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Abstract

The bonding situation for the oblato-nido dimetallaboranes (CpV)
2
B5H11 and (Cp∗T )2B5H5+x , where T = Ta, Cr, Mo,

W, Re and Cp∗=C5Me5, was analyzed using the corresponding model series with Cp∗ replaced by the cyclopentadienyl
C5H5. The application of different bonding indicators revealed that both through-space and through-bond (via boron
atoms of the ring) interactions account for a substantial metal-metal bond.
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1. Introduction

There are today over hundred molecular dimetallab-
oranes, which have been synthesized and characterized
with nearly all the transition metals (T), both early and
late metals (see for example Fehlner et al.[1–3]). They5

constitute a class of compounds which has revealed nu-
merous possibilities for the way metal and borane frag-
ments interact to generate novel structures, demonstrating
the important role for the transition metal in the struc-
tural arrangements which are observed. Among these com-10

pounds the molecules (CpV)
2
B5H11,[4] (Cp∗Cr)

2
B5H9,[5]

(Cp∗Mo)
2
B5H9,[6] (Cp∗Ta)

2
B5H11,[6] (Cp∗W)

2
B5H9,[3] and

(Cp∗Re)
2
B5H2Cl5[7], whereby Cp∗ = C5Me5, constitute

examples of early transition-metal dimetallaboranes which
all adopt the same open and flattened hexagonal bipyra-15

midal nido geometry and possess the electron count of 12
cluster valence electrons. Their structural peculiarities are
the oblate (i. e., flattened) shape (these compounds are
termed as oblato-nido species)[8] and the fact that the
metal atoms occupy opposite vertexes in such a way that20

the T-T distance is consistent with possible existence of
a cross-cluster bonding interaction. Indeed, short T-T

distances have been measured experimentally. [3–7] Such

∗Corresponding author
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structures are apparently highly hypoelectronic and do not
obey the Wade-Mingos rules[9–11] as generally do boranes,25

carboranes and late-transition metallaboranes. Density
functional theory (DFT) calculations have been able to
sort out this apparent systematic rule deviation,[7] but
the proximity of the two metal atoms on opposite sides in
the flattened direction allows some speculation about the30

nature of T-T interaction. This has been tackled several
times in the literature using MO analysis. [1, 2, 7, 8, 12–20]
However, whereas the conclusions seem to fully converge
with some studies evidencing a single T-T bond, [7] some
others suggest a formal internal T-T double bond.[8]35

In the following, the through-space T-T interaction in
the CpT2B5H5+x model series, with the number of bridg-
ing (H

b
) atoms x = 6 for V, Ta, x = 4 for Cr, Mo, W,

and x = 2 for Re, respectively, is analyzed. The inves-
tigation was performed using the electron density and its40

derivatives within the framework of the quantum theory
of atoms in molecules [21] (QTAIM), as well as utilizing
several bonding indicators like the delocalization indices
[22, 23] (DI), the Fermi orbitals (FO) from the domain-
averaged Fermi-hole analysis[24–26] (DAFH), the covalent45

bond order from the evaluation of localized natural or-
bitals (LNO),[27] and the electron localizability indicator
ELI-D.[28, 29]

Preprint submitted to Elsevier July 3, 2015



  

2. Theory section

2.1. Electronic structure calculations50

The calculations were performed with the Gaussian09
program [30] at the density-functional level of theory (DFT).
The computational demand for the oblato-nido species, cf.
Fig. 1, was reduced replacing Cp∗ = C5Me5 by Cp = C5H5

and Cl by H. This substitution is not expected to have55

significant influence on the analysis. The atoms H, B, C
and O were described by the 6-31G** basis sets and the
T atoms by the corresponding LANL2DZ basis sets uti-
lizing effective core potentials. For the DFT calculations
the BVP86 functional was used. [31–33] The structure of60

the examined model systems was optimized and the har-
monic vibrational frequencies were computed to check the
stationarity of the optimized geometries.

2.2. Methods

The calculation of the bonding indicators and the topo-65

logical analysis was performed with the DGrid-4.6 program.[34]
The electron density, the ELI-D, and the Fermi orbitals
were computed on equidistant grids using a 0.1 bohr mesh
size.

