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Abstract: Large-scale Cu3SbSe4 and Cu3Sb0.98Sn0.02Se4 nanoparticles with a narrow 

size distribution were synthesized through a rapid-injection route. Those nanoparticles 

showed a monodisperse and quasi-spherical morphology. The Cu3SbSe4 and 

Cu3Sb0.98Sn0.02Se4 nanoparticles-based bulk materials were then prepared by 

hot-pressing sinter of the nanoparticles, and their thermoelectric performances were 

systematically studied. Due to the reduced lattice thermal conductivity from enhanced 

phonon scattering at the grain interfaces of the bulk materials, the maximum ZT value 

of the Cu3Sb0.98Sn0.02Se4 bulk materials reached 0.50 at 575 K. 
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1. Introduction 

During the past few decades, continuous efforts have been devoted to improving 

the performance of thermoelectric (TE) materials for their applications in cooling and 

power generation (Hicks and Dresselhaus 1993; O’Dwyer et al. 2006; Pei et al. 2011; 

Poudel et al. 2008; Shakouri 2011; Yang et al. 2008). Copper-based multinary 

semiconductors with zinc blende related crystal structures have recently emerged as 

some of the best performing p-type thermoelectric materials (Shi et al. 2010; Shi et al. 

2009; Skoug et al. 2011; Skoug et al. 2012; Zou et al. 2014). One example is ternary 

p-type Cu3SbSe4 semiconductor. Its unique crystal structures increase the 

phonon-phonon interactions, resulting in a quite low phonon conductivity (Skoug et al. 

2012; Zou et al. 2014). Thus the ternary p-type Cu3SbSe4 semiconductor has been 

considered to be an important kind of thermoelectric materials and has caused wide 

public concern in the past few decades (Do et al. 2012; Yang et al. 2011).  

It is well known that the TE performance is characterized by the dimensionless 

figure of merit: 

 ZT = S2
σT/κ                                            (1) 

where S is the Seebeck coefficient, σ is electrical conductivity, κ is thermal 

conductivity and T is absolute temperature, respectively. Therefore, higher electrical 

conductivity and lower thermal conductivity will significantly improve TE 

performance of thermoelectric materials. Thus the TE performances of the 

thermoelectric materials are largely dependent on the preparation method which can 
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greatly change their microstructure (Biswas et al. 2012). To date, almost all the 

Cu3SbSe4-based materials were fabricated by solid state reactions (Fan et al. 2013; Li 

et al. 2013; Liu et al. 2009; Skoug et al. 2011; Skoug et al. 2012; Zou et al. 2014). The 

Cu3SbSe4 nanoparticles might be used as the starting materials of Cu3SbSe4-based 

thermoelectric materials because they could result in grain refinement in consolidated 

bulk, generating a large quantity of phonon scattering at grain boundaries to reduce 

the lattice thermal conductivity. Li et al. (Li et al. 2013) have firstly reported a 

co-precipitation synthesis of Sn and/or S doped Cu3SbSe4 powders with 300-500 nm 

diameters which were composed by plenty of agglomerated nanospheres with their 

diameters around 50 nm. However, as far as we know there have been no reports on 

synthesis of the monodisperse Cu3SbSe4 nanoparticles and the TE performances of 

the Cu3SbSe4-based thermoelectric materials which were prepared by the 

monodisperse Cu3SbSe4 nanoparticles. In this paper, we demonstrate a facile 

rapid-injection route for the large-scale synthesis of the monodisperse Cu3SbSe4 and 

Cu3Sb0.98Sn0.02Se4 nanoparticles. The TE properties of the Cu3SbSe4 and 

Cu3Sb0.98Sn0.02Se4 bulk materials which were prepared by hot-pressed sinter of the 

nanoparticles were described. 

 

2. Experimental 

The Cu3SbSe4 and Cu3Sb0.98Sn0.02Se4 nanoparticles were synthesized by reacting 

CuCl2·2H2O, SbCl3, and SnCl2·2H2O with an excess of selenium precursor in the 

presence of hexadecylamine (HDA). In a typical procedure, 1.5 mmol CuCl2.2H2O 
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(99.99%, aladdin), 0.5 mmol SbCl3 (99.99%, aladdin) and SnCl2·2H2O (99.99%, 

aladdin), 15 mmol HDA (90%, aladdin) and 30 ml octadecene (ODE, 90%, Aldrich) 

were introduced into a three-neck flask and heated to 200°C under the protection of 

argon until all precursors were dissolved and the solution became transparent and 

light yellow. Afterward, the solution was cooled to 180°C and maintained under 

argon for 0.5 hour to remove oxygen, water and other relatively volatile impurity 

