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Highlights

"Hypermutator Salmonella Heidelberg induces an early cell death in epithelial cells"

We have investigated the virulence of a Salmonella with hypermutator phenotype. Epithelial cells were infected with hypermutator or normomutator strains. Internalised hypermutator strain induced epithelial cells death by apoptosis.

MutS played a key role in this phenotype

This work allows us to expand our knowledge on bacteria with an alteration in MutS.

It provides useful information given that mutators are found in pathogenic specimens.

Introduction

Salmonella Heidelberg is the third most common serovar causing invasive extraintestinal infections associated with severe disease symptoms [START_REF] Wilmshurst | Splenic abscess due to Salmonella Heidelberg[END_REF]. Among natural population of S. Heidelberg, some strains display a hypermutator phenotype by harboring mutations in Methyl Mismatch Repair system (MMR) (Le [START_REF] Gall | Distribution of mutation frequencies among Salmonella enterica isolates from animal and human sources and genetic characterization of a Salmonella Heidelberg hypermutator[END_REF]. Hypermutation allows some bacteria to adapt to adverse environmental conditions, including antibiotic exposure [START_REF] Blázquez | Hypermutation as a factor contributing to the acquisition of antimicrobial resistance[END_REF]. The prevalence of strong mutators, which are characterized by an increased frequency of spontaneous mutations, ranges from about 1% among pathogenic strains of Escherichia coli to more than 30% among Pseudomonas aeruginosa strains isolated from cystic fibrosis patients [START_REF] Oliver | High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection[END_REF]. Identification of hypermutator strains among clinical bacteria has generated many questions of whether this evolution contributes to bacterial virulence [START_REF] Mérino | A hypermutator phenotype attenuates the virulence of Listeria monocytogenes in a mouse model[END_REF].

Intestinal epithelial cells are the primary host targets during the initial phase of enteroinvasive Salmonella infection [START_REF] Ohl | Salmonella: a model for bacterial pathogenesis[END_REF]. Salmonella are able to replicate inside the intestinal cells and induce cell death [START_REF] Kim | Apoptosis of human intestinal epithelial cells after bacterial invasion[END_REF][START_REF] Paesold | Genes in the Salmonella pathogenicity island 2 and the Salmonella virulence plasmid are essential for Salmonella-induced apoptosis in intestinal epithelial cells[END_REF]. Cell death commonly occurs through pyroptosis or apoptosis. Each of these cell death pathways is regulated by distinct molecular mechanisms. For instance, pyroptosis is an inflammatorymediated form of cell death characterized by activation of caspase 1, whereas apoptosis is a form of programmed cell death initiated by two major pathways, named the extrinsic and intrinsic pathways. In the case of apoptosis, coordinated activation of two groups of caspases is responsible for apoptotic cellular degradation. Based on their position in the apoptotic cascade, caspase 8 or caspase 9 initiates a downstream cascade of effector protease such as caspase 3, which cleaves various substrates and leads to the execution of cell death [START_REF] Man | Salmonella infection induces recruitment of Caspase-8 to the inflammasome to modulate IL-1 production[END_REF]. Salmonella trigger death of cultured epithelial cell lines in vitro by apoptosis, whereas in macrophages, Salmonella rapidly trigger pyroptosis which is dependent on caspase 1 [START_REF] Kim | Apoptosis of human intestinal epithelial cells after bacterial invasion[END_REF][START_REF] Fink | Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells[END_REF].

Initial studies suggested that Type Three Secretion System (T3SS) was involved in cell death mechanism [START_REF] Fink | Pyroptosis and host cell death responses during Salmonella infection[END_REF]. T3SS1 translocates SipA, SipB, SipC and SopB proteins, which are implicated in invasion through the plasma membrane of the host cell. SipB has been shown to induce macrophage apoptosis by activating caspase 1, whereas SopB induces anti-apoptotic activity in infected epithelial cells [START_REF] Hersh | The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1[END_REF]Knodler et al., 2005).