Following the QTAIM approach the electron density70

was searched for critical points (points of zero density
gradient in case of Gaussian basis) and several proper-
ties were evaluated at the saddle points (so-called bond-
critical points, bcp). For each bcp the bond path, represent-
ing the bonding interaction, was computed. The density75

basins (spatial regions enclosed by density-gradient zero-
flux surfaces) were determined and the electronic popu-
lation within evaluated, leading to the effective charges of
the atomic regions. Additionally, the overlap integrals over
the QTAIM basins were computed. Those were utilized to80

compute the delocalization indices (DI), connected with
the bond order, as well as the Fermi orbitals (FO) and the
localized natural orbitals (LNO).

BCl

ClB BCl

TCp*

TCp*

ClB BCl

BH

HB BH

TCp*

TCp*

HB BH

H

H

H

H

BH

HB BH

TCp*

TCp*

HB BH

H

H

H

H

H

H

T = V, Ta T = Cr, Mo, W T = Re

H

H

Figure 1: The oblato-nido species.

3. Results and discussions

3.1. Structure optimization85

The experimental interatomic distances between the
two transition metals, together with the (averaged) dis-
tances from the T to the carbon and boron, respectively,

Table 1: Interatomic Distances from Experiment (Å).

compound T-T T-Ca T-Ba

(CpV)
2
B5H11 2.7604(10)[4] 2.247 2.217

(Cp∗Cr)
2
B5H9 2.6246(9)[6] 2.198 2.147

(Cp∗Mo)
2
B5H9 2.8085(6)[6] 2.328 2.248

(Cp∗Ta)
2
B5H11 2.9261(4)[5] 2.384 2.326

(Cp∗W)
2
B5H9 2.8170(8)[3] 2.326 2.239

(Cp∗Re)
2
B5H2Cl5 2.7641(3)[7] 2.292 2.201

a averaged.

in the oblato-nido species under consideration are com-
piled in Table 1.90

The geometry optimization of the corresponding model
systems results in T-T distances deviating from the exper-
imental ones within few pm only, cf. the data reported in
Table 2 (see Supplementary data for the optimized model
structures). In case of (CpRe)

2
B5H7 the trans configura-95

tion of the two H
b

atoms is energetically more favorable
than the cis configuration as proposed earlier by others.[7]

Table 2: Optimized Interatomic Distances (Å).

compound T-T T-Ca T-Ba

(CpV)
2
B5H11 2.691 2.281 2.221

(CpCr)
2
B5H9 2.595 2.206 2.155

(CpMo)
2
B5H9 2.828 2.364 2.266

(CpTa)
2
B5H11 2.938 2.423 2.338

(CpW)
2
B5H9 2.831 2.356 2.264

(CpRe)
2
B5H7 2.745 2.315 2.201

a averaged.

3.2. Bond paths

The evaluation of the critical points of the electron
density distribution ρ followed by the search for the bond100

paths, i.e., field lines of ∇ρ connecting bond-critical points
(saddle points) with attractors (ρ maxima) yields so-called
molecular graph.[21] For each model system the corre-
sponding molecular graph, cf. Fig. 2 closely resembles the
classical chemical structure diagrams. The metal atoms105

are linked by a bond path to each carbon of the close Cp
ligand. In case of the bridging hydrogens the correspond-
ing paths are strongly curved, whereby the metal-boron
path is not present, in contrast to Fig. 1 where the closest
interatomic contacts are just schematically depicted.110

The presence of T-T bonding interaction, as suggested
by the short interatomic distance, was clearly confirmed
by the existence of the bond-critical point and the cor-
responding bond path connecting the two metals. The
T-T bond path was found for all the examined model sys-115

tems. The density Laplacian at the bcp is positive in all
cases, cf. Table 3, thus showing a charge depletion which
would mark a ”closed-shell” interaction. However, this is
a situation not untypical for the d-metals[35, 36]. Because
of the relatively high electron density at the bcp (higher120

than twice the density of overlapping atoms) as well as

2



  

Figure 2: Molecular graphs for the model systems (CpV)
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the negative (though small) value of the energy density H