organic solvents which may exist in commercial solvent. Then 12 ml ODE-Se (0.8 M) 

solution was injected through a syringe. The excess selenium leaded to the 

instantaneous formation of nuclei of cationic selenide, guarantees the uniformity of 

grain size and hinders the growth behavior during the grain nucleation. And it could 

also insure a complete reaction. The mixture was maintained at 180°C for different 

time from 0 min up to 60 min and then rapidly cooled down to room temperature in 

air. Along with the increase of reacting time, the suspension mixtures appeared a 

color change from a light orange to an eventually deep green color which qualitatively 

indicated the acquisition of Cu3SbSe4 nanoparticles. To remove the weakly bound 

HDA, 9 ml of oleic acid (OA, 90%, Aldrich) was added to the mixture during the 

cooling step at about 70°C (Li et al. 2013). And finally the nanoparticles were isolated 

and purified using chloroform and isopropanol to complete the standard 

solvent/nonsolvent precipitation/redispersion procedure. To characterize the TE 

properties of the compacted bulk materials, the Cu3SbSe4 and Cu3Sb0.98Sn0.02Se4 

nanoparticles were dried under vacuum at 40°C for nearly 12 hours and then 

hot-pressed sintered into dense pellets under a pressure of 80MPa at 350°C for 1 hour. 
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The densities values of the Cu3SbSe4 and Cu3Sb0.98Sn0.02Se4 pellets are 4.84g/cm3 and 

4.92g/cm3 respectively. 

Transmission electron microscopy (TEM) images were obtained from a Philips 

CM200 field emission transmission electron microscope. High resolution 

transmission electron microscopy (HRTEM) images and selected area electron 

diffraction (SAED) patterns were obtained from a FEI Tecnai G2 F20 field emission 

transmission electron microscope. X-ray diffraction (XRD) analysis was carried out 

on a PANalytical B.V Empyrean 200895 X-ray diffractometer. The electrical 

conductivity and the Seebeck coefficient were measured on a computer-aided 

apparatus using a four-probe method and differential voltage/temperature technique, 

respectively. The thermal diffusivity and the specific heat capacity were measured on 

a laser flash apparatus (Netzsch LFA 457). The thermal conductivity κ was calculated 

from the relationship κ=ρDCp, where D is the thermal diffusivity, Cp the specific heat 

capacity and ρ the density of the sample estimated by an ordinary dimensional and 

weight measurement procedure. 

 

3. Results and discussion 

Fig.1(a) shows the XRD patterns of the Cu3SbSe4 nanoparticles which were 

synthesized at 180°C for 0 min, 10 min, 30 min and 60 min , which exhibits 

prominent peaks well accordant with JCPDS standard card (JCPDS 85-0003) of the 

tetragonal-phase Cu3SbSe4 without a second phase. It is obvious that the rapid 

injection which involves the injection of a “cold” (room temperature) solution of 
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precursor molecules into hot liquid (de Mello Donega et al. 2005) is an effective 

method for synthesis of pure phase Cu3SbSe4 nanoparticles. The Scherrer formula was 

used to calculate the mean crystallite size according to the full width at half maximum 

(FWHM) of XRD peaks. The size of the Cu3SbSe4 nanoparticles which were 

synthesized at 180°C for 10 min could be calculated to be about 35 nm. Fig.1(b) 

shows the XRD patterns of the Cu3SbSe4 and Cu3Sb0.98Sn0.02Se4 nanoparticles which 

were synthesized at 180°C for 10 min. Similar XRD patterns could be observed, 

which indicated that the Sn doping has no significantly influence on the crystalline 

phase of the Cu3SbSe4 nanoparticles. Fig.2 shows the TEM images of the Cu3SbSe4 

nanoparticles which were synthesized at 180°C for 0 min, 10 min, 30 min and 60 min. 

It is clear that the Cu3SbSe4 nanoparticles synthesized at 180°C for 10 min exhibited a 

quasi-spherical morphology with a narrow size distribution around 35 nm. This 

observed size is in good agreement with the size calculated with the Scherrer equation. 

With increase of reaction time, the mean nanoparticle size increases gradually. 

