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Abstract

We study the interactions among Internet providers in vehicular networks which offer access

to commuters via Road Side Units (RSUs). Namely, we propose a game-theoretical framework to

model the competition on prices between vehicular Internet providers to capture the largest amount

of users, thus selfishly maximizing the revenues. The equilibria of the aforementioned game are

characterized under different mobile traffic conditions, RSU capabilities and users requirements

and expectations. In particular, we also consider in the analysis the case where mobile users

modify the price they accept to pay for the access as the likeliness of finding an access solution

decreases.

Our game-theoretical analysis gives insights on the outcomes of the competition between ve-

hicular Internet providers, further highlighting some counter-intuitive behaviors; as an example,

comparing with the case when users have constant price valuation over time, having users inclined

to increasing their ”acceptable” price may force vehicle Internet providers to charge lower prices

due to competition.

Keywords: Vehicular networks, Game theory, Pricing, Competition

1. Introduction

Vehicular Ad-hoc NETworks (VANETs) recently attracted much interest from the research

community as a core networking component to build up Intelligent Transportation Systems (ITS)

to improve road safety, optimize the humans and goods mobility, and disseminate real-time context

information on traffic loads, congestion and hazardous situations. The applications enabled by

VANETs are not only limited to safety-oriented ones, but also extend to leisure applications

related to Internet access and entertainment along the road. A comprehensive classifications of

VANETs applications can be found in [12].

The design of VANET architectures to support leisure applications has attracted the attention
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of recent work and researchers; as an example, the Drive-thru Internet [22] project targets the

provision of affordable Internet connections to vehicular users through road side Wireless LAN in-

frastructure. The scope of the research covers network access, roaming, handover, authentication,

etc., and the achieved results show that despite a number of technical challenges to be addressed,

providing Internet for highly mobile vehicular users is possible [21, 23, 25, 22]. The CABERNET

[7] and Infostations [28] projects propose architectures similar to Drive-Thru Internet. Motivated

by these works, we expect that the provision of Internet connectivity via road side infrastructure

will be a flourishing market in the next future attracting Internet providers which may possibly

compete among themselves. This competition may have a valuable impact on customers welfare,

as well as influence the quality and cost of all aforementioned features about road safety.

The scientific literature already counts a number of studies of competition between classical

Internet access providers (see, e.g., [1, 15] or [16, Chapter 5]). In many cases, the interactions

among users (through congestion) are also considered, and taken into account by access providers

[10, 9]. However, to the best of our knowledge the case of provider competition in vehicular

networks has not been deeply investigated, although it has some important specificities; indeed

customers are mobile and move in a limited speed range and, more importantly, in constrained

directions. In this work we want to fill this gap by providing a study of duopoly competition,

between providers owning one road side unit (RSU) each, along a stretch of road. These road

side units are able (besides all other features) to provide Internet access to mobile users, whose

cars are equipped with a device called on-board unit (OBU). We study how providers strategically

set their price for providing Internet connectivity in response to the competitor’s pricing strategy

with the selfish objective of revenue maximization; vehicular users may decide to get Internet

connectivity from one operator or the other depending on the corresponding price and the current

network conditions. This manuscript builds on our preliminary work in [11], further extending

the network scenario by considering that users can change their acceptance/refusal strategy (or

equivalently, their price preferences) while they travel along the stretch of road. We investigate

how this variation influences the pricing strategies of providers. Such a question is linked to the

specificities of vehicular networks, and to the best of our knowledge has not been studied in the

scientific literature. Among the unexpected results, we observed that users increasing their price

acceptance threshold between the two RSUs, if anticipated by providers, strongly impacts the

competition among them and can lead to lower prices and lower provider revenues (with respect

to the case when users have fixed price acceptance thresholds).

The manuscript is organized as follows: Section 2 gives an overview of the related work further

commenting on the main novelties and contributions of the present work; Section 3 introduces the

reference scenario and the related modeling assumptions; in Section 4, we analyze the case where

the pricing policy of one vehicular Internet provider is fixed and the competitor best-responds
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to it. Section 5 analyzes the non-cooperative game between vehicular Internet providers,focusing

on the consequences in terms of provider revenues and user welfare. Further comments on the

modeling assumptions and concluding remarks are reported in Section 6.

2. Related work

Though vehicular networks are far from being widely deployed, the research community already

started to extensively study different problems and challenges likely to arise in the future. Many

articles are devoted to the definition/adaptation of communication protocols for the vehicular

context (like in [3, 14, 33, 34, 35]), studying the suitability of already existing technologies and

proposing new approaches. The main challenge here is to develop a reliable protocol for V2V

communications.

The suitability of WLAN hotspots for providing Internet access in vehicular scenario is studied

in [22, 7, 28]. In [22], mobile users exploit temporary WLAN connections during their road trip

to download/upload contents form/to the Internet; the main challenge addressed in this work is

to maintain a seamless connectivity even if the physical connection with a road side access point

may get lost temporarily. Along the same lines, automatic access point association/de-association

procedures are studied in [26, 24] in the very same vehicular network architecture. Besides a

purely theoretical studies, special equipments for highly mobile scenarios are in development,

among which a router with 3G and WLAN interfaces designed to ensure seamless handovers,

proposed by NEC Corporation in 2005. In [25], the authors discuss the requirements for such a

router and test their own prototype of modular access gateway.

Another research area related to this work deals with the optimal design of vehicular networks,

where the problem mainly scales dow to efficiently deploying RSU to maximize the ”quality”

perceived by the mobile user in terms of download/upload throughput, and/or latency to retrieve

contents form the Internet through the deployed RSUs. Trullols et al. [30] consider different

formulations for the deployment problem and introduce heuristics based on local-search and greedy

approaches to get suboptimal solutions. A solution based on genetic algorithms is studied by

Cavalcante et al. [4]. Yan et al. [32] study the optimal RSU deployment problem, where candidate

places for RSU location are crossroads. A comprehensive description of the general problem of

optimal RSU deployment by a single entity can be found in [2] and [36]. A different scenario,

where several providers deploy their RSUs in a competitive manner is studied in [8], and the same

problem but for general wireless networks is considered in [1].

Researchers often use game theory to study competition between providers. In [19] the authors

survey various game-theoretic models for evaluating the competition between agents in vehicular

networks. The mobile users competition is studied in [20], where users share the same RSU. In [18]

a hierarchical game is proposed to analyze the competition between OBUs and RSUs. Differently,
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in [27] a coalition formation game among RSU is analyzed, with the aim of better exploiting V2V

communications for data dissemination. More generally, good surveys on game theory applications

in wireless networks are [5] and [29].

In this paper, unlike in the previously described references we ignore V2V communications

and focus only on users which aim to establish Internet connection. In that context, we consider

price competition between Internet access providers in the case of vehicular networks, which is,

to the best of our knowledge, a novel issue. The scientific literature contains several analyses of

provider competition in general wireless networks (e.g., [6, 17, 31]), but, even if V2I networks bear

some similarities with generic wireless access networks, they have specific features which make the

pricing problem worth analyzing. Indeed, in generic wireless access networks, the network operator

competition is generally over the “common” users, that is, those users which fall in the coverage

area of the competing network providers. In other words, competition between providers arise

only if the coverage areas of the networks (partially) overlap as in [17]. Users themselves tend to

select an access point which maximizes some quality measure as in [9]. On the other hand, in V2I

networks competition may arise due to vehicles mobility even if the coverage areas of competing

RSUs do not overlap, since if a RSU does not serve a moving vehicle in its own coverage range,

the very same user can be served later by competing operators; in this case users do not really

make a network selection decision, rather they answer the binary question of whether or not to

connect to the currently observed network.