(as indicated by the bond degree H/ρ[37]) the T-T inter-
action has a covalent character. Only for the Cr complex
the |V |/G ratio is close to 1, showing that the potential125

energy does not unfold the appropriate stabilizing influ-
ence on the Cr-Cr bond. Besides the V complex all the
other systems yield a |V |/G ratio close to 2, from where
the density Laplacian at the bcp would revert from deple-
tion to charge accumulation. The local kinetic energy G/ρ130

exhibit relatively constant behavior at the bcp (values be-
tween 0.4-0.5 hartree/e). This again renders the largest
charge depletion as shown by the Cr compound.

Table 3: Properties at the bcp Between the Transition Metals.

T-T ρ ∇2ρ H/ρ G/ρ |V |/G
V-V 0.31 1.48 -0.15 0.48 1.31

Cr-Cr 0.34 2.19 -0.09 0.54 1.16
Mo-Mo 0.38 0.76 -0.33 0.47 1.70
Ta-Ta 0.35 0.30 -0.34 0.40 1.85
W-W 0.43 0.38 -0.36 0.42 1.85
Re-Re 0.48 1.01 -0.36 0.50 1.70

All values are evaluated at the bond-critical point bcp.
The electron density ρ [eÅ−3], the density Laplacian ∇2ρ
[eÅ−5], the bond degree H/ρ [he−1], the local kinetic en-
ergy G/ρ [he−1], and the local virial ratio |V |/G are given.

3.3. Atomic charges

As the bonding interaction between the transition met-135

als has been established by the above analysis at the bcp

in the boron plane, let us proceed with the examination of
the constituent T atoms. The electron density basins rep-
resent the atomic domains in the QTAIM approach. The
effective charge of the atomic basins (cropped by the 6.75140

10−5 eÅ−3 density isosurface) assigned to the transition
metals is positive for all the examined compounds, cf. Ta-
ble 4, ranging from +0.9 for the Cr complex up to +1.7
for the Ta complex. The transition metals are connected
to the negatively charged Cp rings (-0.14 to -0.37, with145

carbon charges around -0.1). Also the bridging (H
b
) as

well as the terminal (Ht) hydrogens are always negative,
with charge around -0.5 and -0.6, respectively. The boron
atoms are of course positive, whereby the terminal boron
atoms (B1, cf. Fig. 2) exhibit the highest charge around150

+0.9 to +1.1 (only +0.7 for the Re complex). The boron
atoms B2 contribute around 1/2–1/3 and the mid boron
B3 only roughly 1/3 of this value.

3.4. Delocalization indices

With the QTAIM basins at hand the electron pair den-155

sity ρ2(~r1, ~r2) can be integrated over these atomic domains
yielding the number of electron pairs formed between the
regions. Subtracting this result from the number of quasi-
independent electron pairs (i.e., the product of basin pop-
ulations) defines the delocalization index (DI).[22, 23] The160

Table 4: Effective Charges for the QTAIM Basins.

cpd T B1 B2 B3 Ht H
b

Cp
1 1.18 1.10 0.60 0.32 -0.56 -0.47 -0.20
2 0.93 1.09 0.32 0.35 -0.56 -0.47 -0.14
3 1.14 1.02 0.30 0.31 -0.57 -0.47 -0.22
4 1.70 0.99 0.54 0.19 -0.57 -0.50 -0.37
5 1.38 0.92 0.27 0.25 -0.57 -0.47 -0.29
6 0.86 0.67 0.36 0.35 -0.58 -0.38 -0.21

See Fig. 2 for boron atom numbering.