HRTEM analysis of a randomly selected nanoparticle (inset of fig.2(b)) confirmed its 

highly crystalline nature with a tetragonal phase lattice fringes associated with (112) 

lattice planes (d-spacing of 3.24Å). The SAED pattern (inset of fig.2(d)) shows a long 

regularly ordered diffraction spots which could be indexed to the (112), (105) and 

(217) planes of the tetragonal structure of the permingeatite whose lattice spacing 

were 3.24Å, 2.09Å and 1.34Å, respectively. Fig.3(a) shows the TEM image of the 

Cu3Sb0.98Sn0.02Se4 nanoparticles which were synthesized at 180°C for 10 min. Similar 

to Cu3SbSe4 nanoparticles, the Cu3Sb0.98Sn0.02Se4 nanoparticles also show a 
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quasi-spherical morphology and a narrow size distribution around 35 nm, which is 

also consistent with Scherrer-calculated size. Therefore the Sn doping has no 

significant influence on the morphology and size of the nanoparticles. 

Indeed, the nanoparticles synthesis could be resolved into an initial nucleating 

stage and a subsequent self-growth stage whose cluster growth occurred by monomer 

deposition, which depletes the metastable phase of monomer and causes stable 

clusters to grow regardless of their size. In the second stage, an Ostwald ripening 

process plays key roles in the formation of the ending size. This ripening model is 

based on the Kelvin equation, which gives the relationship for the ratio of interfacial 

energy to thermal energy. The smaller clusters are less stable than larger ones and 

therefore larger clusters grow at the expense of smaller ones (Madras and McCoy 

2001). On this basis, the bulk TE materials were prepared by hot-pressed sinter of the 

Cu3SbSe4 and Cu3Sb0.98Sn0.02Se4 nanoparticles which were synthesized at 180°C for 

10 min due to their narrow size distribution at around 35 nm. From the SEM image 

(Fig.3(b)), however, it can be found that the grain size of samples which were 

hot-pressed sintered at 350°C for 1 hour showed an obvious growth from nanoscale to 

microscale. The average grain size was about 1µm. High surface energy of 

nanoparticles and extra energy provided by hot pressing might be main driving forces 

of this grain growth. 

Fig.4 shows the TE behaviors of the Cu3SbSe4 and Cu3Sb0.98Sn0.02Se4 bulk 

materials which were prepared by hot-pressed sinter of the Cu3SbSe4 and 

Cu3Sb0.98Sn0.02Se4 nanoparticle under a pressure of 80MPa at 350°C for 1 hour. The 
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electrical conductivity (σ) of the Cu3Sb0.98Sn0.02Se4 bulk materials was greatly 

enhanced in comparison with Cu3SbSe4 bulk materials, which is consistent with a 

previous reports (Li et al. 2014;Nolas et al. 2000). This could be explained by the 

introduction of acceptor energy level in the band gap by Sn doping, which give rise to 

the increase of hole concentration (Li et al. 2013). Indeed, the acceptor centers in the 

Cu3SbSe4 were reported to relate to the Cu and/or Sb defects (Li et al. 2013;Wei et al. 

2014). Due to the radius difference between Sn4+ (0.69 Å) and Sb5+ (0.61 Å), the 

substitution of Sb by Sn would produce lattice distortion and point defects such as 

vacancies of Cu and/or Sb. From fig.4(a) it can also be found that the electrical 

conductivity of the undoped Cu3SbSe4 bulk materials increases slightly with 

temperature, indicating a non-degenerate semiconductor-like behavior (Li et al. 2013). 

In contrast, the temperature dependence of the electrical conductivity for the 

Cu3Sb0.98Sn0.02Se4 bulk materials decreased gradually with an increase of temperature, 

which exhibited metallic-like or degenerate semiconductor behavior (Li et al. 2014).  

Fig.4(b) shows the dependence of the Seebeck coefficient (S) on temperature for 

the Cu3SbSe4 and Cu3Sb0.98Sn0.02Se4 bulk materials in the temperature range of 

300-600 K. The positive values revealed that they were p-type materials with holes as 

their main charge carriers. The Seebeck coefficient of the Cu3SbSe4 initially 

decreased with the increase of the temperature and then increased with further 

increase in temperature, leaving a minimum located around at 425 K. For 

Cu3Sb0.98Sn0.02Se4, a similar S variation with the temperature could be also observed, 

but the fluctuation range is much narrower. Moreover, the introduction of Sn resulted 
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in the decrease of the Seebeck coefficient. Many researches have shown that the 

Seebeck coefficient and the electrical conductivity were not independent because they 

have a close relationship with carrier concentration (GODART 2009; Lenoir et al. 

2010; Mateeva et al. 1998; Zhu et al. 2004). Hence, a compromise between large 

Seebeck coefficient and electrical conductivity of the TE materials should be chosen 

to maximize the power factor, which reveals the ability of one thermoelectric material 

producing useful electrical power. Fig.4(c) shows the dependence of the power factor 

(PF=S2
σ) on temperature for the Cu3SbSe4 and Cu3Sb0.98Sn0.02Se4 bulk materials. The 

Cu3Sb0.98Sn0.02Se4 reached the highest PF value (1.31×10-3 Wm-1K-2) at 300 K.  

