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Abstract  

Individuals, typically, are exposed to mixtures of environmental xenobiotics affecting 

multiple organs and acting through different xenosensors and pathways in species and cell-

type specific manners. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and α-endosulfan are 

Persistent Organic Pollutants (POPs) and endocrine disruptors which act through different 

xenosensors and accumulate in the liver. Our objective in this HEALS study was to 

investigate the effects of the mixture of these POPs on gene expression in a human-derived 

hepatocyte cell line, HepaRG. We found that, in spite of having largely uncorrelated effects, 

TCDD and α-endosulfan, when mixed, alter the expression of genes. The combined effects of 

the mixture of the POPs significantly altered the expression of 100 genes (42 up- and 58 

down-regulated) whereas the same concentration of either POP alone did not alter 

significantly the expression of these genes. For 32 other genes, selective inhibitory crosstalk 

between TCDD and α-endosulfan was observed. One of the POPs inhibited the effect, on 

gene expression, of the other in the mixture although, when used alone, that POP did not 

affect expression. The expression of another 82 genes was significantly altered (up- or down-

regulated) by a single POP. The addition of the second POP either increased, in the same 

direction, the effect on gene expression or had no further effect. At low concentrations 

(0.2nM TCDD and 1µM α-endosulfan), the POPs still had significant effects and the levels 

of expression of the corresponding proteins were found to be affected for some genes. 

Particularly striking was the 80-90% inhibition, by the mixture, of the expression of a number 

of genes of several hepatic intermediary metabolic pathways (glycerolipid metabolism, 

FXR/RXR activation, glycolysis/gluconeogenesis, retinoid and bile acid biosynthesis), 

whereas each pollutant alone had only a moderate effect. 

 

Keywords: dioxin, pesticides, HepaRG, mixture, metabolism, microarray 



 3 

1. Introduction 

  

Environmental exposure to toxic chemicals for most individuals involves mixtures of 

compounds and extended periods of exposure. Humans are exposed not only to pesticides 

(estimated use exceeding 3 billion tons per year worldwide), mainly through food 

consumption, but also to a variety of other environmental xenobiotics, many of them being 

endocrine disrupters, which may have a variety of detrimental effects on human health [1, 2]. 

Epidemiological studies often associate occupational exposure to these compounds with an 

increase in the incidence of various pathologies, including cancers, neuro-degenerative 

disorders, reduced fertility and the metabolic syndrome which can lead to type 2 diabetes [3-

10]. Although concerns about the adverse effects of mixtures of chemicals and their potential 

interactions are increasing, especially for vulnerable populations, most studies on the effects 

of pollutants to date have focused on exposure to a single compound or to a mixture of 

compounds that act through the same signaling pathway. Only a few studies [11-19] have 

addressed the toxicity of mixtures of contaminants which act through different xenosensors, 

even though combinations of different chemicals, especially at low levels of exposure, 

probably have significant effects on human health [20, 21].  

In this study, part of the HEALS exposome European project, we investigated the 

effects of a mixture of two endocrine disruptors, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) 

and α-endosulfan, which act via different signalling pathways, accumulate in the liver and 

may have non-cancerogenic toxic hepatic effects in humans [22-25]. TCDD is one of the 

most potent ligands of the aryl hydrocarbon receptor (AhR) and a classical one with little 

metabolism and a half-life of about 7 years in humans, which triggers several biological 

responses [1]. Alpha-endosulfan is the major isomer of an organochlorine insecticide known 

to act through two different signalling pathways, the pregnane X receptor (PXR) [26, 27] or 

the estrogen receptor α (ER α) [12, 28]. Although endosulfan use has been banned in many 
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countries, it is still in use in China and India and decades of agricultural use have built up soil 

reservoirs [17]. Endosulfan sulfate, which is a major metabolite of α-endosulfan is as toxic as 

the parent compound and more persistent with a half-life of months to years in soils, 

sediments and water [22, 23]. Moreover, since dioxins are by-products of chlorinated 

compounds, both pollutants can be associated during pesticide manufacturing. In vivo, 

pollutant induced toxic effects on the liver arise from direct effects on hepatocytes and from 

extra-hepatic factors. Among extra-hepatic factors that may alter hepatocyte function, the 

disruption of the endocrine system [29, 30] or pollutant induced modification of the 

environment of the organ may affect hepatic physiology. This may be due to the release of 

pro-inflammatory cytokines into the systemic circulation, the activation of hormonal or 

oxidative stress responses and hypoxia [31-37]. 