The role of the strong mutator phenotype in pathogenic bacteria has already been discussed [START_REF] Jolivet-Gougeon | Bacterial hypermutation: clinical implications[END_REF][START_REF] Bars | Strong mutator phenotype drives faster adaptation from growth on glucose to growth on acetate in Salmonella[END_REF], but the link between this phenotype and virulence is not yet well understood. In the present work, the interaction between epithelial cells and S. Heidelberg with hypermutator phenotype was investigated. Indeed, S. Heidelberg B182 strain, used as a model in this study, was characterized by a mutation in mutS (Le [START_REF] Gall | Distribution of mutation frequencies among Salmonella enterica isolates from animal and human sources and genetic characterization of a Salmonella Heidelberg hypermutator[END_REF]Le Bars et al., 2012b). Internalised B182 bacteria induced rapid epithelial cell death by activating caspases 2, 9 and 3. This killing of epithelial cells required bacterial protein synthesis and direct interaction with living bacteria.

Materials and methods

Bacterial strains, cell culture and infection protocol

Strains of S. Heidelberg previously described (Le [START_REF] Gall | Distribution of mutation frequencies among Salmonella enterica isolates from animal and human sources and genetic characterization of a Salmonella Heidelberg hypermutator[END_REF] were used in this study: one was a B182 , with a hypermutator phenotype (deletion of 12 bp in mutS), and the two others were normomutator wild type strains, WT and SL486 (Le [START_REF] Bars | Strong mutator phenotype drives faster adaptation from growth on glucose to growth on acetate in Salmonella[END_REF]. B182 strain trans-complemented with the mutS wild-type gene from WT S. Heidelberg (Le [START_REF] Gall | Distribution of mutation frequencies among Salmonella enterica isolates from animal and human sources and genetic characterization of a Salmonella Heidelberg hypermutator[END_REF] was also used. Heat-killed bacteria were obtained by incubating B182 suspension at 65°C for 15 min. Fresh bacteria were grown overnight at 37°C as previously described (Le Bars et al., 2012b).

The human epithelial cell line, HeLa, was grown in DMEM (Lonza, Verviers, Belgium). The HCT116 cell line, derived from human colon carcinoma, was grown in McCoy's 5A modified media (Life technologies, Invitrogen, Saint Aubin, France). CaCo-2 cells, human epithelial colorectal adenocarcinoma cells, were maintained in culture in DMEM (Life technologies) containing 4,5g/L glucose. HeLa and HTC116 cells were supplemented with 10% fetal calf serum (FCS), 1% penicillin/streptomycin (Lonza) and 1% L-Glutamine (Lonza) (Lonza). For CaCo-2 cells, cell culture media were supplemented with 20% FCS, 1% penicillin/streptomycin (Lonza) and 1% L-Glutamine (Lonza). Cells were maintained in culture at 37 °C in a humidified atmosphere containing 5% CO 2 .

One day before invasion assay, cells were trypsinized and seeded in 6-well or 24-well plates. Salmonella infections were conducted at a multiplicity of infection (MOI) of 100 bacteria per cell. Cells monolayers were incubated with Salmonella in DMEM at 37 °C in 5% CO 2 for 30 min. After incubation, non-adherent bacteria were removed by washing with Phosphate Buffer Saline (PBS, Lonza) and cells were incubated in DMEM containing gentamicin (Lonza) (100 µg/ml) in order to kill extracellular bacteria.

To inhibit bacterial internalisation, HeLa cells were treated with cytochalasin D (5 µM, Sigma) 1h prior to infection.

Confocal imaging and transmission electron microscopy (TEM)

For constitutive expression of GFP, B182 and WT strains were transformed with the modified plasmid pNF8 (pNF8 gfp-mut1). Immunofluorescence studies were performed on HeLa cells fixed in 1% paraformaldehyde (Sigma-Aldrich, L'lsle D'Abeau Chesnes, St. Quentin Fallavier, France). The actin cytoskeleton was labeled using TRITC-conjugated phalloidin (Sigma). CellLight Tubulin-RFP (Life Technologies) was used to visualize tubulin according to manufacturer's instructions. Signals were analyzed with a confocal microscope (TCS-SP5; Leica). Images were processed using ImageJ analysis software.