DI δ(Ai, Aj) between two atomic domains Ai and Aj :

1

2
δ(Ai, Aj) =

∫

Ai

ρ(~r1) d~r1

∫

Aj

ρ(~r2) d~r2 (1)

−

∫

Ai

d~r1

∫

Aj

ρ2(~r1, ~r2) d~r2

quantifies the number of electron pairs shared between the
regions. In case of single-determinantal wavefunction the
DI can be expressed using the overlap integrals between
the orbitals {φ}, Smn(Ai) =

∫

Ai
φm(~r)φ(~r)∗nd~r, over the

domain Ai:

δ(Ai, Aj) = 2
∑

mn

Smn(Ai)Snm(Aj). (2)

When the integration runs over a single basin, i.e., Ai = Aj

the resulting value is termed the localization index λ(Ai).
DI also serves as specific topological definition of the bond
order.[38] For metal complexes usually metal-metal DIs165

around 0.4-0.5 are found together with significant metal-
ligands DI values.[36, 39]

Table 5: Delocalization Indices δ(T, A) Between the Transition Metal
T and the Atomic Region A.

cpd δ(T, T ′) δ(T,B) δ(T,B
b
) δ(T,H

b
) δ(T,C)

1 0.59 0.48 0.26 0.37 0.30
2 0.73 0.56 0.28 0.43 0.35
3 0.64 0.61 0.31 0.47 0.34
4 0.42 0.49 0.27 0.39 0.28
5 0.60 0.60 0.34 0.49 0.34
6 0.65 0.68 0.43 0.62 0.39

Table 5 reveals that for the investigated systems the
DIs δ(T, T ′) between the metals are relatively high, reach-
ing values up to 0.73 for the Cr complex. This finding170

further corroborates the presence of a direct T-T bond.
The transition metals have also substantial electron-pair
sharing δ(T, B) ≈ 0.6 with each unbridged boron contact.
Especially for the Re complex the sharing δ(T, B1)=0.89
with the terminal boron is much higher than the averaged175

value δ(T, B)=0.68 in Table 5 (this feature is reflected also
in the ELI-D analysis, see later). The exclusion of this
DI value would reduce the average for the Re complex to
δ(T, B)=0.61. The sharing δ(T,B

b
) with the boron of the

T-H-B bridge is about half of the DI for the unbridged180

4



  

contact. However, interestingly, the pair sharing δ(T,H
b
)

between the transition metal and the hydrogen bridge is
almost as large as δ(T, B). This means that T shares more
pairs with the members of the T-H-B bridge than with the
(unbridged) boron of the direct contact. The interaction185

of the T metal with the Cp ring is reflected by δ(T,C) be-
tween 0.3-0.4 giving a total DI of 1.5-2.0 for the electron
sharing between T and Cp. For completeness it should be
mentioned that the DIs δ(B,B) and δ(B, Ht) for the boron
atom with a neighboring boron and the terminal hydrogen,190

respectively, are around 0.6.

3.5. Covalent bond order

The canonical orbitals from the DFT calculations can
be transformed into so-called localized natural orbitals (LNO)
from which a topological variant of covalent bond order can
be computed.[27] The localization criterion for the LNO
determination is to maximize the sum L of squared or-
bital populations within all QTAIM basins:

L =
∑

m

∑

i

Smm(Ai)
2. (3)

The optimal orbitals (LNOs) yielding miximal L are given
by a unitary rotation (for single determinant, otherwise
the natural occupations are involved and the rotation is
no more unitary). The covalent bond order β(A1, A2) be-
tween the QTAIM basins A1 and A2:

β(Ai, Aj) = 2
∑

m

Smm(Ai)Smm(Aj). (4)

is given by the sum of products of the LNO populations
Smm of the involved basins. This bond order variant is
connected with the DIs, cf. Eq. 2, by omitting the non-195

diagonal parts included in the DI definition (in the LNO
representation).[38] Thus, for LNOs strongly orthogonal
within the atomic basins, the covalent bond order is very
close to the corresponding DI.

Table 6: Covalent Bond Orders β(T, A) Between the Transition
Metal T and the Atomic Region A.

cpd β(T, T ′) β(T,B) β(T,B
b
) β(T,H

b
) β(T,C)

1 1.05 0.52 0.30 0.36 0.32
2 1.18 0.72 0.34 0.43 0.37
3 0.94 0.77 0.38 0.46 0.36
4 0.71 0.51 0.32 0.37 0.29
5 0.88 0.73 0.39 0.47 0.36
6 0.84 0.83 0.59 0.63 0.40

