectively; Figures S1S2). This 

incoherence suggested the presence of (an) unidentified side species and further highlighted 

the poor control in the case of the ROP mediated by these two catalyst systems.  

NMR analyses also provided valuable information about the mechanism taking place 

during the polymerization of MLABe promoted by Nd(OTf)3. First, the alcohol used as 

initiator was found to be quantitatively incorporated into the PMLABe chains as a central 
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linkage. Also, the relative intensity ratio between the PPD or TMM (signals a,b) and the 

terminal hydroxyl (signal g) signals supported an efficient initiation with all the polymer 

chains being initiated by the alcohol. Furthermore, these observations evidenced the selective 

ring-opening of MLABe occurring with oxygenacyl bond cleavage, thereby generating a 

propagating hydroxyl chain-end, and ultimately affording a hydroxyl end-capping group. 

Indeed, as a four membered-ring -lactone, MLABe may also be ring-opened with 

oxygenalkyl bond rupture to give propagating carboxylic acid chain resulting in –COOH (= 

ca. 10.8 ppm) end-functionalized PMLABe,1820 a chain-end yet not observed in the present 

study. Finally, MLABe is also prone to undergo crotonisation reactions upon elimination of 

H2O, leading to an acrylic non-propagating chain end.1820 Such  

–C(O)CH=CH(CO2CH2Ph) moieties (CH=CH = ca. 5.705.80, 6.807.00 ppm) were not 

observed in the NMR nor in mass (vide infra) spectra of the recovered polyester samples. 

These observations are in agreement with the narrow dispersities measured by SEC (vide 

supra). Based on these findings, the ROPs of MLABe promoted by Nd(OTf)3/PPD,TMM were 

thus further demonstrated to proceed with a good control and high selectivity, whereas in the 

case of Bi(OTf)3 and MSA catalyzed ROPs in presence of PPD as initiator, the overall control 

was poorer.  
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Figure 2. 1H NMR spectrum (CDCl3, 500 MHz, 25 °C) of a PMLABe diol synthesized by 

ROP of MLABe catalyzed by Nd(OTf)3 in the presence of 5 equiv. of 1,3 propanediol as 

initiator (Table 1, entry 6). 
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Figure 5. 13C{1H} NMR spectrum (CDCl3, 125 MHz, 25 °C) of a PMLABe triol synthesized 

by ROP of rac-MLABe catalyzed by Nd(OTf)3 in presence of 5 equiv. of 2-hydroxymethyl-

1,3-propanediol as initiator (Table 1, entry 10). 

m recorded from a low molar mass sample 

repared from the Nd(OTf)3/PPD catalytic system and using ditranol as a matrix, revealed a 

very m

a

 

Formation of hydroxy telechelic PMLABes was further supported by MALDI-ToF 

mass spectrometry (MS) analyses. The spectru

p

ajor population of ,-dihydroxy telechelic PMLABe featuring a repeating unit of 206 

g.mol1 (MMLABe) (Figure 6). This was unequivocally confirmed by the close match with  the 

isotopic simulation of a PMLABe ionized by Na+ and end-capped by hydroxyl groups, that is 

[CH2{CH2O(C(O)CH2CH(C(O)OCH2Ph)O)nH}2].Na+ with e.g. m/z = 2160.6 g.mol1 (vs. m/z 

(experimental) = 2160.2 g.mol1)  for 2n = 10 (zoom of Figure 6). Similarly, the MALDI-ToF MS 

of a low molar mass PMLABe s mple synthesized from the Nd(OTf)3/TMM catalytic system 

also using ditranol as a matrix, displayed a major population with a repeating unit of 206 

g.mol1 corresponding to ,-trihydroxy telechelic PMLABe ionized by Na+, that is 

[CH{CH2O(C(O)CH2CH(C(O)OCH2Ph)O)nH}3].Na+ with e.g. m/z = 2602.8 g.mol1 (vs. m/z 

(experimental) = 2601.9 g.mol1) for 3n = 12, as confirmed by the isotopic simulation (Figure 7). 
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The minor envelope observed in this latter MS spectrum was assigned to the same 

macromolecules ionized by K+. Noteworthy, these MALDI-ToF MS analyses showed no 

 of carboxylic acid or crotonate chain-end groups, or any other species, in 

agreement with NMR analyses (vide supra).  

