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Abstract 

 

Di (2-EthylHexyl) Phthalate (DEHP) was selected as a biodegradable organic solvent to be 

implemented in a two-phase partitioning bioreactor (TPPB) dedicated to remove a model 

hydrophobic volatile organic compound (VOC), toluene. In a first step, the absorption capacity 

of toluene in the selected organic solvent was examined according to the partition coefficients 

H. In a second step, toluene biodegradation in DEHP by non-acclimated activated sludge was 

carried out for different volume fractions of DEHP in water and five different toluene 

concentrations (4.3, 43, 106, 212 and 430 mg l-1). Toluene showed high affinity for DEHP with 

H = 0.99 Pa.m3.mole-1. Both toluene and DEHP were completely consumed for 4.3 mg l-1 (initial 

toluene concentration) and a volume ratio of 0.1% DEHP in water. For an initial toluene 

concentration of 106 mg l-1 and a volume ratio of 0.1%, total toluene consumption and 87% 

DEHP degradation yield were obtained after seven days of incubation.  

 

Keywords : DEHP, biodegradation, activated sludge, VOC. 

1. Introduction 

Removal of volatile organic compounds (VOCs) like toluene is an important issue for human 

health, as well as for environment. Indeed, many of these compounds are toxic and considered 

as priority pollutants by the United States Environmental Protection Technology (US-EPA) 

(Ozturk and Yilmaz, 2006). Various technologies are available to perform their elimination: 

physical methods, like absorption, adsorption and condensation, and destructive methods, like 

incineration, catalytic treatment and biological treatment (Heymes et al., 2006; Kraakman et 

al., 2011). Recently, biological treatments of VOC have been extensively explored as an 

alternative to conventional methods, like incineration and catalytic treatment, according to the 

several advantages they offer in comparison to these conventional methods. Indeed, they do not 

produce any harmful by-products , are probably the most economical techniques for waste air 

treatment, and are also environment-friendly (Yeom and Daugulis, 2001a; Mudliar et al., 2010). 

Nevertheless, many VOC are hydrophobic and their removal in biological processes is limited 
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by the difficulty to achieve substrate absorption in an aqueous phase, since microorganisms 

require water for their growth and hence pollutants transfer from gaseous polluted streams to 

an aqueous phase is needed (Collins and Daugulis, 1999).  

In order to remove hydrophobic compounds such as toluene, benzene and xylene, a promising 

process consists in the coupling of absorption and biodegradation in a two-phase partitioning 

bioreactor (TPPB). To improve gas–liquid mass transfer of hydrophobic compounds, the 

absorbent is a Non-Aqueous Phase Liquid (NAPL) (Déziel et al., 1999; Darracq et al., 2012). 

Several results dealing with TPPBs are available in the literature (Yeom et al., 2000; Davidson 

and Daugulis, 2003; Aldric and Thonart, 2008; Quijano et al., 2009). The first step of TPPBs 

consists of VOC absorption in the NAPL and the second one concerns NAPL regeneration by 

VOC biodegradation. NAPL improves VOC absorption and at the same time decreases its 

toxicity towards microorganisms by lowering their concentration in the aqueous phase (Van 

Groenestijn and Lake, 1999; Tomei et al., 2010) 

According to Abu Hamed et al., (2004) the most important criteria in the selection of a NAPL 

is its biocompatibility (absence of toxicity towards microorganisms), which can be estimated 

through its Log P value. According to Laane et al., (1987), solvents with a log P greater than 4 

are generally not toxic. However, NAPL can be attacked by microorganisms: for example 

(Darracq et al., 2009) found that DEHA was assimilated by activated sludge. Possible NAPL 

assimilation is especially undesired owing to their significant cost and hence their recycling is 

important in view of their reuse in a TPPB (Cesário et al., 1998; Darracq et al., 2010). Muñoz 

et al., (2007) considered that it is difficult to predict the stability of a given NAPL in the 

presence of microorganisms on long term, owing to a possible emergence of microorganisms 

able to degrade the NAPL. 

In a previous study (Béchohra et al., 2014), another alternative was tested to overcome this 

technological lock; a biodegradable solvent (hexadecane) was used as a model solvent. In this 

case, the solvent should be biodegradable leading to its removal, concomitantly with the target 

VOC. 