Following different times of infection (1, 2, 3, 6 and 24h), HeLa cells were also treated for transmission electron microscopy analysis as previously described (Le Bars et al., 2012b).

Examination was performed with JEOL 1400 electron microscope operated at 120 kV and pictures were obtained by Orius 1000 Gatan Camera.

LDH release assay

Lactate dehydrogenase (LDH) was released when cell lost its cell membrane integrity.

After cells infection, the supernatant medium from infected cells was collected and the amount of LDH released was measured with a cytotoxicity detection kit (CytoTox 96 Non-Radioactive Cytotoxicity Assay) from Promega (Charbonnières, France). LDH release was calculated as suggested by manufacturer's instructions.

Measurement of apoptosis by flow cytometry analysis

Discrimination between apoptotic and necrotic cells was performed by staining with annexinV-phycoerythrin (PE) and 7-aminoactinomycin (7'AAD) (BD Biosciences, Le Pont de Claix, France). Briefly, infected HeLa cells were harvested using trypsin and subsequent low-speed centrifugation (3000 × g, 10 min). Cell pellets were resuspended at 1 × 10 6 cells/ml in annexinV binding buffer and 100 l fractions were then incubated for 15 min with 5 µl of AnnexinV-PE or/with 5 µl with 7'AAD at room temperature in the dark. After the addition of 300 l from the binding buffer, the samples were analysed by flow cytometry using FCS 500 cytometer (Beckman Coulter, Gagny, France).

Western blot analysis

Equal amounts of infected cells were centrifuged and the pellet was resuspended in standard Laemmli buffer and boiled for 10 min to denature proteins. Proteins were separated by 12% SDS-polyacrylamide (Sigma) gel electrophoresis under denaturing conditions and transferred onto nitrocellulose membrane (Sigma). The membranes were blocked for 1h in PBT (PBS with 0.05% Tween-20 (Sigma) containing 5% milk). Immunoblots were probed with rabbit anti-caspases 2 or 3 polyclonal antibodies or with mouse anti-caspases 1, 8 or 9 polyclonal antibodies (Tebu-bio, Le Perray en Yvelines, France) for 1h. Detection of histone 3 with anti-histone 3 rabbit antibodies was also used as loading control. To detect antibodies reactions, the membranes were incubated for 1h with alkaline phosphatase-conjugated antimouse IgG or anti-rabbit IgG antibodies (Sigma). Caspase proteins (pro-and active forms) were visualized using 5-bromo-4-chloro-3-indolyl-phosphate/NBT (Sigma) and the intensity of the bands was quantified using ImageJ software. The relative expression of cleaved caspases was corrected against histone 3. The ratios between caspase 3 and histone 3 for each lane quantified were means for three independent experiments.

Cell-contact cytotoxicity

To determine if cell contact is required for B182 cytotoxicity, we used a transwell assay mounting membrane filter (Millipore, St Quentin en Yvelines, France) with tissue culture insert where HeLa cells were cultured in the lower chamber. B182 strain at MOI of 100 was added in the upper chamber. After incubation for 30 min at 37°C, cells were washed and incubated in DMEM containing gentamicin (100µg/ml) for 3h in order to kill extracellular bacteria.

RNA extraction and real-time RT-PCR

For RNA isolation, HeLa cells were infected with Salmonella strains for 10, 20 and 30 minutes, period in which effector proteins from T3SS1 were probably injected. Using three independent experiments, RNAs were isolated with the Qiagen RNeasy Midi/Maxi Kit (Qiagen, Courtaboeuf, France) and treated with DNase according to the manufacturer's instructions. cDNA samples and normalization of each gene to the 16S rRNA internal control were generated as previously described (Le Bars et al., 2012b). Forward (F) and reverse (R) 

Statistical analysis

Statistical analyses included Student's bilateral test (p < 0.05)

RESULTS

B182 infection induced cell death in epithelial cells

In this study, we investigated the intracellular trafficking of B182, a strong mutator strain, in HeLa cells by using confocal microscopy (Fig. 1A). This analysis showed that B182 adhered strongly to HeLa cells after 1h of infection and were internalised after 3h. After 6h, actin labelling was reduced, suggesting that this Salmonella induced alterations to the cytoskeleton. Tubulin analysis also showed a decrease of labeling after 6h of infection.

