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Abstract 

Short range order of glassy Ge20Ga10Se70 and Ge20Ga5Se75 was investigated by neutron diffraction and 

extended X-ray absorption fine structure spectroscopy (EXAFS) at Ge, Ga and Se K-edges. For each 

composition large scale structural models were obtained by fitting simultaneously the four 

experimental datasets in the framework of the reverse Monte Carlo simulation technique. It was found 

that both Ge and Ga are predominantly fourfold coordinated. The quality of the fits was strongly 

improved by introducing Ge-Ga bonding. Models giving the best agreement with experimental data 

show that Ga has a complex effect on the Ge-Se host matrix: i) it enters the covalent network by 

forming Ga-Ge bonds ii) by decreasing the number of Se atoms around Ge, it contributes to the 

formation of Se-Se bonds, which may explain the higher solubility of lanthanide ions iii) the average 

coordination number of Se increases due to the Ga-Se ‘extra’ bonds. The higher average coordination 

of the network may be responsible for the increase of Tg upon adding Ga to Ge-Se glasses. 

                                                 
*  Corresponding author. E-mail address: pethes.ildiko@wigner.mta.hu 
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1. Introduction 

Chalcogenide glasses possess noteworthy physical properties, such as low phonon energy, optical 

nonlinearity several orders of magnitude greater than that of silica glass, broad transmittance in the mid 

infrared range, high ionic conductivity, or large photosensitivity [1-3]. These properties make them 

prominent candidates for technical applications in telecommunication, optoelectronics, photonics or 

energy storage [4-6]. 

Chalcogenide glasses can be described as covalent networks with average connectivity controlled by 

the coordination number of the participant elements. It has been found that in glasses of the groups 14, 

15 and 16 (e.g. Ge-As-Se [7], Ge-As-Te [8], Ge-Sb-Te [9]) all components follow the 8-N rule [10], but 

group 13 elements, such as gallium or indium can be fourfold coordinated as well. Moreover, according 

to some recent publications on chalcogenide glasses, the average coordination number of chalcogenide 

atoms can also deviate from the 8-N rule in the presence of metallic components [11].  

Several studies on Ga-Ge-Se glassy system agree that both Ge and Ga atoms are fourfold coordinated 

[12,13]. In the chemically ordered network model, Ge-Ga-Se glasses can be pictured to be made up of 

corner- and edge-shared tetrahedra. The Ga-Se and Ge-Se heteronuclear bonds are prevalent, Se-Se 

bonds appear only in Se rich compositions while metal-metal (Ge/Ga-Ge/Ga) bonds can be found in 

Se-deficient glasses only [13-15]. The average coordination number of Se-atoms is controversial. 2-fold 

coordinated Se atoms are reported on the basis of Raman, extended X-ray absorption fine structure and 

X-ray photoelectron spectroscopy [15], but Raman and multinuclear solid state nuclear magnetic 

resonance spectroscopy investigations showed the formation of triply coordinated Se atoms [12], 

similarly to crystalline Ga2Se3 [16] and GaSe [17]. To explain the physical properties of these glasses a 

previous model assumed 3-fold coordinated Se atoms and 6-fold coordinated Ga atoms [18]. 

Similarly in Ga-Ge-S glasses, it has been found that Ge and Ga are 4-fold coordinated, GaS4/2 and 

GeS4/2 tetrahedral units are cross-linked via bridging sulfur atoms [19,20]. A small number of Ge-Ge 

and S-S bonds were reported in Ge25(As,Ga)10S65 glasses, possessing some chemical disorder [21]. 

Formation of GaS4/2 tetrahedra from Ga2S3 necessarily brings about the formation of metal-metal bonds 

that can either be Ge-Ge or Ga-Ga [22-24]. We also note here that threefold coordinated S has been 

suggested by a recent Raman scattering study on 0.8GeS2-0.2Ga2S3 [25]. 