To calculate the figure of merit (ZT) of the Cu3SbSe4 and Cu3Sb0.98Sn0.02Se4 bulk 

materials, the thermal conductivities (κ) were calculated by multiplying thermal 

diffusivity, specific heat capacity and density. Fig.4(d) shows the dependence of 

thermal conductivities (κ) on temperature for the Cu3SbSe4 and Cu3Sb0.98Sn0.02Se4 

bulk materials. The thermal conductivities (κ) between 300K and 570K fluctuated in 

the range of 0.91 ~ 1.15 Wm-1K-1 for the Cu3SbSe4 and 1.10 ~ 1.25 Wm-1K-1 for the 

Cu3Sb0.98Sn0.02Se4. The lowest κ value, as low as 0.91 Wm-1K-1, was observed for 

Cu3SbSe4 at 425K. This extremely low thermal conductivity could be attributed to the  

reduction of the lattice thermal conductivity by increased grain boundary scattering 

when the Cu3SbSe4 bulk materials were prepared by hot-pressed sinter of the 

Cu3SbSe4 nanoparticles.  

Fig.5 shows the dependence of the figure of merit on temperature for the 

Cu3SbSe4 and the Cu3Sb0.98Sn0.02Se4 bulk materials. The ZT values increased basically 
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with increasing temperature. It is obvious that the introduction of Sn improved 

significantly the ZT values. The maximum ZT value reached 0.50 at 575 K for 

Cu3Sb0.98Sn0.02Se4 bulk materials, which is larger than that the sample prepared by the 

solid state reactions (Skoug et al. 2012). Evidently, this improvement in the 

thermoelectric properties originated mainly from its higher power factor and lower 

thermal conductivity (Yang et al. 2011; Zou et al. 2014). Note that further 

improvement in the sintering technology, such as the substitution of hot pressing by 

spark plasma sintering, may thwart grain growth and promote densification. This 

provides the possibility to improve electrical conductivity and decrease thermal 

conductivity simultaneously, which will further enhance the ZT values of the 

Cu3SbSe4 nanoparticles-based TE materials. 

 

4. Conclusions 

We have demonstrated a rapid-injection route to synthesize the Cu3SbSe4 and 

Cu3Sb0.98Sn0.02Se4 nanoparticles which showed a monodisperse and quasi-spherical 

morphology. The mean nanoparticle size could be adjusted by controlling the reaction 

time. Those nanoparticles with a smaller size and controlled shape could be used as 

the starting powders for preparing bulk thermoelectric materials, which resulted in 

increased grain boundary scattering to reduce the lattice thermal conductivity. The 

maximum ZT value reached 0.50 at 575 K for the Cu3Sb0.98Sn0.02Se4 bulk materials 

which were prepared by hot-pressed sinter of the Cu3Sb0.98Sn0.02Se4 nanoparticles. 
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Captions of figures 

 

Fig.1 XRD patterns of (a) the Cu3SbSe4 nanoparticles which were synthesized at 

180°C for 0 min, 10 min, 30 min and 60 min, and (b) the Cu3SbSe4 and the 

Cu3Sb0.98Sn0.02Se4 nanoparticles which were synthesized at 180°C for 10 min. 



17 

 

Fig.2 TEM images of the Cu3SbSe4 nanoparticles which were synthesized at 180°C 

for (a) 0 min, (b) 10 min, (c) 30 min, and (d) 60 min. Inset: (b) HRTEM images, and 

(d) district electron diffraction diagrams. 
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Fig.3 (a) TEM image of the Cu3Sb0.98Sn0.02Se4 nanoparticles which were synthesized 

at 180°C for 10 min. (b) SEM image of bulk material which was prepared by 

hot-pressing sinter of the Cu3Sb0.98Sn0.02Se4 nanoparticles at 350oC for 1 hour. 
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Fig.4 Dependence of thermoelectric properties on temperature for the Cu3SbSe4 and 

Cu3Sb0.98Sn0.02Se4 bulk materials. (a) electrical conductivity σ, (b) Seebeck coefficient 

S, (c) power factor PF, and (d) thermal conductivity κ. 

 

Fig.5 Dependence of the dimensionless figure of merit ZT on temperature for the 

Cu3SbSe4 and Cu3Sb0.98Sn0.02Se4 bulk materials. 

 

 