 

In the present work, toluene was chosen as hydrophobic VOC, due to its production in various 

industrial sectors : fuel, solvent and starting material for the production of plastics, paints, 

resins, pesticides and dyes (Yeom and Daugulis, 2001b). In view of its subsequent removal in 

a TPPB, its transfer in a liquid phase should be considered and for this purpose, the chosen 

solvent must be of low cost, not biodegradable by microorganisms and should have a good 

capacity to absorb the VOC (Daugulis and Boudreau, 2003). The solvent selected in this study 

was Di (2-EthylHexyl) Phthalate (DEHP). It is the most used plasticizer among the PVC 

products. It is considered as a hazardous substance for human health and hence is classified as 

Category II, by US-EPA, due to its toxicity towards reproduction and development (cancer-

causing chemicals classification criteria) (LaGrega et al., 1994). DEHP is released in large 

amounts in the environment (air, water and soil); the quantities issued are evaluated at 28,653 

tons / year in Europe throughout its life cycle, i.e. from production to consumption, and finally 

as waste (Rank, 2005; Chao et al., 2015).  

 

The aim of this work was therefore to study the biodegradation by activated sludge of the 

considered VOC in an emulsion of water/DEHP, simultaneously with the biodegradation of the 

selected organic solvent (DEHP). A particular attention was brought to the optimization of the 

ratio water/solvent.  
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2. Material and Methods 

2.1.  Microorganisms and media 

The biomass used in this work was activated sludge (AS) from Beaurade, the municipal 

wastewater treatment plant of Rennes (France). AS was washed four times with water to avoid 

any nutrients other than those contained in the culture media. The sludge was incubated in an 8 

L lab-reactor. For growth and conservation, the activated sludge was cultivated under oxygen 

flow on the following mineral medium (2 g/day): Peptone, 0.64 g; K2HPO4, 0.11 g; NH4Cl, 

15.2 g; CH3COONa, 140 g and some drops per month of Viandox (as an additional carbon 

source). Before use, activated sludge was washed several times with distillated water and 

diluted in a mineral salts medium containing (Chikh et al., 2011): KH2PO4: 3.4 g l-1 ; Na2HPO4: 

3.09 g l-1; NH4Cl: 5 g l-1; MgSO4: 0.12 g l-1; CaCl2: 0.05 g l-1; ZnSO4: 0.01 g l-1; MnSO4: 0.01 

g l-1; CuSO4: 0.003 g l-1; (NH4)2Fe(SO4)2: 0.1 g l-1. The pH was adjusted to 7 ± 0.2. 

2.2. VOC and Solvents 

The selected VOC was toluene from Carbo Erba reagenti (Peypin, France) and the solvent used 

was DEHP (MW = 390.60 g mol-1, d = 0.970, Tboiling = -50 °C) from Acros organic (Geel, 

Belgium). 

2.3. Batch cultures 

Experiments were conducted in 250 ml Erlenmeyer flasks closed with cellulosic caps to allow 

air exchange during the first set of experiments, and then with glass caps equipped with two 

sampling points sealed with Teflon septum allowing needle introduction. To sample the gaseous 

phase, a microsyringe with a capacity of 500 µl was used and the sample was injected directly 

in the gaseous chromatography (GC); aqueous samples were stored in closed vials for further 

analysis of by-products. The Erlenmeyer headspace was 50 ml. For each experiment, a given 

number of identical 250 ml Erlenmeyer flasks were considered. Initially a concentration of 4.3 

g of toluene per liter of DEHP was tested for four volume ratios DEHP in water: 5%, 2%, 0.5% 

and 0.1%. Each series of experiments consisted of 13 flasks containing 0.5 g l-1 of activated 

sludge and nutrients as indicated above (see microorganisms and media). A blank test 

containing the considered amount of DEHP was also carried out to determine the fraction of 

VOC lost by possible leaks or adsorption on the cellulosic stoppers; its composition was the 

same as the other flasks except for nutrients and biomass. Stirring was set at 300 rpm and flasks 

were placed in a thermostated oven (T = 25°C). Because of the biodegradability and the 

negligible solubility of DEHP in the aqueous phase, it was not possible to perform a 

homogenous sampling of the two-phase system and hence a sacrificial method was considered, 

at pre-determined time intervals, duplicate Erlenmeyers were taken for analysis. Gaseous 

sample was analyzed to quantify the remaining toluene quantity.  