Not only gallium containing chalcogenide glasses deviate from the 8-N rule. The investigation of Ge-
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In-Se system using X-ray diffraction, neutron diffraction and EXAFS measurements together with 

reverse Monte Carlo simulation method showed that the coordination number of In is around 3.3-3.5 

while that of Se increases with increasing In content and reaches ~2.5 for Ge17In15Se68 [11]. In this 

context, it appeared interesting to explore glass richer in selenium, in particular to investigate the 

coordination of Se and Ga and the existence of homopolar bonds. Two glasses were selected due to 

their technological interest for photonics applications: Ge20Ga10Se70 and Ge20Ga5Se75. Their structure 

was investigated by neutron diffraction and EXAFS. Though the neutron scattering lengths of the 

components are rather close to each other (Ge: 8.185 fm, Ga: 7.288 fm, Se: 7.97 fm) neutron diffraction 

data are still useful due to their higher accuracy of absolute normalization that permits the 

determination of (neutron weighted) coordination numbers with a low uncertainty. This is especially 

useful if the aim is the accurate determination of the coordination number of the main component. 

Large scale models were generated by fitting the experimental datasets simultaneously by the reverse 

Monte Carlo simulation technique (RMC) [26,27]. Short range order parameters were obtained by the 

analysis of particle configurations. 

2. Experimental 

Ge-Ga-Se glasses were prepared by conventional melt quenching method. Ga, Ge and Se with high 

purity (�5N) were used. Chemical reagents were put in silica tubes and pumped under vacuum (10-4

mbar) for 20 h. After first sealing, Se was distilled to remove impurities like OH, H2O and Se-H. After 

distillation of Se, the ampoule was sealed and put in a rocking furnace for melting at 850 °C during 8 h. 

The ampoule was quenched into water, followed by annealing at Tg-20 °C for 3 h. DSC measurements 

were performed with 10 mg powdered samples, heated up to 450 °C at heating rate of 10 °C/min. 

The composition of each sample was checked by using scanning electron microscopy with an energy-

dispersive X-ray analyzer (SDD X-Max 80mm2 Oxford Instruments AZtecEnergy ) at 20 kV. The real 

chemical composition of glass samples (Ge21.1Ga10.3Se68.6 and Ge21Ga5Se74) is in agreement with the 

nominal composition taking into account the error limit of the EDX method used (±1 at.%). Density of 

glass was determined by using a Mettler Toledo XS64. A 3 mm sample was put in the analytical 

balance and the density is determined by averaging three measurements. 

Neutron diffraction experiments were carried out at the 7C2 diffractometer (LLB, Saclay). The 

wavelength of the incident radiation was 0.72 Å. Powdered samples were filled into vanadium sample 
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holders with 6 mm diameter and 0.1 mm wall thickness. Scattered intensities were corrected for 

detector efficiency, background scattering, absorption and multiple scattering following standard 

procedures. 

EXAFS spectra were collected at GILDA-BM08 beamline of the ESRF (Grenoble, France) at the Ga, 

Ge and Se K-edges. The beam was monochromatized by using a fixed-exit double crystal 

monochromator equipped with Si (311) crystals and operated with flat crystals. Two Pd-coated mirrors 

working at an incidence angle of 3.6 mrad were used for harmonics rejection. Data were recorded in 

transmission mode using ionization chambers filled with Ar gas at different pressures to achieve the 

optimal efficiency in the working energy ranges (10%, 80% and 90% of absorption for the I0, I1 and IR 

ionization chambers). Glassy samples were finely ground, mixed with cellulose powder and pressed 

into pellets. The amount of sample in each pellet was chosen considering the glass composition to give 

an absorption µt~1.5 just above the selected absorption edge.  