In contrast to [11], where we analyze competition among Internet access providers, in the

current study we also focus also on customers and their welfare. We assume that mobile users

may deviate from their original pricing preferences after receiving additional information about

the connection cost. More specifically, we consider that the users are somehow risk-averse and

can modify their connection budget after passing an access point without being served. This

modification, if it is a common feature/strategy of users population, may lead to several interesting

outcomes and peculiarities, such as connection prices drops and, sequentially, providers revenue

losses.

3. Reference Scenario and Modeling Assumptions

We consider a stretch of a highway where two Internet access providers coexist. However,

our model is applicable for scenarios where the number of RSUs at each provider’s disposal is

arbitrary, even with non-overlapping coverage areas, with the constraint that available providers

are not alternating along the road, that is, users may cross several regions covered by Provider 1,

then several covered by Provider 2 (or vice-versa). This model represents the case of local access

providers along a freeway for example; the case of RSUs from alternating providers is not covered

here, and is left for future work.
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Note that in this article we do not treat the cases when more than two Internet access providers

compete. In such cases the RSU location would be of high importance, which we highlight here

by briefly evoking a scenario with three providers. The provider whose RSU is located between

the two others is obviously in a disadvantageous position, since he can only serve users who

were unserved by competitors. For example, in the case of low user flows (no congestion), the

“middle” provider only sees users with low willingness-to-pay (since they refused the offer of the

first provider they met) and should therefore set relatively low prices. In the general case, this

“middle” provider would absorb some of the unserved traffic of the two others, hence reducing the

interactions between the extremity providers. Since those interactions are the focus of this paper,

we believe the two-provider case highlights better the specificities of vehicular networks (with

users arriving from both directions and affecting the relationships among providers). Finally, the

two-provider case is sufficiently simple to allow us to reach analytical results, while considering

more providers is likely to be treatable only through numerical studies.

For the sake of easing up presentation, we assume that RSUs are totally identical and have the

same individual goodput (or capacity) c. It is worth pointing out that the modeling framework can

be extended to the case where the RSUs owned by the different providers have different capacity

values. The providers’ RSU locations differ, and thus vehicles taking the road in one direction

first enter the coverage area of Provider 1’s RSU, while those traveling in the opposite direction

first see Provider 2. We denote by λj , j = 1, 2 the average number of commuters per time unit

that first meet Provider j’s RSU; they will cross the competitor’s coverage area afterwards. Note

that we will treat those average arrivals number as constant, i.e., we reason as if there are exactly

λj commuters per time unit seeing Provider j first.

Each user wants to establish an Internet connection to download data files. The average volume

of these files per user is normalized to 1 without loss of generality, and we will also treat the file

volume as a constant. Hence the total demand (in term of data volume) of users seeing Provider j

first is also λj . We assume that the RSUs coverage area and the vehicles’ speed do not constrain

file transfers: if a RSU’s capacity exceeds its (average) load, all requests are successfully served,

otherwise some requests (taken randomly) are rejected.

Each provider j = 1, 2 set a (flat-rate) price pj to charge for the connection service. However

not all users will accept this price. We model users price preferences by assuming that only a

proportion w(p) of users accept to pay a unit price p for the service. If Provider j charges price pj ,

users who first enter Provider j’s service area generate a demand (again, per time unit, and treated

as static) of w(pj)λj . The function w(·) is called willingness-to-pay function, and we assume it to

be non-increasing: each user can be seen as having a maximum price below which he/she accepts

the service, and above which he/she refuses to connect, the function w(·) then represents the

complementary cumulative distribution function of those acceptance prices among users.

5



3.1. Demand flows

Figure 1 summarizes the scenario in terms of demand flows. The total flow λj from users seeing

first Provider j consist of:

1. users accepting the price pj and being served by Provider j;

2. users accepting the price pj and being rejected due to the RSU capacity limit (forming a

spillover flow λspj heading to the competitor’s RSU);

3. and users refusing the price pj (forming a flow λrefj heading to the competitor’s RSU).

The two latter flows then enter the coverage area of the competing provider, where they can be

served or not.

Figure 1: Flows involved in the model: among the total potential demand λj seeing Provider j first, we distinguish

λspj (demand from users agreeing to pay pj , but not served by this provider), λrefj (demand from users refusing to

pay pj). All users unserved after passing Provider j increase their willingness-to-pay. We define the same flows,

indexed by k, for users traveling in the opposite direction.

We consider here that users may change their price acceptance threshold after meeting one

provider and having either refused its price or been rejected due to capacity limits. In the following,

we analyze both cases in which refused/rejected users increase and decrease their willingness to

pay as they go by. It is worth noting that these behaviors are well representative of realistic

situations:

• willingness-to-pay increase, if the user’s request was rejected due to congestion, this signal

of resource scarcity may increase the user’s willingness-to-pay; alternatively, users may know

that there are several RSUs on the highway they are using, and hence may “take a bet” for

the first RSU they meet, by being more demanding than they could really afford. The logic

in this case is that probably the next RSUs are cheaper. As more RSUs are crossed, the risk

raises to find no other RSU (or only more expensive ones) before some delay limit, hence a

higher price acceptance threshold after passing each RSU;

• willingness-to-pay decrease, if the content the user is requesting is time-sensitive, that is,

the user wants a specific content at a specific time, the additional delay on content re-
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trieval the user experiences for being rejected/refused may lead the user to value less the

content/connectivity.

This willingness-to-pay change impacts two components of the total available demand at a

provider–refused and spilled-over users from the competitor–, making them more (or less) valuable

for the provider (who may extract more or less revenue from those users). Note that this can be

easily extended to a scenario when each provider owns several (consecutive) RSUs; there, each

user would change his willingness-to-pay when changing provider, not RSUs.

In this paper, we consider a simple multiplicative change of the acceptance threshold:

• if a user refused to pay the price of the first RSU met, his price acceptance threshold is

multiplied by α;

• if a user accepted the price of an RSU but his request was rejected due to congestion, his

price acceptance threshold is multiplied by β.

To simplify a bit the analysis, we assume in the following that α = β, i.e., users that are not

served modify their acceptance threshold price by the same factor, whether they had accepted or

refused the price of the first RSU they met. Such an assumption is realistic, if the price variation

is interpreted as a response to the decreasing likelihood of finding another (cheap) RSU.