2.4. Analytical Methods 

The toluene concentration in the gas phase was measured by gas chromatography (GC) coupled 

with a flame ionization detector from Thermo scientific (California, United States). Metabolites 

formed in the aqueous phase were identified by gas chromatography coupled with mass 

spectrometry (MS) with headspace (HS) from Perkin Elmer (California, United States). For the 

quantification of DEHP degradation, an extraction by hexane (25% v/v) coupled to 10 min 

ultrasonication was performed. The extract was then analyzed by gas chromatography coupled 

with a flame ionization detector from Perkin Elmer. The analytical conditions are reported in 
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Table 1 and were selected according to the related literature (Chikh et al., 2011; de Moura 

Carrara et al., 2011). 

The toluene partition coefficient in each of the different phases was measured by the static 

method, by introducing a known amount of toluene in 22 ml vials sealed, having introduced the 

organic solvent or the emulsion in advance. Then the system was subjected to a fixed rotary 

shaking at a constant temperature of 25°C. 

The equilibrium was reached after 48 hours; toluene concentration in the gas phase was 

quantified by gas phase chromatography (table 1). According to the mass balance, toluene 

concentration in the aqueous phase was then deduced. Then, the dimensionless Henry’s 

constant (H) and Henry’s constant (H’) could be calculated by Equations (1) and (2) 

respectively: 

 

H CL = CG                                                         (1) 

 

                                     H’ = H R T                                                      (2) 

R and T are the constant of perfect gas and the working temperature respectively. 

The total amount of toluene mt was then deduced from the mass balance (Equation 3):  

mt = mtg + mte                                                                        (3) 

mtg, mte were the toluene mass in the gas phase and in the emulsion (DEHP in water) 

respectively at a given time t; mtL the toluene mass lost was deduced from the blank test between 

the initial time and a given time t:   

mtL = (m0gb + m0eb) – (mtgb + mteb)                        (4) 

m0gb, m0eb were the toluene masses of the blank test in the gas phase and the emulsion at initial 

time and mtgb, mteb were the toluene masses of the blank test at a given time t in the gaseous 

phase and the emulsion. 

Toluene concentration in the emulsion at a given time t in the gas phase and in the blank test 

can be then deduced from the partition coefficient H for different volume fractions and from 

the toluene concentration in the gaseous phase at a given time t (Eq. 5): 

     Ce = CG/H                                              (5) 

The biomass growth was quantified by means of turbidimetric measurements at 600 nm which 

were related to dry matter (DM) through a calibration curve.  

 

The experiments were performed in duplicate; the mean values with the corresponding error 

were reported in the figures. 

3. Results and discussion 

3.1. Partition coefficient  

Figure 1 shows the toluene concentration in the gas phase (mg l-1) as a function of the toluene 

concentration in the liquid phase (mg l-1) when equilibrium was reached. To model 

experimental points, straight lines were used with correlation coefficients (R2) greater than 0.99, 

confirming the accuracy of the method. The adimensionless Henry’s constant H, corresponded 

to the slope of the straight lines (Eq. 1). The value (H’) obtained for pure DEHP was 0.99 

Pa.m3.mole-1. As a comparison, the value of the toluene partition coefficient in silicone oil 
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(PDMS, 5 cP viscosity) and hexadecane given in the literature were 1.6 and 2.50 Pa.m3.mole-1, 

respectively  (Vuong et al., 2009; Darracq et al., 2010). Several volume ratios of DEHP in water 

were tested (5%, 2%, 0.5% and 0.1%). As expected, the partition coefficient increased for 

decreasing ratios (Table 2).  

 

Even for a volume ratio of 0.1%, H was significantly lower than that of water, since a value of 

247.76 ±10.23 Pa.m3.mole-1 was obtained, which should be compared to that of water, 652 

Pa.m3.mole-1 (Robbins et al., 1993); it is however less attractive than a ratio close to 2%. 