The extraction of the �(k) EXAFS signals was performed by using the VIPER code [28]. Raw �(k) data 

(see Figure 1) were filtered in two steps: first k
3
�(k) was forward Fourier-transformed into r-space 

using a Kaiser-Bessel window (�=1.5). The k-range of transformation was 1.85 Å-1 -13.3 Å-1 for the Ga 

edge and 1.85 Å-1 -16 Å-1 for the Ge and Se edges. The resulting r-space data were backtransformed 

using a rectangular window (usually over the r-space range 1.1 Å-2.8 Å).

Raman scattering spectra were measured at room-temperature by a HR800 (Horiba Jobin-Yvon) type 

Raman spectrophotometer with 785 nm laser diode as excitation source for 10 s, averaging 10 

accumulations. Light intensity of laser beam on the sample was kept at low level to avoid alterations of 

Raman spectra due to photoinduced structural changes. The position of the 520 cm-1 band of Si was 

examined at beginning and end of the experiment in order to control any possible band shifts. 

3. Reverse Monte Carlo simulation 

Glass compositions, densities and the datasets fitted by RMC++ code [27] are given in Table 1. 

Simulation boxes contained 20 000 atoms. Several models were investigated with different 

combinations of allowed bonds. In order to avoid unphysically short interatomic distances for nearest 

neighbors, a series of minimum accepted interatomic distances (cut offs), usually 2.1-2.2 Å, were 

applied in the simulations. Such cut offs were also used to preclude specific bonds, in such case the 

corresponding cut off has been increased to 2.9 Å for the couple of atoms involved in the forbidden 
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pairs.   

EXAFS backscattering factors (merging backscattering phases, amplitudes and S0
2 values) were 

obtained by the feff8.4 code [29]. For details of fitting EXAFS and diffraction datasets with RMC we 

refer to the literature [27].  

Calculations were carried out according to the following protocol: 

1. Initial configurations were obtained by placing atoms at random in the simulation boxes and 

moving them around to satisfy cut off constraints. In the next step ‘floating atoms’ (with zero 

neighbors) and unreasonably high total coordination numbers (e.g. 4 or higher for Se) were also 

eliminated but no target coordination number values were given as constraints. 

All simulations were started from the as-obtained configurations. The number of accepted moves was 

usually around 1-2 times 107. 

2. Coordination constraint-free runs were carried out to see which types of bonds are needed to get 

reasonable fits of the experimental data. In these calculations, certain bonds were forbidden by raising 

the corresponding cut-offs to 2.9 Å but the total coordination numbers were not constrained. At first a 

reference model was obtained by carrying out a simulation in which all bond types were allowed. 

Then Ga-Ga, Ge-Ge and Ge-Ga bonds were forbidden in various combinations. The obtained models 

were assessed by their cumulative relative R-factors. The relative R-factor of a model with respect to 

the reference model is defined by the following equation: 

�

�

−

−

2
expmod

2
expmod

)S(S

)S(S

=R
refr           (1), 

where Smod and Sexp are the model and experimental curves structure factors (or EXAFS curves), 

refS mod is the structure factor (or EXAFS curves) of the reference model, and the summation runs over 

the experimental points. Cumulative relative R-factors (Rc) are obtained by simply averaging the 

relative R-factors of a model. 

3. Finally coordination constraints were applied to check the fulfilment of the 8-N rule and other 

assumptions from the literature. In these models Ge and/or Ga atoms were forced to have four 

neighbors (any allowed type) while the coordination number of Se was either allowed to change freely 

or was forced to be 2. The coordination constraints were fulfilled by at least 95% of the atoms.  
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4. Results and discussion 

4.1. RMC investigations  

 Ge20Ga10Se70

A long standing question of the short range order of Ge-Ga-Se glasses is whether metal-metal bonds 

exist or Ge and Ga atoms bind only to Se. To answer this question models with every possible 

combination of allowed metal-metal bonds (including the model where all metal-metal bonds are 

forbidden) were tested. It was found that if all metal-metal bonds are forbidden then the relative R-

factors of both the Ge and Ga EXAFS measurements increased strongly. As the measurements can still 

be fitted properly if Ge-Ge and Ga-Ga bonds are forbidden but Ge-Ga pairs are allowed these runs 

suggest that the necessary metal-metal bond is most probably the Ge-Ga one. 