Figure 2: How willingness to pay for users flow changes after passing e.g. RSU 2

It is worth pointing out that if all users simultaneously accept to pay a price α times larger

(smaller) than before, then the proportion of users accepting to pay p is changed from w(p) to

w( pα ). Figure 2 shows an example of how the willingness-to-pay function changes after users have

passed RSU 2, when no congestion occurs at RSU 2. Some of the users seeing Provider 2 first (a

proportion w(p2) of them) accepted to pay the price of Provider 2 and were served, and thus do

not need a connection anymore. The others increase the maximum price they can afford by α: the

proportion of users seeing Provider 2 first and accepting to pay price p1 is then w(p1/α)−w(p2).
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We now decompose formally the components of the user flows reaching Provider j and accepting

to pay his price pj :

1. those seeing Provider j first, thus issuing a total demand (since they accept to pay pj)

w(pj)λj ;

2. those seeing Provider k 6= j (the competing provider) first, who refused to pay pk but would

accept the price pj (possibly due to the acceptance threshold increase), forming a total

demand level (smaller than λrefk , and null when pk ≤ pj/α)

λk[w(pj/α)− w(pk)]+,

where x+ := max(0, x) for x ∈ R;

3. and those seeing Provider k first, who agreed to pay pk but were rejected because of Provider

k’s limited capacity, and who also agree to pay pj , for a total demand

min

(
1,
w(pj/α)

w(pk)

)
λspk ,

where λspk is the part of the demand w(pk)λk that is spilled-over by Provider k.

The total demand λTj (pj , pk) for Provider j then equals the sum of the aforementioned com-

ponents:

λTj (pj , pk) := w(pj)λj + λk[w(pj/α)− w(pk)]+ + min

(
1,
w(pj/α)

w(pk)

)
λspk

3.2. Rejected users and uniqueness of flows

When the total demand at an RSU exceeds its capacity, some requests are rejected: we assume

that the RSU serves users up to its capacity, and that rejected requests are selected randomly

among all arrived requests. Thus each request submitted to Provider j has an identical probability

of success Pj , that is simply given by

Pj = min

(
1,

c

λTj

)
(1)

so that the served traffic at RSU j equals λTj Pj = min(c, λTj ). Again, the probability Pj depends

on the price vector (pi, pk). The corresponding revenue of provider j is then

Rj = pj min[c, λTj (pj , pk)]. (2)

The traffic λspj , that is the part of λj spilled over by Provider j (and that will then enter the

competitor’s coverage area) also depends on both prices through the probability Pj , and equals

λspj = w(pj)λj(1− Pj). (3)
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Regrouping all components of λTj , the success probability equals

Pj = min

1,
c

w(pj)λj+[w(pj/α)−w(pk)]+λk + min[1,
w(pj/α)
w(pk)

]λspk

.
If p1 > p2α and p1 > p2/α, then those success probabilities should satisfy P1 = min

(
1, c

w(p1)λ1+w(p1/α)λ2−w(p1/α)λ2P2

)
P2 = min

(
1, c

w(p2)λ2+w(p2/α)λ1−w(p1)λ1P1

)
.

(4)

We obtain similar equations when p1 < p2/α and p1 < p2α, by switching the roles of Providers 1

and 2. Further, if p2/α ≤ p1 ≤ p2α then P1 = min
(

1, c
w(p1)λ1+w(p1/α)λ2−w(p2)λ2P2

)
P2 = min

(
1, c

w(p2)λ2+w(p2/α)λ1−w(p1)λ1P1

)
.

(5)

Finally, if p2/α ≥ p1 ≥ p2α (which can be the case for α < 1) P1 = min
(

1, c
w(p1)λ1+w(p2)λ2−w(p2)λ2P2

)
P2 = min

(
1, c

w(p2)λ2+w(p1)λ1−w(p1)λ1P1

)
.

(6)

Proposition 1. For any price vector (p1, p2), the systems of equations defined in (4), (5) and (6)

have a unique solution.

Proof: See Appendix Appendix A. �

4. Single Provider Best Response

In this section, we study the situation when provider k has fixed his price pk, and provider j

wants to maximize his revenue by setting appropriately his price pj .

In our analysis, we will use the monotonicity of the demand function of a provider while its

capacity remains unsaturated, which we establish now.

Lemma 1. The total demand λTj of provider j is a continuous function of his price pj; that

function is in addition non-increasing while provider j is not saturated (i.e., while λTj < c).

Proof: See Appendix Appendix B. �

For further analysis, we define the capacity saturation price of a provider as the price for

which the total demand equals his capacity. Remark that this price depends on the price of his

competitor.

Definition 1. The capacity saturation price of Provider j is

pcj(pk) := inf{p ∈ [0, pmax] : λTj (p, pk) < c}.
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Since λTj (pmax, pk) = 0, for all pk we know that pcj(pk) always exists. In addition we have

pcj(pk) < pmax.

Lemma 1 implies that if pcj > 0, then λTj (pcj , pk) = c and pj ≤ pcj ⇒ λTj ≥ c.

When λTj (0, pk) ≥ c, λTj (pcj) = c, hence pcj is the minimum price such thatw(pcj)λj + λk[w(pcj/α)− w(pk)]+ + min
(

1,
w(pcj/α)

w(pk)

)
λspk = c,

λspk = w(pk)λk

[
[w(pk/α)−w(pcj)]

+λj+w(pk)λk−c
[w(pk/α)−w(pcj)]

+λj+w(pk)λk

]+
.

(7)

Solving this system then yields the capacity saturation price pcj . From Proposition 1, the

demand of Provider j is a continuous function of his price. Since we assumed that λTj (0, pk) ≥ c,

and for pj = pmax the demand equals zero, then the system (7) has a solution.

We now provide a piece-wise expression of the revenue function: The revenue function of each

provider j is continuous in his price (from the continuity of λTj and of Pj), and can be expressed

analytically on different segments.

1. When λTj (pj) ≥ c (or pj ≤ pcj(pk) when pcj(pk) > 0), the RSU capacity of provider j is

saturated, and thus his total load is simply

λTj = c,

the revenue then equals

Rj = pjc.

The corresponding segment of the revenue curve is the linear part on Figure 4, and corre-

sponds in Figure 3 to prices on the left of the capacity saturation curve of provider j.

2. If pj < pk/α and pj < pkα, then provider k cannot attract users having refused the price of

provider j:

λTj = w(pj)λj + w(pj/α)λk − w(pk)λk + λspk ,

with

λspk =
[
w(pk)λk − c

]+
.

(a) If pk < pck, then the capacity of provider k is saturated and

Rj = pj
(
w(pj)λj + w(pj/α)λk − c

)
,

(b) Otherwise, provider k is not saturated and

Rj = pj
(
w(pj)λj + w(pj/α)λk − w(pk)λk

)
.

Only case 2b occurs on the example of Figures 3-4.
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3. If pk/α ≤ pj ≤ pkα, then both providers are able to serve the refused traffic of each other:

λTj = w(pj)λj + w(pj/α)λk − w(pk)λk + λspk ,

with

λspk =
[
w(pk)λk

w(pk)λk + w(pk/α)λj − w(pj)λj − c
w(pk)λk + w(pk/α)λj − w(pj)λj

]+
(a) If pk < pck, then the capacity of provider k is saturated and he gains

Rj = pj
(
w(pj)λj + w(pj/α)λk −

c

w(pk)λk + w(pk/α)λj − w(pj)λj

)
,

(b) Otherwise, provider k is not saturated and his revenue is

Rj = pj
(
w(pj)λj + w(pj/α)λk − w(pk)λk

)
.