Transmission electron microscopy showed that B182 strain was adherent and intracellular bacteria after 1h of infection (Fig. 1B). At this time, the infected cells had a dense cytosol and a cytoplasmic membrane in its whole form as in the normal cells. However after 3h of infection, all bacteria were internalised and morphological changes of HeLa cells were observed as cytoplasmic vacuolization. One interesting finding was that B182 infected cells at 6h displayed disrupted membrane integrity and cytosol leading to the release of B182 into the extracellular medium. After 24h of infection, cell membrane was completely destroyed.

To quantify HeLa cells killing by B182, lactate dehydrogenase (LDH) was used for release assays (Fig. 2A). As shown in figure 2A, HeLa cells killing clearly increased in a time dependent manner, with a first killing noted after 3h of infection. When B182 complemented strain (wild type mutS) or another strain of S. Heidelberg with normomutator phenotype (WT)

were used to infect HeLa cells, a lower release of LDH was observed. This result showed that this earlier cytotoxicity was characteristic to B182.

B182 infection induced apoptosis of HeLa cells by activating caspases 2, 9 and 3.

Induction of apoptosis was first evaluated via the conventional annexinV-PE/7'AAD staining procedure (Fig. 2B). B182 strain induced 36, 43 and 70% of cell death after 1, 6 and 24h of infection, respectively, confirming the results described above. After 1h of infection, 25% of cells were in early apoptosis and 11% were in late apoptosis or in necrosis. After 6h of infection, 39.5% of cells were in late apoptosis, whereas after 24h, 48.6% of cells were in late apoptosis. After 24h of infection, additional early apoptosis (27%) was detected, representing probably an additional round of infection of new cells.

To determine if this apoptosis was specific to B182, WT was used (Fig. 2B). This WT strain showed a minimal effect, where the population in early apoptosis was next to the uninfected HeLa cells, confirming the results described in figure 2A. This apoptosis was specific to B182, while WT did not induce apoptosis in HeLa cells.

To uncover the spectrum of activated caspases, infected cells were harvested and probed with antibodies directed against caspases 1, 2, 3, 8 and 9. As shown in figure 2C, the processing of caspases 2, 3 and 9 was detected after analysis by western blot. Kinetics experiments revealed that caspases 2, 3 and 9 could be cleaved as early as 1h after infection by B182. Caspase 8 as well as caspase 1 (data not shown) were not activated when HeLa cells were infected by B182 strain (Fig. 2C). Detection of histone 3, a loading control, was the same during the different times of infection. To evaluate the role of MutS in this phenotype, we have also investigated the activation of caspase 3 in the presence of the complemented strain B182. Only pro-caspase 3 was detected (Fig. 3A).

In order to determine if caspase 3 activation was specific to B182 infection, two other S. Heidelberg were tested: WT and SL486 with a normumotator phenotype (Le [START_REF] Gall | Distribution of mutation frequencies among Salmonella enterica isolates from animal and human sources and genetic characterization of a Salmonella Heidelberg hypermutator[END_REF][START_REF] Bars | Strong mutator phenotype drives faster adaptation from growth on glucose to growth on acetate in Salmonella[END_REF]. Figure 3B showed that SL486 did not activate caspase 3 whatever the time of infection was, whereas WT activated caspase 3 only after 24h of infection. In addition, inoculation with other viable Salmonella WT and SL486 did not cause early apoptotic cell death (Fig. 3C).

In order to evaluate if B182 induced death of other epithelial cells, we have infected CaCo-2 and HCT116 cells. LDH was released earlier as for HeLa cells (Fig. 4A,C). Caspase 3 activation was also detected after 1h of infection for the CaCo-2 cells and HCT116 cells (Fig. 4B), whereas the complemented strain B182 did not (Fig. 4D). The results indicated that B182 can kill the intestinal epithelial cells earlier.