The metal-metal covalent bond orders β(T, T ′) from200

0.7 up to 1.2, cf. the values compiled in Table 6, highlight
the importance of bonding interaction between the transi-
tion metals. The bond orders can be decomposed into or-
bital contributions. Interestingly, such a decomposition of
the β(T, T ′) shows that although the bond order is close to205

1, between 2-4 LNOs are needed to recover the main part

of the bond order. Of course, using all overlap integrals
for the LNOs will recover the same DIs as the canonical
orbitals. The much lower δ(T, T ′) values than the bond
orders β(T, T ′) show that the LNOs are not orthogonal210

to each other within the metal basins. This is a bonding
situation different from the one for the bonds between T

and the other elements as well as B-B and B-H bonds, re-
spectively. Except the values for the T-T bond, the bond
orders in Table 6 are very close to the corresponding DIs215

given in Table 5.

3.6. Fermi orbitals

Further inside into the nature of the T-T bond can be
gained by the inspection of the Fermi orbitals (FO).[24–
26] The domain-averaged Fermi-hole (DAFH) analysis is220

based on the diagonalization of the hole-density ρA
h (~r1),

which is recovered from the integral of the pair density
over chosen reference domain A (usually a QTAIM basin):

ρA
h (~r1) = ρ(~r1)

∫

A

ρ(~r2) d~r2 (5)

−

∫

A

ρ2(~r1, ~r2) d~r2

which for a single determinant can be written as (using the
overlap integrals Smn(A) defined in previous sections):

ρA
h (~r) =

∑

mn

Smn(A) φm(~r)φ∗

n(~r). (6)

The diagonalization of ρA
h (~r) yields the domain natural or-

bitals (DNO) and related occupation numbers. The DNOs
are orthonormal orbitals that are orthogonal to each other
also in the domain A. The DNOs are subjected to so-
called (non-unitary) isopycnic transformation[40] yielding
the Fermi orbitals ϕ and the occupation numbers nA:

ρA
h (~r) =

∑

mn

nA
k ϕk(~r)ϕ∗

k(~r). (7)

The Fermi orbitals (which are, in contrast to the DNOs,
no more orthogonal to each other) are used to describe225

the interaction of electrons within the reference domain
with the surrounding environment. Here the FOs are uti-
lized for the decomposition of the T-T delocalization in-
dex into orbital contributions. The idea behind the DI
decomposition[26] is immediately visible when comparing230

Eqs. 2 and 6 with Eq. 7 after the integration over another
domain.

As the reference basin for the determination of the
Fermi orbitals the QTAIM basin of one of the transition
metal was used (the same one as used for the evaluation235

of the effective charge in Table 4). Because the DI be-
tween the reference basin and a second basin is given by
the integral of the corresponding Fermi density over the
second basin, and at the same time the Fermi density is
represented by squared Fermi orbitals (weighted by the240

occupations), the DIs can easily be decomposed into the

5



  

Table 7: Fermi-Orbital Contributions to the Transition-Metal Delocalization Index δ(T, T ′).

V Cr Mo Ta W Re
FO n δ % n δ % n δ % n δ % n δ % n δ %
s 2.0 0.00 0 2.0 0.00 0 2.0 0.00 0 2.0 0.00 0 2.0 0.00 0 2.0 0.00 0
p 2.0 0.00 0 2.0 0.00 0 2.0 0.00 0 2.0 0.00 0 2.0 0.00 0 2.0 0.00 0

T-T’ 0.9 0.40 67 1.0 0.27 36 1.0 0.24 37 0.7 0.29 70 1.0 0.23 38 1.1 0.20 30
T-B3 0.9 0.12 21 1.0 0.09 13 1.0 0.14 22 0.7 0.07 16 0.9 0.11 19 1.0 0.11 16
T-B2 0.3 0.00 0 1.0 0.18 25 1.0 0.07 11 0.3 0.00 1 0.8 0.05 9 0.9 0.04 6
T-B 0.3 0.04 7 0.2 0.07 10 0.3 0.11 18 0.3 0.03 7 0.5 0.16 27 0.5 0.21 32

0.56 95 0.61 84 0.56 88 0.39 94 0.56 93 0.55 85
For the Fermi orbital with occupation n the percentage %δ of the contribution to the metal-metal DI is given.