The coordination constraint-free reference model gives an average coordination number 3.84 for 

germanium and 3.8 for gallium, confirming that Ge and Ga atoms are predominantly fourfold 

coordinated. In fact, forcing Ge and Ga atoms to be fourfold coordinated does not change the overall fit 

quality. The strictest model where we still got adequate fits was the one in which Ge-Ga bonds were 

allowed, Ga-Ga and Ge-Ge bonds were eliminated, and both Ge and Ga were forced to be fourfold 

coordinated. Hereafter this will be called as ‘final model’. The simulated diffraction and EXAFS curves 

from this final model are compared to the experimental data in Figures 2 and 3. The partial pair 

correlation functions obtained by this model are presented in Figure 4. The coordination numbers and 

the bond distances obtained with the final model are in Table 2.  

The uncertainty of Ge-Ga coordination number was estimated by forcing it stepwise to lower or higher 

values and monitoring the changes in the R-factors [7]. The lower limit of the Ge-Ga coordination 

number according to this procedure is ~0.45. If we accept that both Ge and Ga are strictly fourfold 

coordinated, then the existence of such a lower limit for the Ge-Ga coordination number involves the 

existence of strict upper limits for the Ge-Se and Ga-Se coordination numbers (~ 3.5 and ~ 3.1, 

respectively). 

The formation of Ge-Ga bonds also means the decrease of the number of Se-Ge and Se-Ga bonds and 

thus promotes Se-Se bonding even in stoichiometric compositions. It is reasonable to assume that the 

increased solubility of rare earths is connected to the presence of small Se clusters that can host large 

cations. 

The total average coordination number of selenium (NSe) proved to be higher than two regardless the 

constraints applied to the type and number of the neighbors of Ge and Ga. NSe always increases if 

metal-metal bonds are forbidden. Different coordination constraints were applied to selenium to check 
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whether the deviation from the 8-N rule is significant. We found that it was not possible to get 

reasonable fits and reasonable structural parameters simultaneously with twofold coordinated Se atoms. 

Such models either gave significantly poorer fits or exhibit some spurious features to compensate the 

forced decrease of the Se coordination number (e.g. the coordination number of Ge becomes as high as 

4.6).  

We also made simulation runs with constraints for the average coordination number of selenium 

(increasing and decreasing it from 2.3, the value obtained in the final model). Figure 5 shows the 

relative R-factors of the neutron diffraction dataset (Rr
ND) at different NSe values. The fit quality decays 

drastically for NSe < 2.15. From these simulation runs, it can be concluded that the average coordination 

number of selenium is around 2.3 ± 0.15. 

It is remarkable that in the final model (4-fold coordinated Ge and Ga, Ge-Ge and Ga-Ga bonds are 

forbidden) the sum of Se-Se and Se-Ge coordination numbers is very close to two (1.97) suggesting 

that Se forms the ‘third bond’ with Ga. It is not so surprising if we consider that glass-ceramics formed 

from Ge-Ga-Se glasses will mainly present Ga2Se3 crystallites [30]; the Ga2Se3 crystallized phase is 

built up from corner sharing GaSe4 tetrahedra and one third of Se is three-fold coordinated in these 

tetrahedra. A similarly increased coordination number of Te was reported previously in the Ga-Ge-Te 

system [31].  

Ge20Ga5Se75

Due to the lower gallium concentration, the uncertainty of Ga-related structural parameters is higher 

here than in case of Ge20Ga10Se70. However, it is reasonable to suppose that Ga behaves essentially in 

the same way in the two compositions. Therefore the coordination number of gallium was forced to be 

four in each simulation run but the scenario applied for Ge20Ga10Se70 was used otherwise (e.g. test of 

Ge/Ga-Ge/Ga bonds, test of Se total average coordination number). In accordance with the lower Ga 

(and higher Se) content it has been found that neither Ga-Ga nor Ge-Ge bonds improve the fit quality. 