Caspase 3 activation by B182 is cell contact-and invasion-dependent

Physical separation of bacteria and HeLa cells using a transwell led to the loss of apoptosis induction. This result clearly indicated that a direct contact between bacteria and epithelial cells is needed for apoptosis (Fig. 5A). Heat-treated bacteria also failed to induce cell death, indicating that viable bacteria were required for this phenomenon to occur (Fig. 5A,B).The association of fluid factors secreted from B182 was also assessed by testing the supernatant from B182 culture on HeLa cells. Our results revealed that B182 supernatant did not induce caspase 3 activation (Fig. 5B). Results shown in figure 5C indicated that when cells were treated with cytochalasin D, caspase 3 was not cleaved, suggesting that bacterial internalisation was implicated in caspase 3 activation by B182 strain.

T3SS1 effector genes, sipB and sopB, were not overexpressed in B182

We have previously described that fimA and fliC were overexpressed in B182 (Le Bars et al., 2012b). In this study, we focused our attention on the Salmonella invasion genes sipB, sipC and sopB during the first times of infection, 10, 20 and 30 min. At first, we compared the expression of these genes between WT and B182. Figure 6A showed that these two strains expressed sipB and sopB genes at the same level. We also analysed sipB and sopB expression during different times of infection by B182. Before investigating these genes expression, we evaluated caspase 3 activation. As shown in figure 6B, activated caspase 3 was observed earlier, within 10 min, after B182 infection and increased with time. The number of bacteria adherent to HeLa cells was also evaluated. Figure 6C showed that the number of B182 was the same between 10 and 20 min, whereas after 30 min of infection, a significant difference could be observed. These results led us to compare the infection only after 10 and 20 min of infection. sipB and sopB expression did not increase with the infection time increase, suggesting that these effector proteins were not implicated in apoptosis induced by B182 (Fig. 6D).

Comparative genome analysis of Salmonella Heidelberg strains B182

As described above, sipB and sopB were not implicated in this B182 phenotype. Therefore, we used a comparative genome analysis with four other S. Heidelberg strains with a complete genome available on the NCBI data base. By using Mauve comparison software, we have shown that five collinear blocks (LCB) were found for the five strains (Fig. 7). These blocks were rearranged in different ways in the genome of each strain. Deletions were visible in the SL476 strain and B182 strain did not contain major genomic rearrangements relative to the other strains. We therefore compared in detail the genetic differences between the different genomes. S. Heidelberg strains, B182 and SL476, genomes which were complete in the data base, contained notable differences. They were divided in 293 frameshifts (insertion and deletion) and 171 substitutions. 88% of the frameshifts were of small size (deletion or insertion of one nucleotide) and were located in the 28 pseudogenes of B182. Among substitutions, we had 59% of transitions and 28% of transversions. Substitutions were found in 5 pseudogenes of B182. Among the numerous mutations, we found in fimZ (insertion of G between two Ts in positions 36bp and 37bp) and fliC (insertion of thymidine in position confirmed by Sanger method showed a substitution of adenine by guanine in position 184bp

of lrp (Leucine response protein) which leaded to threonine replacement by alanine (Fig. 8).

The analysis also showed a substitution of C by T in position 154bp in rpoS gene generating stop codon (Fig. 8). Mutations in mutS, lrp and rpoS were also found when B182 genome was compared to other S. Heidelberg's in NCBI data base (str. CFSAN002069, str.

CFSAN002064 and str. 41578). Further detailed comparative genomics are ongoing to identify factors that might explain this earlier cells death and to improve understanding of infections due to Salmonella enterica subsp. enterica serotype Heidelberg.

Discussion

We have previously described a strain of S. Heidelberg with a hypermutator phenotype (B182), adhering strongly to HeLa cells contrary to a normomutator strain WT (Le Bars et al., 2012b). In the present work, we investigated the molecular effects of this high adhesion on epithelial cells. B182 strain was demonstrated to induce epithelial cells morphology changes with an alteration of cytoskeleton, a higher susceptibility to cell death induction and a significant release of LDH. This death was identified as an apoptotic event with the activation of caspases 2, 9 and 3 earlier in infection. The complementation of B182 with the wild type mutS inhibited this phenotype, suggesting that mutS played a key role. Besides, our results

showed that B182 induced cell death in other epithelial cells as CaCo-2 and HCT116 cells, whereas complemented B182 strain did not.