indication

 

 

 

 

 

Figure 6. MALDI-ToF MS spectrum of a PMLABe diol synthesized by ROP of MLABe 

catalyzed by Nd(OTf)3 in presence of 5 equiv. of 1,3 propanediol as initiator, using ditranol as 

a matrix (Table 1, entry 4). The left zooms correspond to the recorded (top) and the simulated 

ottom) alike region.  (b
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Figure 7. MALDI-ToF MS spectrum of a PMLABe triol synthesized by the ROP of  

MLABe catalyzed by Nd(OTf)3 in presence of 5 equiv. of 2-hydroxymethyl-1,3-propanediol as 

initiator, using ditranol as a matrix (Table 1, entry 8). The left zooms correspond to the 

recorded (top) and the simulated (bottom) alike region. 

 

Conclusion 

Catalytic systems composed of Nd(OTf)3 catalyst in the presence of hydroxyl-group 

containing compounds such as PPD or TMP as initiator, were found to promote the controlled 

ROP of benzyl -malolactonate under mild conditions (i.e. in the absence of a solvent at 

60 °C). The ring-opening of MLABe proceeds through the selective oxygenacyl bond 

cleavage without undesirable side reactions such as inter- or intra-molecular 

transesterification reactions or crotonisation, as evidenced by 1H and 13C{1H}NMR and 

MALDI-ToF mass spectrometry analyses of the recovered polyesters. Both Bi(OTf)3 and 

methane sulfonic acid organo-catalyst also enabled the ROP of MLABe in the presence of 

PPD, yet with a poor control. However, the alike triflic acid mediated ROP of MLABe failed 
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to afford the expected polymer, whereas HOTf was found active in the ROP of the related  

-butyrolactone.45 This again highlights the significant differences previously reported38,39 

between these two four membered-ring -lactones  differing by the nature of the substituent 

in -position of the lactone both of which are yet challenging to ring-open polymerize. 

Direct synthesis (i.e. not by chemical modification of a preformed polymer) of PMLABe diols 

and triols from a simple metal triflate and alcohol (both reactants being commercially 

available) further strengthens the growing interest in this monomer and its resulting polymer. 
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Figure S1. 1H NMR spectrum (CDCl3, 400 MHz, 25 °C) of a PMLABe diol synthesized by 

ROP of MLABe catalyzed by Bi(OTf)3 in presence of 5 equiv. of 1,3-propane diol as initiator 

(Table 1, entry 2). 

f

d

e

g

a
c

b * *

 

Figure S2. 1H NMR spectrum (CDCl3, 400 MHz, 25 °C) of a PMLABe diol synthesized by 

ROP of MLABe catalyzed by MSA in presence of 5 equiv. of 1,3-propane diol as initiator 

(Table 1, entry 13).  
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Figure S1. 1H NMR spectrum (CDCl3, 400 MHz, 25 °C) of a PMLABe diol synthesized by 

ROP of MLABe catalyzed by Bi(OTf)3 in presence of 5 equiv. of 1,3-propane diol as initiator 

(Table 1, entry 2). 

 

 



 27

                                                                                                                                                         

f

d

e

g

a
c

b * *

 

Figure S2. 1H NMR spectrum (CDCl3, 400 MHz, 25 °C) of a PMLABe diol synthesized by 

ROP of MLABe catalyzed by MSA in presence of 5 equiv. of 1,3-propane diol as initiator 

(Table 1, entry 13).  

 