Figures 3-4 illustrate both cases, with the only remark that on Figure 4, cases 2b and 3b

constitute one segment of the revenue curve (indeed, the expressions of the revenue function

are identical in both cases).

4. If pk/α ≥ pj ≥ pkα, then both providers do not serve the refused traffic:

λTj = w(pj)λj + λspk ,

with

λspk =
[
w(pk)λk − c

]+
(a) If pk < pck, then the capacity of provider k is saturated and he gains

Rj = pj
(
w(pj)λj + w(pk)λk − c

)
,

(b) Otherwise, provider k is not saturated and the revenue is

Rj = pjw(pj)λj .

5. If pj > pkα and pj > pk/α, then the total load of provider j is

λTj = w(pj)λj +
w(pj/α)

w(pk)
λspk ,

where

λspk =
[
w(pk)λk

w(pk)λk + w(pk/α)λj − w(pj)λj − c
w(pk)λk + w(pk/α)λj − w(pj)λj

]+
.

(a) If pk < pck, then the capacity of provider k is saturated and his revenue is

Rj = pj

(
w(pj)λj + w(pj/α)λk

w(pk)λk + w(pk/α)λj − w(pj)λj − c
w(pk)λk + w(pk/α)λj − w(pj)λj

)
,
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(b) Otherwise, provider k is not saturated and his revenue is simply

Rj = pjw(pj)λj .

We can observe both cases on Figures 3-4, where the plots are for a linear willingness-to-pay

function w(p) = [1 − p/10]+, c = 10 and λ1 = λ2 = 11. Unless stated otherwise, the same

parameters are taken for all plots in the rest of the article.
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Due to the complex form of the revenue function, computing the optimal price as a response

to the price of the opponent leads to considering many subcases and hence appears analytically
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intractable. However, it is quite easy to compute it numerically on each segment and select the

best one.

5. Providers pricing game

In this section we consider a non-cooperative game, where providers –the players– simultane-

ously choose their prices, trying to maximize their individual payoffs given by (2). Our aim is

to find a Nash equilibrium (NE) of this game: a pair of prices (p̄1, p̄2), such that no player can

increase his payoff by unilaterally changing his price. The underlying assumption is that each

provider knows in real time the current price of its competitor and is able to instantly adapt to it;

but even if it is not the case, the providers can use the Nash equilibrium outcome as a prediction

of their perfect information competition, and simultaneously charge equilibrium prices. Further,

we investigate the situation where providers would decide to cooperate, trying to maximize the

sum of their individual revenues (as a monopolist would do). We analyze how much the providers

may loose in terms of total revenue by refusing to cooperate.

We first formally define the pricing game.

Definition 2. The providers pricing game is the 3-tuple

G = (N,P,R),

where N = {1, 2} is the set of players (the two providers), P = (P1, P2) = (0, pmax]2 is the space

of players strategies and R = (R1, R2) are players payoffs or revenues given in (2).

We are interested in finding the Nash equilibrium of that pricing game.

Definition 3. A pair of prices (p̄1, p̄2) is a Nash equilibrium for the pricing game if R1(p̄1, p̄2) ≥ R1(p1, p̄2) for all p1 ∈ (0, pmax],

R2(p̄1, p̄2) ≥ R2(p̄1, p2) for all p2 ∈ (0, pmax].

Nash equilibria can be interpreted as predictions for the outcome of the competition between

selfish entities, assumed rational and taking decisions simultaneously. For simplicity in this section

we use the linear willingness-to-pay function, however the analogical results can be obtained for

any other convex non-increasing function numerically.

5.1. Large capacities regime

In the remainder of this paper, we assume that RSU capacities exceed the total user flow

(i.e., c ≥ λj + λk). In particular, for any price profile RSU capacities are not saturated, and there

is no spillover traffic.
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This assumption is not necessarily restrictive; indeed in our previous study [11] we have es-

tablished that at an equilibrium (if any) of the pricing game, no provider is saturated. Formally:

Proposition 2 ([11]). If (p̄j , p̄k) is an equilibrium in the providers pricing game in the homoge-

neous flows case, then necessarily p̄j > pcj(p̄k),

p̄k > pck(p̄j).

For homogeneous user flows (i.e., λ1 = λ2), we claim that if there is an equilibrium in the

general capacities case, it is identical to the one with large capacities. Thus, the large capacity

case contains all the equilibria we may have with arbitrary capacities; however those price profiles

may not be equilibria in the general case.

5.2. Providers competition

The revenue expressions are again defined by segments (only two now, because of the large-

capacity assumption):

Rj =

 pj

(
w(pj)λj + w(

pj
α )λk − w(pk)λk

)
if pj ≤ pkα,

pjw(pj)λj otherwise.

In the rest of this section, we derive analytical expressions for the particular case of a linear

willingness-to-pay function, of the form w(p) = [1− p/pmax]+ for some constant pmax.

We are interested in obtaining the best response function BRj(pk) of each provider j, that is

the function indicating the optimal price to set as a response to the competitor’s price pk. For

the best response function of provider j we isolate only two candidate values from the revenue

piecewise expressions above:

1. On the segment [0, pkα], the best response of Provider j is

BRa
j = min

(
pkα,

pmaxλj + pkλk
2λj + 2λk/α

)
.

which is strictly below pkα if pk >
pmaxλj

2λjα+λk
.

2. On the segment [pkα,∞), Provider j maximizes his revenue with

BRb
j = max (pkα, pmax/2) ,

which is strictly larger than pkα if pk <
pmax

2α .

Now remark that
pmaxλj

2λjα+λk
< pmax

2α , hence because of the continuity of the revenue function:

• if pk <
pmaxλj

2λjα+λk
the best response is BRj = pmax/2;
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• if pk >
pmax

2α the best response is BRj =
pmaxλj+pkλk
2λj+2λk/α

;

• for
pmaxλj

2λjα+λk
≤ pk ≤ pmax

2α , we have to compare the two best-response candidates above, which

we do now in the case of symmetric flows.

Proposition 3. Assume user flows are homogeneous, i.e., λ1 = λ2 = λ, and consider a linear

willingness-to-pay function w(p) = [1− p/pmax]+. Then the best-response of Provider j is

BRj =


pmax+pk
2+2/α if pk ≥ pmax(

√
1 + 1

α − 1)

pmax

2 otherwise.

Proof: Let us focus on the region where
pmaxλj

2λjα+λk
≤ pk ≤ pmax

2α . In that region,

Rj(BRb
j) =

pmax

4
λ

and

Rj(BRa
j ) =

pmax + pk
2 + 2/α

λ
[
1−

1 + pk
pmax

2 + 2/α
−

1 + pk
pmax

2α+ 2
+

pk
pmax

]
=

pmax + pk
α(2 + 2/α)2

λ
[
α+ 1 + α

pk
pmax

+
pk
pmax

]
.