On the other hand, elimination of all metal-metal bonding results in a significant worsening of fits. 

Coordination numbers and bond lengths are shown in Table 3. Our results suggest that the environment 

of gallium atoms does not strongly differ in the two compositions. The total coordination number of Se 

is significantly higher than 2 (2.25 ± 0.15). 

Introducing Ga at the expense of Se in Ge20Se80 parent glass brings about the increase of mean 

coordination number, and thus enhances the stability of the vitreous state. This is manifested by higher 

values of the glass transition temperature (see Table 4). 
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4.2. Comparison with Raman spectroscopy analysis

The glass network structure can be easily affected by the synthesis conditions and slight changes in 

composition. Nevertheless, the Raman spectra of Ge20Se80, Ge20Ga5Se75 and Ge20Ga10Se70 glasses are, 

as expected dominated by two broad bands in the ~175-225 cm-1 and ~230-325 cm-1 spectral regions 

(see Figure 6). The two peaks observed at ~200 and ~215 cm-1 are attributed to A1 symmetric stretching 

mode of corner linked GeSe4/2 tetrahedra and to A1
c breathing vibration mode (also called companion 

mode) likely related to symmetric vibration mode of GeSe4/2 tetrahedra connected by edge [32-34]. The 

bands related to germanium and gallium structural units certainly overlap due to close atomic weights 

of these elements and amorphous character of the matrix leading to broad vibration modes [18]. With 

introduction of Ga, the maximum of the dominant band of Raman spectra slightly shifts to higher 

frequency from 195 cm-1 to 197 cm-1. A slight broadening of the peak width is observed when Ga 

concentration increases. One can also note that the ratio between the intensity of the A1 and the A1
c

contributions is slightly decreasing, suggesting that corner linked tetrahedra are broken first by Ga 

introduction. 

The broad band of lower intensity, covering the ~230-325 cm-1 region possess several contributions. 

The asymmetry of the band peaking at 265 cm-1 reveals the presence of homonuclear Se-Se bonds 

originating from different kind of entities : i) Se chains at ~235 cm-1 [13,33,35] also proposed at 265 

cm-1 [13,36,37], ii) stretching mode of Se-Se bond in Se8 rings [33,35] and at the outrigger raft structure 

at ~245-250 cm-1 [35], iii) Ge(Ga)Se4/2 corner-shared dimers linked by dimers or small chains at ~265 

cm-1 [13,38]. A weak contribution of F2 asymmetric vibration mode of Ge(Ga)Se4/2 tetrahedral at higher 

frequencies (~285-315 cm-1) is not affected by Ga increase as the main bands at 199 cm-1 in term of 

intensity. The decrease of 265 cm-1 band with increasing Ga content is representative of the decrease of 

Se content compared to (Ga+Ge) concentration.  

The observed band in the range of 166 cm-1-175 cm-1 is usually associated with metal-metal bonds (e.g. 

Ge(Ga)-Ge(Ga) bond vibrations in Ge(Ga)2Se6/2 ethane like entities) [13,18,33,34,36,38]. According to 

our RMC results, we can clearly conclude that this band increasing with Ga content reveals the 

presence of Ge-Ga bonds in Se-rich Ge-Ga-Se glasses.   