contributions of the Fermi orbitals. Actually, the Fermi or-
bitals yield the minimal spread of such contributions.[26]

For the metal basins 4 FOs with the occupation n=2
can be detected (the s and p orbitals, due to the core po-245

tentials used for the DFT calculations). Those FOs are
fully inside the reference basin and thus cannot contribute
to the DIs, cf. Table 7. For all model systems there is
one FO that can be attributed to the bond between the
metals, see Fig. 3. This FO yields 67% and 70% of the250

δ(T, T ′) for the V and Ta complex, respectively. Although
the occupation of this FO type is close to 1 for the other
metal complexes, the contributions to the corresponding
DIs δ(T, T ′) is only between 30%-38%. This is because the
FOs spread more in the boron basins than in the neigh-255

bor metal basin. This can be nicely seen especially for
the Re complex, see diagram 6 in Fig. 3, where the Re
basin is included. To recover more of the δ(T, T ′) value,
additional FO contributions must be taken into account.
This is easy for the V and Ta complexes where a second FO260

(with the same occupation as the T-T’ FO), describing the
T-B3 bond, yields the contribution of 21% and 16%, re-
spectively. This means that these two FOs deliver almost
90% of the metal-metal DI. This FO type has large DI
contribution also for the other complexes, however sum-265

ming up to 46%-59% of the DI only. In this complex two
additional FOs must be considered, both involving T-B
interactions. Only then the sum of the contributions give
more than 80% of δ(T, T ′).

Along the period, going from the V to the Cr com-270

plexes, respectively from the Ta to the Re complexes, the
δ(T, T ′) indices increase, cf. Table 5. However, at the same
time, the electron pair sharing as given by the contribu-
tion of the FO describing the T-T’ bond decreases (both
absolute and in percent of the total DI) because the FO be-275

comes more confined to the reference basin. The increase
of the δ(T, T ′) index is due to an increasing number of T-
B FOs (following the increase of the metal d-population)
spreading out into the metal basins.

3.7. Electron localizability indicator280

The analysis of the electron sharing can be extended to
the analysis of (local) electron pairing as shown by the elec-
tron localizability indicator in the ELI-D representation.[28,

29] ELID is based on so-called ω-restricted space partition-
ing (ωRSP).[41] Following the ωRSP approach the whole
space is partitioned into compact non-overlapping infinites-
imally small regions µ each enclosing (in case of ELI-D) a
fixed amount ωD of same-spin pairs:

ωD =

∫∫

µ

ρσσ
2 (~r1, ~r2) d~r1d~r2 ≈

1

12
gσ(~a) V 8/3

µ (8)

with the σ-spin Fermi-hole curvature gσ(~a) at the position
~a within µ having the volume Vµ. ELI-D is the rescaled
distribution of charges in such regions µ. The charge q in
µ can be approximated by q = ρσVµ, which after replacing
for the volume from Eq. 8 yields in the limit after rescaling

with the factor ω
3/8

D the σ-spin ELI-D value Υσ
D(~r):

Υσ
D(~r) = ρσ(~r)

[

12

gσ(~r)

]3/8

. (9)

In this representation the indicator Υσ
D is proportional to

the charge needed to form a fixed (infinitesimally small)
fraction of the σσ-spin electron pair. For the model sys-
tems (all closed-shell) high ELI-D values describe regions
where the motion of same-spin electrons is strongly cor-285

related, i.e., regions where same-spin electrons avoid each
other. Such a high avoidance is typical in regions that
are usually assigned to bonds, lone-pairs or atomic (core)
shells.

Table 8: Electron Populations in the ELI-D Basins.

cpd T T-T’ B1-B2 B2-B3 Ht H
b

Cp
1 10.66 0.16 1.84 2.28 1.98 1.85 35.45
2 11.78 0.12 2.29 2.55 1.99 1.87 35.42
3 11.11 0.30 2.38 2.78 2.01 1.92 35.55
4 9.74 0.35 1.97 2.51 1.99 1.93 35.67
5 10.48 0.44 2.40 3.12 2.01 1.95 35.66
6 11.33 0.31 2.67 2.62 2.03 1.88 35.65

See Fig. 2 for boron atom numbering.