The difference Rj(BRa
j )−Rj(BRb

j) has the same sign as

p2k
1

pmax
+ 2pk −

pmax

α
,

which is positive iff pk ≥ pmax(
√

1 + 1
α − 1). Finally we check that for all α,

1/(2α+ 1) <

√
1 +

1

α
− 1 < 1/(2α),

which concludes the proof. �

At a Nash equilibrium (p∗1, p
∗
2), each provider is playing a best-response to the price set by the

competitor. As a result, three types of equilibrium can occur:

• A symmetric Nash equilibrium, of the form (BRa
1 ,BRa

2), leading to

p∗1 = p∗2 =
pmax(2

λ2
j

α + λ2k + 2λkλj)

4(λk +
λj
α )(λj + λk

α )− λjλk
; (8)

• a symmetric Nash equilibrium, of the form (BRb
1,BRb

2), leading to

p∗1 = p∗2 =
pmax

2
; (9)
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• an asymmetric Nash equilibrium, with one provider (say, Provider j) playing BRa
j and the

other one playing BRb
k, leading to p∗j =

pmax(λj+λk/2)
2λj+2λk/α

p∗k = pmax/2
(10)

Considering again the homogeneous flow case, we determine the conditions on α for those price

profiles to be Nash equilibria.

1. From Proposition 3, the symmetric equilibrium described in (8) exists only when

p∗1 ≥ pmax(

√
1 +

1

α
− 1),

i.e. when 2/α+3
4(1+1/α)2−1 ≥

√
1 + 1

α − 1, which holds if and only if α ≥
√

4
3 .

2. For the symmetric equilibrium described in (9), the condition of existence is:{
pmax/2 ≤ pmax(

√
1 + 1

α − 1),

which is equivalent to α ≤ 0.8.

3. For the asymmetric equilibrium described in (10), the conditions of existence are: pmax/2 ≥ pmax(
√

1 + 1
α − 1),

3pmax/2
2+2/α ≤ pmax(

√
1 + 1

α − 1).

The first condition is equivalent to α ≥ 0.8, while the second one holds if and only if α ≤ s,

where s ≈ 1.0766.

Table 1 summarizes the equilibrium outcomes we can expect from the pricing game, depending

on the value of α. When α ≤ 0.8 both providers do not serve refused traffic and set prices as if there

was no competitor. When α = 1, in the case of large capacities we have two similar equilibria, in

which one provider charges a higher price than his competitor (and thus serves only users seeing

him first) while the second provider serves traffic from both directions. When α increases, at

those equilibria the low price increases: users who refused to pay the high price increase their

willingness-to-pay before meeting the low-price provider, allowing the latter to make more revenue

through a (moderate) price increase.

But at some α = s, this lower equilibrium price becomes high enough to encourage the opponent

to decrease his own price, in order to also serve some users who refused to pay the price of the

opponent (those users become more valuable because of the large α). This is the situation when

the pricing game between providers has no equilibrium.

Finally, when α becomes high enough, each provider serves some users who refused the price

of his competitor; the corresponding equilibrium is symmetric.
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Case Equilibrium prices

α ≤ 0.8 1 equilibrium p∗1 = p∗2 = pmax/2

α ∈ [0.8, s] 2 equilibria

 p∗1 = 3pmax/(4 + 4/α)

p∗2 = pmax/2

and p∗1 = pmax/2

p∗2 = 3pmax/(4 + 4/α)

α ∈ (s,
√

4
3 ) No equilibrium

α ≥
√

4
3 1 equilibrium p∗1 = p∗2 = pmax

2/α+3
4(1+1/α)2−1

Table 1: Nash equilibria of the pricing game, with homogeneous flows and a linear willingness-to-pay function.

Two sets of best responses curves are shown on Figure 5, for different α values illustrating the

different types of equilibria. We observe that the prices in the symmetric equilibrium are lower

than prices in asymmetric ones, which means that users accepting to pay more (through a larger

α) may lead to a situation where providers charge lower prices, a counterintuitive phenomenon.

At the symmetric equilibrium, both providers serve some refused flows of each other due to the

willingness-to-pay variation (when α > 1), while in asymmetric equilibria only one provider can

serve the refused flow of its competitor; the former provider being then the one with the higher

revenue. Note that the best response functions are discontinuous, implying that for some values

of α, there may be no Nash equilibrium.

The price decrease of the provider who had originally (for α = 1) the lowest price can be

explained as follows: when the opponent decreases his price (that is lower at the symmetric

equilibrium than at the original one) the refused flow reduces, and the influence of α is only on

users from that flow who later accept to pay the proposed price. Thus, the provider is interested

in lowering the price to attract more of those users.

Figure 6 shows the corresponding equilibrium prices depending on α and Figure 7 plots the

equilibrium revenue of both providers. These figures confirm that for some values of α, providers

decrease their prices with respect to the reference case α = 1, resulting in a decrease of their total

revenue. Surprisingly, for α approximately between 1.17 and 1.2, both providers set lower prices

than when α = 1. When considering the average price per served used, the decrease (still when

compared to the case α = 1) occurs when α ∈ [1.17, 1.52], approximately.

Now looking at the case α < 1, we notice that when α < 0.8 both providers charge the same

price, which is the one they would have set had they been alone. This holds because for low α,

the users who refused the price of the first RSU met would only accept very low prices for the

second RSU, hence being of poor interest for the latter RSU owner. Providers are then better off
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focusing on their own direction flows.

Figure 6 also illustrates that for approximately 1.075 ≤ α ≤ 1.17, the game has no Nash

equilibrium. This situation arises when the refused flows at both sides become more important:

due to the willingness-to-pay increase (when α > 1),users seeing the other provider first become

a higher source of revenue and have more influence on each provider’s pricing decision. For the

evoked range of values for α, this leads each provider to set a price below its competitor’s until a

point where focusing on one’s flow–by setting large prices–is better, so that best-response curves

do not intersect. Predicting the prices that are then chosen is difficult, since for any profile of

prices at least one provider could do better by changing his price.

5.3. Cooperation among providers

For comparison purposes we consider the situation where both providers cooperate when setting

their prices, that is, the operators are no longer selfish, but rather have the common objective of

maximizing the sum of their revenues. This implies that the operators share all the information

about their pricing policies and act as a single entity.

We again assume homogeneous user flows, i.e., λ1 = λ2 = λ. Without loss of generality we

assume the optimal prices are such that pj ≤ pk.

To find such optimal prices, we again consider the two price zones where the revenue expressions

differ:

1. First, if pj ≤ pk
α and pj ≤ pkα, the total revenue is

RT = pj

(
w(pj)λ+ w(

pj
α

)λ− w(pk)λ
)

+ pkw(pk)λ.
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For a linear willingness-to-pay function, taking the partial derivatives yields

∂RT

∂pj
= λ

(
1− pj

pmax
(2 + 2/α) + pk

pmax

)
= 0,

∂RT

∂pk
= λ

(
1 +

pj
pmax

− 2pk
pmax

)
= 0,

leading to the optimal price valuesp̄j = 3pmax

3+4/α ,

p̄k = (3+2/α)pmax

3+4/α ,

for α ≤ 0.5 +
√

11/12. The corresponding total revenue is then

R̄′
T

=
pmaxλ(9α+ 15 + 4/α)

α(3 + 4/α)2
.

2. If pk
α < pj(< pkα), the total revenue is:

RT = pj

(
w(pj)λ+ w(

pj
α

)λ− w(pk)λ
)

+

pk

(
w(pk)λ+ w(

pk
α

)λ− w(pj)λ
)
.