 

3.2. Biodegradation kinetics  

3.2.1. Influence of the DEHP volume fraction 

Time-courses of the toluene amount in the gas phase for the four volume ratios of DEHP in 

water tested are shown in Figure 2a. Experiments were carried out for an initial toluene 

concentration in DEHP of 4.3 g l-1. For all volume ratios, the toluene amount decreased over 

time, indicating its consumption by the activated sludge. The decrease of the pH confirmed the 

bacterial activity (about 0.5 pH unit less per day). Less than four days were necessary for 

activated sludge to remove toluene in the DEHP whatever the DEHP-to-water ratio. As 

expected, the time needed for total toluene consumption decreased with the volume ratio, 

indicating a lower degradation time when the volume ratio decreased, since the initial toluene 

concentration in DEHP was maintained constant. Figure 2b shows the total toluene amount 

deduced from the mass balance (Eq. 3), taking the toluene losses during the assays into account. 

The whole amount of toluene initially introduced was not totally degraded since some toluene 

was lost due to gas leaks through caps and / or adsorption on caps (Darracq et al., 2009). The 

toluene degradation rate in 5% DEHP was 9.56 mg l-1.d-1, higher than the value found in a 

previous study with hexadecane, namely 5.78 mg l-1.d-1 (Béchohra et al., 2014). 

The degradation rate decreased with the volume ratio leading to a significant percentage of 

leaks, especially in the case of the ratio of 0.1% (90% of losses). Indeed, for a low volume ratio, 

bioavailability is limited by stripping and hence no adapted biomass can develop in the system 

(Mozo et al., 2012). To reduce the leaks, a test was carried out with Erlenmeyer flasks closed 

by glass caps for the ratio of 0.1%, leading to a significant reduction of the leaks, 29%. 

DEHP biodegradation was also examined for the four DEHP/water volume ratios considered 

(Figure 3). For a ratio of 5%, a lag time of 3 to 4 days was observed, followed by a decrease of 

the DEHP amount over time; the degradation yield reached 21% after seven days, which was 

quite low in comparison with the targeted objective. Nonetheless, (Chang et al., 2004) found 

that the degradation of eight phthalate esters (among them DEHP) is delayed by the addition of 

an aromatic hydrocarbon, nonylphenol. The presence of toluene could therefore slow the DEHP 

biodegradation, indicating a preference of the activated sludge for toluene over DEHP. Previous 

studies on phthalate esters also suggested that the length of the alkyl chain affects 

biodegradation. Short chain phthalate esters would be more biodegradable than long chain 

phthalate esters such as DEHP (Boonnorat et al., 2014). 

For the ratio of 2%, there was no noticeable lag time; however, a similar and low DEHP 

degradation was observed (21%). A pH decrease was also noted (0.5 unit per day), as well as a 

bacterial growth, from 0.5 gMS l-1 to 2.7 and 2.1 gMS l-1 for the ratios of 5 and 2%, respectively, 

proofs of biological activity (Results not shown) 
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When the ratio was reduced to 0.5%, the DEHP degradation was faster and the yield reached 

46.7% after 7 days. Finally, for a very low ratio (0.1%), the DEHP amount decreased over time 

until a final mass of 0.018 g, corresponding to a degradation yield of 92.4%, i.e. an almost total 

consumption of DEHP by microorganisms after 7 days. Some authors also achieved a complete 

DEHP biodegradation for an initial solvent concentration of 0.75 g l-1 (corresponding to 0.08% 

DEHP/water volume ratio) in just 40 hours, but using pure Gordonia sp. (Sarkar et al., 2013). 

To conclude, concomitant biodegradation of toluene and DEHP showed good results when the 

DEHP-to-water volume ratio was 0.1% in the presence of activated sludge. 

3.2.2. Degradation of 0.1% DEHP in water 

A new series of experiments was carried out in bottles closed with glass caps to minimize 

leakages. The variations of the total toluene amount for initial concentrations ranging between 

43 and 430 mg l-1 are shown in Figure 4. For the high concentrations, 212 and 430 mg l-1, no 

decrease of the toluene amount was observed within 7 days; although an increase in dry matter 

was observed for both concentrations (Figure 5), suggesting a preference of the microorganisms 

for DEHP over toluene (Figure 6) and/or most likely due to a toxicity of toluene at high 

concentrations. In fact, (Hino et al., 1994), who investigated the degradation of two carbon 

substrates, glucose and lactate by a bacterial strain, Megasphaera elsdenii, found that 

surprisingly the strain shows a preference for lactate over glucose. Besides, (Bordel et al., 2007) 

highlighted a decrease of the specific growth rate of Pseudomonas putida for a toluene 

concentration of 250 mg l-1. It was also reported that the lowest toluene concentration that 

inhibits Burkholderia cepacia species is 155 mg l-1 (Alagappan and Cowan, 2003). 