5. Conclusions
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The structure of Ge20Ga10Se70 and Ge20Ga5Se75 glasses was investigated by neutron diffraction and 

EXAFS spectroscopy. Experimental datasets were fitted simultaneously by the reverse Monte Carlo 

simulation technique. Several models were created by eliminating various bond types and using 

coordination constraints. It has been established that Ge and Ga are both fourfold coordinated. Our 

results also show that Ga enters the germanium selenide host network by forming Ge-Ga bonds. By 

decreasing the number of Se atoms around Ge and Ga these bonds contribute to the formation of Se-Se 

bonds. Thus, adding Ga to the Ge-Se matrix brings about the increase of ‘free’ Se atoms which may 

higher solubility of rare earths in Ge-Ga-Se glasses. The average coordination number of Se increases 

due to the Ga-Se ‘extra’ bonds. The higher average coordination of the network is responsible for the 

increase of Tg upon adding Ga to Ge20Se80 glasses.
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nominal composition real composition 

(±1%) 

density (g/cm3) 

(±0.01) 

atomic density 

(±0.0001) 

Ge20Ga10Se70 Ge21Ga10Se69 4.42 0.0347 

Ge20Ga5Se75 Ge21Ga5Se74 4.38 0.0342 

Table 1 Compositions modeled and their densities. 

bond type coordination number bond distance 

Ge-Ga 0.75 (0.45-1.6) 2.48 ± 0.03 

Ga-Ge 1.55 (0.9-3.3) 2.48 ± 0.03 

Ge-Se 3.2 (2.4-3.5) 2.36 ± 0.01 

Se-Ge 1.0 (0.75-1.1) 2.36 ± 0.01 

Ga-Se 2.45 (0.85-3.1) 2.38 ± 0.02 

Se-Ga 0.35 (0.12-0.45) 2.38 ± 0.02 

Se-Se 0.97 (0.8-1.45) 2.36 ± 0.02 

Table 2 Coordination numbers and bond distances of Ge20Ga10Se70 obtained by the final model. (The 

values in brackets denote the range of the parameters in which the R-factors of the corresponding 

models are still low. The ranges are rather broad but can be most likely narrowed if changes of bond 

distances are also monitored. Stretched coordination numbers are often accompanied with stretched –

artificially short/long- bond lengths.) 

bond type coordination number bond distance 

Ge-Ga 0.45 2.48 ± 0.03 

Ga-Ge 1.75 2.48 ± 0.03 

Ge-Se 3.6 2.36 ± 0.01 

Se-Ge 1.0 2.36 ± 0.01 

Ga-Se 2.25 2.37 ± 0.02 

Se-Ga 0.15 2.37 ± 0.02 

Se-Se 1.1 2.35 ± 0.01 

Table 3 Coordination numbers and bond distances of Ge20Ga5Se75 sample 
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composition Tg (°C) (±5°C) 

Ge20Se80 162 

Ge20Ga5Se75 197 

Ge20Ga10Se70 257 

Table 4 Glass transition temperatures (Tg) of the investigated compositions and the parent Ge20Se80

glass.

Figure Captions 

Figure 1 Experimental k3 weighted Ge, Ga and Se K-edge  EXAFS curves and the magnitude of their 

Fourier transforms (FT):  Ge20Ga5Se75 (solid black line) and  Ge20Ga10Se70 (dashed red line).

Figure 2 Neutron diffraction structure factor (symbols) and fit (line) for the final model (see text) of 

Ge20Ga10Se70 sample. 

Figure 3 Ge, Ga and Se K-edge k
3
� filtered experimental curves (symbols) and fits (lines) for the final 

model of Ge20Ga10Se70.

Figure 4 Partial pair correlation functions for the final model of Ge20Ga10Se70 sample. 

Figure 5 Relative R-factor of the neutron diffraction dataset at different values of the average 

coordination number of selenium. In this model Ge-Ge and Ga-Ga bonds were forbidden, and 

constraints were applied for the germanium and gallium atoms (to be fourfold coordinated).

Figure 6 Raman spectra of the Ge20Se80, Ge20Ga5Se75 and Ge20Ga10Se70 glasses at 785 nm laser 

excitation. All curves are normalized to the intensity of the strongest band. 
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• The coordination number of Se is significantly higher than 2. 
• Ga-Ge bonds can be found even in Se-rich compositions. 
• The formation of Se-Se bonds increases the solubility of rare earth ions 
• The coordination number of Ga is 4. 