Again, partial derivatives give:

∂RT

∂pj
= λ

(
1− pj

pmax
(2 + 2/α) + 2pk

pmax

)
= 0,

∂RT

∂pk
= λ

(
1− pk

pmax
(2 + 2/α) +

2pj
pmax

)
= 0,

and the optimal prices are

p̄j = p̄k =
pmaxα

2
,

yielding a total revenue

R̄′′
T

=
pmaxαλ

2
.

3. If pkα < pj <
pk
α , the total revenue is:

RT = pjw(pj)λ+ pkw(pk)λ.

Again, partial derivatives give:

∂RT

∂pj
= λ

(
1− 2pj

pmax

)
= 0,

∂RT

∂pk
= λ

(
1− 2pk

pmax

)
= 0,
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and the optimal prices are

p̄j = p̄k =
pmax

2
,

yielding a total revenue

R̄′′′
T

=
pmaxλ

4
.

Now we derive the conditions to have R̄′
T ≥ R̄′′T :

pmaxλ(9α+ 15 + 4/α)

α(3 + 4/α)2
≥ pmaxαλ

2
⇔ 9α3 + 6α2 − 14α− 8 < 0,

and we have only one positive root ᾱ ≈ 1.215 < 0.5 +
√

11/12. We have to compare R̄′′′
T

and

R̄′
T

. It appears that R̄′
T

is always greater than R̄′′′
T

for positive α values.

Therefore, α ∈ [1, ᾱ] RT = pmaxλ(9α+15+4/α)
α(3+4/α)2 ,

α > ᾱ RT = pmaxαλ
2 .

Figure 7 plots the individual revenues of both providers in the competition and cooperation

cases assuming an equal share of cooperative revenue among providers for the latter, a reason-

able assumption under homogeneous conditions (symmetric traffic flows, equal capacity, same

willingness-to-pay function for users traveling in both directions). It appears that cooperation

would improve the revenue of both providers, even the one that had the most favorable position

in the asymmetric equilibrium.

5.4. The impact on user surplus

In this section we consider the equilibria of the pricing game from the point of view of users.

Note that our model does not define a measure for individual customer efficiency: each customer

is either fully served–getting a utility equal to his willingness-to-pay–or not served at all–getting

zero utility; in case of congestion at an RSU, the unserved users are chosen uniformly among those

accepting the proposed price. Thus, instead of efficiency we use user surplus, that is the difference

between what users wanted to pay and what they actually payed. We focus here on the large

capacity case. Recall that user willingness-to-pay varies in our scenario: we consider the initial

willingness-to-pay as the reference: when α > 1, users served by the second provider met may

actually pay more than they originally wanted to pay; in this case their surplus will be considered

negative.

If we consider just one flow direction λj and denote by pj the price of the first provider this

flow meets, and by pk the price of the second one, then the positive part of users surplus is as

follows:

US+
j =

∫ pmax

pj

w(p)λdp+

∫ pj

pk

[w(p)− w(pj)]
+λdp,
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which includes surplus from users served by j, and by k. The negative part of users surplus is:

US−j =
[
w(pk/α)−max(w(pj), w(pk))

]+
(pk − pk/α)λ−∫ min(pj ,pk)

pk/α

[
w(p)−max(w(pj), w(pk))

]+
λdp,

which includes users refusing price pj and accepting a price pk higher than their original willingness-

to-pay. Note that the expression of US−j is general enough to cover both cases pj > pk and pj < pk.

Figures 8 - 9 illustrate the logic behind the computation of user surplus when p1 > p2 and

p1 < p2, respectively. The red surface is the negative part of user surplus (when they pay more

than initially willing to), and yellow zones correspond to the positive part of users surplus.
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Figure 8: Users surplus of λ1 flow when p1 > p2
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Figure 9: Users surplus of λ1 flow when p2 > p1
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With a linear willingness-to-pay function, we have

US+
j = (pmax − pj)w(pj)

λ

2
+ (w(pk)− w(pj))[pj − pk]+

λ

2
,

and

US−j =
λ

2
(w(pk/α)− w(pk))(pk − pk/α)−

λ

2
(w(pj)− w(pk))[pk − pj ]+

and the total user surplus is

US = US+
j + US+

k − US
−
j − US

−
k .

Figure 10 shows total users surplus for different α values for large capacities, in the similar

settings as before. We can see that it is consistent with what we observed about the average price

payed by user: for a whole range of α values, users surplus increases, which means that accepting

to pay more led to the situation when (overall) users pay less.
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Figure 10: Users surplus in equilibrium for various α

5.5. Numerical analysis for different willingness-to-pay functions

Because of the complexity of the model, it is hard to prove analytically that for any function w

there is a range of α values such that a willingness-to-pay increase between the two providers met

(by a factor α) actually leads to a decrease in the prices set by providers. Note that it is possible

to prove the existence of at least one symmetric equilibrium when α is large in the large-capacity

case, but we cannot say anything about its quality.

In this section, we carry out a numerical analysis for some willingness-to-pay function examples,

not restricting ourselves to linear ones. We are in particular interested in finding a minimum
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willingness-to-pay variation value ᾱ for which a symmetric equilibrium appears, and compare the

prices in this equilibrium with those for the case α = 1.

We consider the following functions:

• Linear: w(p) = 1− p
pmax

• Square: w(p) = (1− p
pmax

)2

• Power Law (C, n): w(p) = C
C+pn

• Exponential: w(p) = 1
ep

Tabel 2 shows provider prices at equilibrium, when there is no variation (α = 1) and when

the variation leads to a symmetric equilibrium. For the willingness-to-pay functions considered,

which follow our convexity and monotonicity assumptions, we still observe a price decrease after

some α, illustrating that this phenomenon does not only occur with linear w functions.

Table 2: Equilibrium prices decrease for different willingness-to-pay functions

w(p) Equilibrium

prices, α = 1

Equilibrium

prices, α = ᾱ

ᾱ

Linear (3.75, 5.0) (3.68, 3.68) 1.16

Square (2.35, 3.33) (2.27, 2.27) 1.2

Power Law (5, 2.2) (1.35, 1.92) (1.32, 1.32) 1.17

Exponential (0.65, 1.0) (0.59, 0.59) 1.25

We also consider in Appendix Appendix C the case where users moving in different directions

modify their willingness-to-pay differently (i.e., one value of α for each direction). This scenario

can correspond to situation when the highway stretch under consideration is close to a city area;

users heading toward the city can anticipate to have several other connection opportunities (hence

a low α), while those leaving the city face a higher risk of not finding other (cheap) ways to connect

(hence a higher α).

6. Discussion and perspectives

This work studies competition between Internet access providers in vehicular networks in sce-

narios where users may change their pricing preferences as they travel, since they are less and less

likely to be offered another connection possibility. We analyzed the optimal behavior of a provider,

given the opponent’s price fixed. This allowed us to characterize the outcomes (equilibria) of the

competition among revenue-interested providers playing on prices.
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Our finding is that the changes of users willingness-to-pay drastically impact the provider

competition: users increasing their willingness-to-pay as they travel (a priori giving providers

more latitude to make more revenues by increasing prices) can lead to counterintuitive situations

where providers lower their prices and make fewer revenues, while reducing the average price payed

by users. That phenomenon was observed for different types of willingness-to-pay functions.