This apoptosis activation was B182 specific in opposition to S. Heidelberg normomutators, WT or SL486, which were unable to activate caspase 3. S. Typhimurium strains SR11 also activated caspases 2, 8, 6 and 3 in macrophages [START_REF] Jesenberger | Salmonella-induced caspase-2 activation in macrophages: a novel mechanism in pathogen-mediated apoptosis[END_REF].

These two studies revealed that caspases cascade may vary between Salmonella species or strains. S. Dublin induced epithelial cell death by apoptosis which was delayed until 12-18h after infection, and detectable activation of caspase 3 was not observed until 6h after infection [START_REF] Kim | Apoptosis of human intestinal epithelial cells after bacterial invasion[END_REF][START_REF] Paesold | Genes in the Salmonella pathogenicity island 2 and the Salmonella virulence plasmid are essential for Salmonella-induced apoptosis in intestinal epithelial cells[END_REF]. In our study, caspase 3 activation started to be detected 10 min after infection, suggesting that B182 induced rapid apoptosis in epithelial cells and used apoptosis as a virulence factor. These results are in accordance with those of other authors who already described rapid apoptosis, pyroptosis, induced by Salmonella in macrophage after caspase 1 activation [START_REF] Miao | Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf[END_REF][START_REF] Fink | Pyroptosis and host cell death responses during Salmonella infection[END_REF]. In this work, a rapid apoptosis occurring in epithelial cells without caspase 1 activation was demonstrated. This apoptosis, induced by B182, was related to death induced by other Salmonella in epithelial cells, but it was the first description of joint action of caspases 2, 9 and 3 in Salmonella after 1h of infection.

Salmonella possess a variety of mechanisms to produce cytopathic effects in infected host cells. Salmonella induce apoptosis in intestinal epithelial cells by a process that involves invasion mediated by SPI-1, but that required the functions of SPI-2. SipB was necessary for Salmonella-induced macrophage apoptosis to occur, and interacted with the essential proapoptotic enzyme caspase 1 in a manner that activated this protease [START_REF] Hersh | The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1[END_REF].

Rapid pyroptosis and delayed apoptosis in macrophages are mediated by the SPI-1 effector SipB [START_REF] Knodler | Salmonella and apoptosis: to live or let die?[END_REF][START_REF] Fink | Pyroptosis and host cell death responses during Salmonella infection[END_REF]. Early apoptosis of epithelial cells, which may be detrimental, both for Salmonella and for the host, is prevented by the SPI-1 effector SopB/SigD [START_REF] Knodler | Salmonella and apoptosis: to live or let die?[END_REF].

We showed that viable B182 induced caspase 3 activation after internalisation in HeLa cells. Inhibiting actin polymerization by cytochalasin D abolished programmed cell death induced by B182, which supports that the entry process triggers a signal transduction in epithelial cells that induces programmed cell death. We also revealed that a direct contact between epithelial cells and bacteria was required to induce cell death by B182 as demonstrated by others studies [START_REF] Li | Caspase-2-dependent dendritic cell death, maturation, and priming of T cells in response to Brucella abortus infection[END_REF]. Infection with heat-killed bacteria did not cause cell death, suggesting that the factor was actively produced only by viable bacteria [START_REF] Häcker | Caspase-9/-3 activation and apoptosis are induced in mouse macrophages upon ingestion and digestion of Escherichia coli bacteria[END_REF][START_REF] Paesold | Genes in the Salmonella pathogenicity island 2 and the Salmonella virulence plasmid are essential for Salmonella-induced apoptosis in intestinal epithelial cells[END_REF].