At low initial toluene concentrations, 106 and 43 mg l-1,   after 48 hours lag time, the toluene 

quantity decreased until reaching a yield of 60%, taking into account that the rest of the toluene 

corresponded to the leaks. This proved that a toluene concentration of 106 mg l-1 was not 

inhibitory for activated sludge and can be totally biodegraded, as for an initial toluene 

concentration of 43 mg l-1.  

Figure 6 shows the variations of DEHP amount with time, for initial toluene concentrations in 

the range 43 to 430 mg l-1. For low toluene concentrations the DEHP amount decreased at the 

beginning of the experience, and then reached a constant value between the 2nd and the 5th day. 

This latter phase may be due either to the presence of biodegradation by-products, including 2-

ethylhexanol and octanal, or to the impoverishment of the culture medium in dissolved oxygen. 

Indeed, according to (Magdouli et al., 2013), under aerobic conditions, more than a week or a 

month are necessary for DEHP biodegradation, while in anaerobic conditions, the DEHP half-

life time exceeds one month. DEHP biodegradation was then observed beyond the 5th day, 

which would show an acclimation of microorganisms to toxic by-products, or to the absence of 

oxygen. Figure 5 shows that the biodegradation obtained after 7 days culture reached 68.9 and 

87.0% for initial toluene concentrations of 43 and 106mg l-1. 

For toluene concentrations of 430 mg l-1 and 212 mg l-1, there was a significant decrease of the 

DEHP amount during the first 24 hours, which coincided with a significant growth of activated 

sludge (Figure. 5). Beyond 4 days of culture, dry matter and DEHP concentration remained 

constant. This may be due to the presence of 2-ethylhexanol and 2-ethylhexanal, which were 

the DEHP degradation by-products detected by GC/MS, but also to an inhibitory effect of 

toluene at these high concentrations, as shown above (Figure. 4). Oxygen depletion cannot be 

questioned, since for the same DEHP amount and using glass caps, DEHP degradation reached 

69% for the initial toluene concentration of 43 mg l-1.  
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Conclusions 

DEHP was investigated as a possible weak added-value solvent. The experiments carried out 

in Erlenmeyer flasks allowed to choose a DEHP-to-water volume ratio of 0.1%, which shows 

interesting results in comparison to other volume ratios (5, 2 and 0.5%). Indeed, high DEHP 

biodegradation was observed after 7 days, up to a degradation yield of 83%, without acclimation 

of activated sludge. However, gas toluene losses due to leakage remain a problem to solve. An 

alternative solution was to close the flasks with glass caps instead of cellulose caps. Thereafter, 

different initial toluene concentrations were tested in flasks. A toluene concentration of 106 mg 

l-1 showed the highest degradation yields for both toluene and DEHP. Beyond twice this 

concentration (212 mg l-1), the toluene was not removed, showing the limits of the system. 
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Figure captions 

 

Figure.1. Determination of the partition coefficient (H) for different volume fractions of 

DEHP in water  

 

 

Figure.2. Time-course of toluene amount in the gas phase (a) and its total amount (b) during 

biodegradation by activated sludge in batch culture for an initial toluene concentration in 

DEHP of 4.3 g /L , pH =7, T=25°C, stirring rate = 300 rpm.  
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Figure.3. Time-course of DEHP amount during biodegradation by activated sludge in batch 

culture for an initial toluene concentration in DEHP of 4.3 g /L ,  pH =7, T=25°C, stirring 

rate = 300 rpm.  

 

 

 

 

 

Figure.4. Time-course of toluene total amount during biodegradation by activated sludge in 

batch culture for a volume ratio DEHP in water of 0.1 % , pH =7, T=25°C, stirring rate = 

300 rpm. 
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Figure.5. Time-courses of dry matter during biodegradation by activated sludge in batch 

culture for a volume ratio DEHP in water of 0.1 % , pH =7, T=25°C, stirring rate = 300 rpm. 

 

 

 

 

Figure.6. Time-course of DEHP amount during biodegradation by activated sludge in batch 

culture for a volume ratio DEHP in water of 0.1 %, pH =7, T=25°C, stirring rate = 300 rpm  
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