The proposed modeling framework involves simplifying assumptions, which stems from the

usual tension between having a realistic and insightful model and keeping it analytically tractable.

First, we assume that all users undergo the same relative change in their price acceptance threshold

(the price they accept to pay) between the two RSUs, i.e., the same α. In a more detailed model,

we may expect α to vary with the application involved, with the specific user (α would then be

modeled as a random variable), and/or with the initial price acceptance threshold value. Also,

besides classical assumptions allowing to apply game theory (player rationality, perfect information

about flow levels and opponent strategies), we assume that providers know users’ willingness-to-

pay and how it varies. Such an assumption can be justified as vehicular Internet providers may

get to know the users’ willingness-to-pay function through dynamic learning techniques and/or

statistical inference. Then, a provider knowing the price of the opponent can estimate how the

willingness-to-pay varies over time (the parameter α): the fraction of users accepting to pay some

price after refusing the price of the opponent indeed corresponds to a conditional probability that

depends on both prices and on α; the provider can thus vary his price and observe the demand

level to estimate α.

Despite the assumptions made, we believe that the proposed model provides insights on inter-

esting phenomena, like the appearance of a symmetric equilibrium while there wasn’t any when α

equals 1.

Natural follow ups for this work include:

• the analysis of larger network scenarios where each Internet provider owns a whole infras-

tructure of access points, spread (evenly or not) over the road, forming several connectivity

islands; the analysis developed in this work for the case of 2-providers competition can be

leveraged as a building block to address ”larger” networks with higher number of providers

and different network geometry. One possible approach could be to reduce such more com-

plex scenarios to multiple 2-providers games. It is worth pointing out that including generic

geometries for the deployment of RSUs may lead the competition outcomes to differ signifi-

cantly, since relative position of providers’ RSU have a drastic impact;

• the analysis of network scenarios where some a priori information is available on the providers’

pricing strategies and/or the users become ”strategic”, that is, they become active players

by properly setting their willingness-to-pay threshold (or entire function); this new setting,

25



though, completely changes the structure of the competition and would call for a brand new

modeling approach.

• the analysis of scenarios with consolidated incumbent providers and new providers willing to

enter the market; this framework would call for changing the modeling approach resorting

to leader-follower game representations.

• the analysis of network scenarios where the position of the RSUs is not pre-fixed, but rather

each provider, besides setting the price for the service, may also decide where to deploy

the network infrastructure. This setting requires ample modifications of the game theoretic

framework.
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Appendix A. Proof of Proposition 1

We first assume that p1 > p2α and p1 > p2/α. Since the right-hand sides of the equations

in (4) are continuous in (P1, P2) and fall in the interval [0, 1], Brouwer’s fixed-point theorem [13]

guarantees the existence of a solution to the system.

To establish uniqueness, remark that P2 is uniquely defined by P1 through the second equation

in (4), so (P1, P2) is unique if P1 is unique. But P1 is a solution in [0, 1] of the fixed-point equation

x = g(x) with

g(x) := min

1,
1

a+ b− bmin
(

1, 1
a+b+ε−ax

)
 ,

where a = w(p1)λ1

c , b = w(p1/α)λ2

c , and ε = (w(p2/α)−w(p1))λ1+(w(p2)−w(p1/α))λ2

c are all positive

constants; we also assume a > 0 and b > 0 otherwise the problem is trivial. As a combination of

two functions for the form x 7→ min
(

1, 1
K1−K2x

)
, g is continuous, nondecreasing, strictly increasing

only on an interval [0, x̄] (if any) –it is in addition convex on that interval–, and constant for x ≥ x̄

(note we can have x̄ = 0 or x̄ ≥ 1).

Assume g(x) = x has a solution x̃ ∈ (0, x̄]. Then g is left-differentiable at x̃, and

g′(x̃) =
x̃2ab

(a+ b+ ε− ax̃)2
≤ x̃2a

(a+ b+ ε− ax̃)
(A.1)

where we used the fact that x̃ ≤ 1 (as a fixed point of g). Moreover, since x̃ is in the domain

where g is strictly increasing we have η := 1
a+b+ε−ax̃ ≤ 1 on one hand, and x̃ = 1

a+b−bη on the

other side. Their combination yields x̃ ≤ 1
a and finally

g′(x̃) ≤ x̃ ≤ 1.
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Remark also that g′(x̃) < 1 if x̃ < 1. We finally use the fact that g(0) > 0 to conclude that the

curve y = g(x) cannot meet the diagonal y = x more than once: assume two intersection points

x̃1 < x̃2, then g′(x̃1) < 1 thus the curves cross at x̃1, another intersection point x̃ would imply

g′(x̃2) > 1 (recall g is convex when strictly increasing), a contradiction. Hence the uniqueness of

the fixed point and of the solution to (4).

By symmetry, we have the same kind of results when p2/α ≥ p1.

Then, we can also prove existence and uniqueness of a solution of system (5), when p2/α ≤

p1 ≤ p2α. Here we have

g(x) := min

1,
1

a+ b− dmin
(

1, 1
d+a+ε−ax

)
 ,

where a = w(p1)λ1

c , b = w(p1/α)λ2

c , d = w(p2)λ2

c and ε = w(p2/α)λ1−w(p1)λ1

c are all positive constants;

we again assume a > 0 and b > 0 otherwise the problem is trivial.

Differentiating g at x̃, we get

g′(x̃) =
x̃2ad

(a+ d+ ε− ax̃)2
≤ x̃2a

(a+ d+ ε− ax̃)
,

and the rest is similar to the case when p1/α ≥ p2.

Finally, we consider the case when p2/α ≥ p1 ≥ p2α. We have:

g(x) := min

1,
1

a+ b− bmin
(

1, 1
b+a−ax

)
 ,

where a = w(p1)λ1

c , b = w(p2)λ2

c . The rest is similar to the first case.

Appendix B. Proof of Lemma 1

Recall that

λTj (pj , pk) = w(pj)λj + λk[w(pj/α)− w(pk)]+ + min (w(pk), w(pj/α))λk(1− Pk).

The components of the first line are trivially continuous and non-increasing in pj with our as-

sumptions on w(·).

The continuity of λTj (pj , pk) follows from the continuity of Pk in the price vector (pj , pk),

established in the previous section.

To establish the monotonicity result, we distinguish four cases.

• If pk < pj/α and pk < pjα, then we have

λTj (pj , pk) = w(pj)λj + w(pj/α)λk(1− Pk).

When λTk < c, then Pk = 1 and λTj is non-increasing in pj .
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Now if λTk > c then from System (4) (this time with k = 2, j = 1), we have w(pk)λk +

w(pk/α)λj − w(pj)λjPj > c and

λTj (pj , pk) = w(pj)λj + w(pj/α)λk − w(pj/α)λk
c

w(pk)λk + w(pk/α)λj − w(pj)λjPj
.

Assuming that provider j is not saturated, Pj = 1. Then

λ′
T
j (pj , pk) = w′(pj)λj +

w′(pj/α)λk
α

− w′(pj/α)λk
α

c

w(pk)λk + w(pk/α)λj − w(pj)λj

+w(pj/α)λk
cw′(pj)λj

(w(pk)λk + w(pk/α)λj − w(pj)λj)2

< w′(pj)λj +
w′(pj/α)λk

α
− w′(pj/α)λk

α
+ w(pj/α)λk

cw′(pj)λj
(w(pk)λk + w(pk/α)λj − w(pj)λj)2

≤ 0,

where the last inequality comes from the nonincreasingness of w(·).