Since B182 strain is an environmental hypermutator, we speculate that this strain has accumulated mutations to adapt to its environment and to facilitate a more rapid niche expansion by using apoptosis as a virulence factor. We think also that mutS played a major role in this phenotype of cell death by acting with other mutated proteins. In this study, we have compared S. Heidelberg B182 genome with S. Heidelberg SL476 and found numerous mutations in B182 which need to be further verified in subsequent work. All these mutations needed to be confirmed as the 454 pyrosequencing methodology, used for B182, differs from the traditional Sanger sequencing in that sequencing error rates are higher [START_REF] Balzer | Systematic exploration of error sources in pyrosequencing flowgram data[END_REF]. We have focused our analysis on two mutations: lrp (leucine response protein) which regulates fimbriae expression [START_REF] Mcfarland | The leucine-responsive regulatory protein, Lrp, activates transcription of the fim operon in Salmonella enterica serovar Typhimurium via the fimZ regulatory gene[END_REF] and rpoS which regulates Salmonella virulence [START_REF] Fang | The alternative sigma factor katF (rpoS) regulates Salmonella virulence[END_REF]. These mutations in these two genes were confirmed by Sanger method analysis: rpoS showed a stop codon in position 154bp whereas in lrp, threonine was replaced by alanine. Given that both mutS and rpoS (stress resistance) are involved in important cellular functions, a deep analysis would help to evaluate the impact of rpoS mutation on the cell death phenotype induced by B182. Besides, some studies have also suggested that the region between mutS and rpoS may serve as an indicator for different virulence potential [START_REF] Kotewicz | Evolution of multi-gene segments in the mutS-rpoS intergenic region of Salmonella enterica serovar Typhimurium LT2[END_REF], Brzuszkiewicz et al., 2009[START_REF] Ewers | Correlation between the genomic o454-nlpD region polymorphisms, virulence gene equipment and phylogenetic group of extraintestinal Escherichia coli (ExPEC) enables pathotyping irrespective of host, disease and source of isolation[END_REF]. In every study in which pathogenic or commensal E. coli isolates were studied, several sequence variants of rpoS were reported. Both ends of the mutS/rpoS region need to be considered and additional studies are required to determine the role of mutS/rpoS in the B182 phenotype.

Even if our results indicated that mutS played a key role in this cell death phenotype, we can't exclude the impact of other proteins. As B182 overexpressed some genes such as fimA and fliC genes (Le Bars et al., 2012b), sipB and sopB expression was evaluated. Our results indicated that these genes were not overexpressed and seemed not to be implicated in this apoptosis. This apoptosis might be due to other proteins expressed by B182. Indeed, B182 overexpress fliC (Le Bars et al., 2012b). Recently, it was demonstrated that the ectopic expression of the Salmonella flagellin protein FliC during the intracellular phase of infection triggered pyroptosis of infected cells in vivo [START_REF] Miao | Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria[END_REF].

We also demonstrated that this strain contained a specific plasmid with numerous hypothetical proteins (Le Bars et al., 2012a). A plasmid, isolated from S. Typhi and transferred to S. Typhimurium, induced macrophage apoptosis (Wu et al., 2010b). It was also showed that this apoptosis was associated to the activation of caspases 9 and 3 (Wu et al., 2010a). These authors also demonstrated that pR ST98 plasmid could promote caspase 3 dependent apoptosis and suggested that its complex sequences of unknown functions might be involved in this process [START_REF] Wu | Inhibition of macrophage autophagy induced by Salmonella enterica serovar typhi plasmid[END_REF].

Thus, further investigations on the molecular events surrounding B182, but also comparison with other hypermutator strains, will provide a better understanding of how this evolution contributes to affect bacterial virulence. A better knowledge of this strain would give information on the acquisition of adaptive mutations and their impact on disease progression.

Salmonella, one of the most important pathogens causing severe foodborne disease, can be transferred to humans via animals along the food chain impacting health and productivity (Majowicz et al., 2010). Great attention should be paid to the virulence of Salmonella clinical mutators. The results could give a valuable contribution to the ongoing analysis on pathoadaptative alterations of mutator strains that affect disease severity. The numbers are the ratios between caspase 3 and histone 3 for each lane quantified with the ImageJ programme. The ratios between caspase 3 and histone 3 for each lane quantified are means for three independent experiments. 
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