Fig. 4 shows exemplary the ELI-D localization-domains,290

i.e., isosurfaces of chosen isovalue, for the W and Re com-
plexes. The boron and carbon cores are represented by
small spherical domains around the atomic positions. The
corresponding ELI-D core basins enclose about 2.09 elec-
trons. The B-B and C-C bonds are clearly visible as the295

6



  

Figure 3: Fermi orbitals (isovalue ±0.1) describing the T-T’ bond for the model systems 1-6. The atoms are represented by spheres (transition
metal: blue; carbon: black; boron: green; hydrogen: gray). For the compound 6 the Re basin is shown as a transparent object.
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Figure 4: ELI-D localization domains for the model systems 5 and 6

(yellow: Υα

D
=1.36; blue: Υα

D
=1.06). The domain corresponding to

the Re-B is marked by the arrow.

domains positioned between the atomic cores. The ELI-D
basins for the carbon cores, together with the basins for
the C-C bonds (2.82-2.87e) and the hydrogens (2.17e) (the
hydrogen domains were excluded in Fig. 4 for better visi-
bility) constitute the Cp superbasin populated by roughly300

35.5 electrons. This relates effectively a negative charge of
-0.4e to -0.7e to the Cp group, cf. Table 8. This is around
twice the effective charge for the Cp group as given by the
QTAIM partitioning, cf. Table 4.

The ELI-D basins for terminal hydrogens of the boron305

chains are populated almost exactly by two electrons, ir-
respective of the model system examined. Similarly, the
basin populations for the hydrogens H

b
bridging the T-B

contacts show relatively constant values close to 1.9 elec-
trons. On the contrary, there are two distinct ELI-D basins310

for the B-B bonds. Except for the Re complex, the B1-
B2 bonding basin is populated by up to 0.7 electrons less
(in the W complex) than the B2-B3 basin. In the Re
complex those two populations are almost identical. How-
ever, a new ELI-D bonding feature emerges. As marked315

in Fig. 4 two ELI-D maxima were found along the two
unbridged Re-B contact to the terminal borons with a re-
spective basin population of 1.44 electrons. This feature
is not present for any other unbridged T-B contact of the
examined series.320

The existence of the T-T’ bond is supported by the
ELI-D maximum in the boron plane between the transi-
tion metals, cf. the blue colored domain in Fig. 4. The
corresponding T-T’ bonding basins are populated by 0.12-
0.44 electrons only, which is not untypical for metal-metal325

bonds. The T-T’ populations are largest for the Group
6 metal complexes. Observe, that the population of the
transition-metal core-basins, cf. Fig. Table 8 decreases
along the group. For instance, for Cr, Mo, and W it

amounts to 11.78e, 11.11e, and 10.48e, respectively, which330

can be compared to the 12 electrons expected from the
position in the Periodic Table (core potentials were used).

4. Conclusion

The analysis of the T-T bonding interactions in the
Cp2T 2B5H5+x model series used to mimic the oblato-nido335

dimetallaboranes Cp∗

2T2B5H5+x (T = V, Ta, Cr, Mo,
W, Re) was examined applying several bonding indica-
tors. Both through-space and through-bond (via the boron
atoms of the ring) interactions account for a substantial
metal-metal bond. The direct T-T bonding was confirmed340

by the presence of a bond path and an ELI-D bonding
basin, populated by up to 0.4 electrons, between the tran-
sition metals. The evaluation of the delocalization indices
between the QTAIM metal-basins clearly show an extent
of electron-pair sharing typical for a metal-metal bond.345

This was additionally supported by the metal-metal co-
valent bond order around 1, as proposed earlier.[7] That
the T-T bonding situation does not correspond to a simple
single bond was confirmed by the calculation of Fermi or-
bitals, indicating that roughly 2-3 Fermi orbitals needed to350

be considered when recovering the delocalization indices.
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* Transition-metal bonding in oblato-nido metallaboranes was investigated. 

* Confirmation of through-space as well as through-bond interactions. 

* Description of direct metal-metal bonding through a boron ring. 

* Application of real space topological methods. 
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