• If pj/α ≤ pk ≤ pjα then

λTj = w(pj)λj + w(pj/α)λk −
cw(pk)λk

w(pk)λk + w(pk/α)λj − w(pj)λjPj

Assuming that provider j is not saturated and then Pj = 1 we can differentiate in pj :

dλTj
dpj

= w′(pj)λj + w′(pj/α)
λk
α

+
cw(pk)w′(pj)λjλk

(w(pk)λk + w(pk/α)λj − w(pj)λj)2
≤ 0,

where w′ is the derivative of w, and the last inequality comes from the fact that w′(·) ≤ 0.

• If pj/α ≥ pk ≥ pjα (for α < 1) then

λTj = w(pj)λj + w(pk)λk −
cw(pk)λk

w(pk)λk + w(pj)λj − w(pj)λjPj
.

Assuming that provider j is not saturated and then Pj = 1:

dλTj
dpj

= w′(pj)λj ≤ 0.

• If pk > pjα and pk > pj/α, we show that the success probability Pk is non-decreasing in pj :

applying System (4) (with k = 1, j = 2) we get that Pk is the solution of the fixed-point equation

x = g(x), where the function g can be written as

g(x) = min

1, c

w(pk)λk+w(pk/α)λj

[
1− c

w(pj)λj+w(pj/α)λk−w(pk)λkx

]+
.

We then remark that, all else being equal, g(x) is non-decreasing in pj , so the solution Pk of the

fixed-point equation g(x) = x is also non-decreasing in pj .

As a result, when pk ≥ pj/α the component min (w(pk), w(pj/α))λk(1 − Pk) decreases with

pj , and so does λTj .
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Appendix C. Heterogeneous willingness-to-pay variations

In this section we assume that user pricing preferences change differently for both flow direc-

tions. Some users may for example move toward a city and thus expect to meet more APs, while

the users moving in the opposite direction are risking not to meet any APs in the nearest future.

The former may not increase much their willingness-to-pay, while the latter have higher risks to

fail to establish Internet connection, and thus are more flexible in price perception.

Let us consider that the α values are different for two flows and that without loss of generality

α1 value for users seeing Provider 1 first is bigger than for those, seeing first Provider 2, i.e.,

α1 = hα2 = hα, for some h ≥ 1.

Similarly to the case when α was common to both flow directions, we consider three cases:

1. If p1 <
p2
α , then R1 = p1

(
w(p1)λ1 + w( p1αh )λ2 − w(p2)λ2

)
,

R2 = p2w(p2)λ2

and for a linear w(p) 
BRa

1 = pmaxλ1+p2λ2

2λ1+
2λ2
αh

,

BRb
2 = pmax/2.

and

BRa
1(BRb

2) =
pmax(λ1 + 1/2λ2)

2λ1 + 2λ2

αh

.

This is valid for

α ≤
λ1 +

√
λ1

2 + 4λ2/h(λ1 + 1/2λ2)

2λ1 + λ2
,

which in the homogeneous case is equivalent to

α ≤
1 +

√
1 + 6/h

3
.

2. If p2
α ≤ p1 ≤ p2αh, thenR1 = p1

(
w(p1)λ1 + w( p1αh )λ2 − w(p2)λ2

)
,

R2 = p2

(
w(p2)λ2 + w(p2α )λ1 − w(p1)λ1

)
and for a linear w(p) 

BRa
1 = pmaxλ1+p2λ2

2λ1+
2λ2
αh

,

BRa
2 = pmaxλ2+p1λ1

2λ2+
2λ1
α

, .
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and 
BRa

1(BRa
2) =

pmax(2λ1λ2+
2λ21
α +λ2

2)

(2λ1+
2λ2
αh )(2λ2+

2λ1
α )−λ1λ2

,

BRa
2(BRa

1) =
pmax(2λ1λ2+

2λ22
αh +λ2

1)

(2λ2+
2λ1
α )(2λ1+

2λ2
αh )−λ1λ2

.

For this equilibrium the condition p2
α ≤ p1 ≤ p2αh holds only ifα ≥

−λ1(λ1−2λ2)+
√
λ1

2(λ1−2λ2)2+8λ2
3/h(λ2+2λ1)

2λ2(λ2+2λ1)
,

α ≥ −λ2(λ2−2λ1)+
√
λ2

2(λ2−2λ1)2+8λ1
3h(λ1+2λ2)

2hλ1(λ1+2λ2)
,

or in the homogeneous flows case:

α ≥
1 +

√
1 + 24/h

6
.

3. If p1 > p2αh, then R1 = p1w(p1)λ1,

R2 = p2

(
w(p2)λ2 + w(p2α )λ1 − w(p1)λ1

)
and for a linear w(p) 

BRb
1 = pmax/2,

BRa
2 = pmaxλ2+p1λ1

2λ2+
2λ1
α

, .

and

BRb
2(BRa

1) =
pmax(λ2 + 1/2λ1)

2λ2 + 2λ1

α

,

with the following condition on α to have p1 > p2αh:

α <
λ2 +

√
λ2

2 + 4λ1h(λ2 + 1/2λ1)

2h(λ2 + 1/2λ1)
,

or in the homogeneous flows case

α <
1 +
√

1 + 6h

3h
.

What is different in this new scenario is that we have three types of equilibrium now (BRa
1 ,BRb

2),

and (BRa
1 ,BRb

2) are not symmetric anymore. With homogeneous users flows we have the following

conditions:
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1. (BRa
1 ,BRb

2) is an equilibrium when
BRa

1(BRb
2) < pmax(

√
1 + 1

αh − 1),

BRb
2(BRa

1) ≥ pmax(
√

1 + 1
α − 1),

α <
1+
√

1+6/h

3 .

or α < min{s/h, 1+
√

1+6/h

3 }.

2. (BRa
1 ,BRa

2) is an equilibrium when
BRa

1(BRa
2) ≥ pmax(

√
1 + 1

αh − 1),

BRa
2(BRa

1) ≥ pmax(
√

1 + 1
α − 1),

α ≥ 1+
√

1+24/h

6 .

This set of inequalities is not solvable for αh, but for each specific value of h we can find

numerically a condition on α for the conditions to hold. This dependence is presented on

Figure C.11

3. (BRb
1,BRa

2) is an equilibrium when
BRb

1(BRa
2) ≥ pmax(

√
1 + 1

αh − 1),

BRa
2(BRb

1) < pmax(
√

1 + 1
α − 1),

α < 1+
√
1+6h
3h ,

or α < min{s, 1+
√
1+6h
3h }.
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Figure C.11: The different types of Nash equilibria in the pricing game when users seeing Provider 2 (resp. 1) first

increase their price acceptance by a multiplicative α > 1 (resp. hα) after seeing that provider.
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Figure C.11 shows threshold α values for different h, showing whether there exists a particular

type of equilibrium. The figure suggests that there is no pair of α and h such that all three types

of equilibria exist.
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