The objective of this study was to investigate the effects, related specifically to 

hepatocyte cell functions, of the mixture of TCDD and α-endosulfan, by studying global gene 

expression in a human-derived hepatocyte cell line, HepaRG. 

To our knowledge, few studies have explored the effects on global gene expression of 

a combination of two Persistent Organic Pollutants (POPs), which act through different 

xenosensors, using a human liver cell model. HepaRG cells were chosen for the study 

because, after differentiation, they express high levels of several xenobiotic metabolizing 

enzymes and xenosensors [38] and, to date, it is the human cell line that most closely 

resembles human hepatocytes [39, 40]. A recent transcriptomic study, using five carcinogens, 

revealed that the HepaRG model was better suited for understanding the biological effects of 

exposure to the chemicals as compared to the HepG2 hepatocarcinoma cell line which has a 

low metabolic capacity and reduced PXR level [41-43]. Several other studies also have 

concluded that the HepaRG cell line is an excellent in vitro model to study human drug 

metabolism [39, 44-46] as well as being a relevant model for studying glucose, lipid and 
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lipoprotein metabolism [47, 48]. The use of the HepaRG cell line, which also exhibits stable 

and inducible enzyme expression over long periods (weeks), and has reduced variability, thus 

avoids many of the difficulties associated with the use of human hepatocytes such as scarce 

availability, complicated isolation procedures, variability, rapid dedifferentiation precluding 

long term use and cost [49-52].  

 This study was designed to provide information on the combined effects of TCDD 

and the pesticide α-endosulfan on genome-wide gene expression in one of the most relevant 

human hepatic cell lines, and to provide new data on the hepatic perturbations which may be 

linked to exposure to mixtures of persistent organic pollutants.  
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2. Materials and Methods 

2.1. Compounds, cell culture, viability and treatments 

 The chemical compounds that were used in this study, 2,3,7,8 tetrachlorodibenzo-p-

dioxin or TCDD (PubChem CID: 15625) and α-endosulfan (PubChem CID: 3224), were 

obtained from LGC Standards (France). HepaRG cells, obtained from Dr. Guguen-Guillouzo 

[53], were differentiated as described previously except that 1.5% DMSO was used for cell 

differentiation [54]. DMSO was removed from the medium for twenty-four hours before 

treating the cells for 30 hours with 25nM TCDD, 10µM α-endosulfan, the mixture of the two 

pollutants (at the above concentrations) or the vehicle (0.15% DMSO). The viability of the 

cells was evaluated using the WST-1 kit (Roche Applied Science). For some experiments, the 

cells were treated for 8 days with lower concentrations of the compounds (0.2, 0.5, 1 or 5 nM 

TCDD and 1 or 3µM α-endosulfan) with only two changes of medium containing the 

compounds during this period (day 0 and day 4) to minimize any build up in the 

concentrations of the chemicals due to binding of the xenobiotics to the plastic of the culture 

dishes. 

 

2.2. RNA preparation and microarray hybridization 

 RNA from the HepaRG cells was prepared using the RNeasy mini kit from Qiagen 

(France) as described previously [55] except that a DNase I step was included in the protocol. 

For the microarray studies, the quality of the RNA (RIN value) was assessed with a 

Bionalyzer (Agilent Technologies) [56]. 

 ssDNA (sense single stranded DNA) was synthesized using the Affymetrix GeneChip 

Whole Transcript Sense Target Labelling Assay kit, according to the manufacturer’s 

protocol. ssDNA samples were then fragmented according to the Affymetrix protocol. The 

purified ssDNA was quantified and its quality was assessed with a Bioanalyzer. Subsequent 



 7 

labeling of the samples was performed by synthesis of Biotin-labeled ssDNA using the 

GeneChip WT Terminal Labeling kit (Affymetrix). ssDNA targets were hybridized onto 

high-density microarrays (Affymetrix Human Genome 1.0 ST GeneChip array) according to 

the Affymetrix Eukaryotic Target manual. The microarrays were then washed and stained 

using the Affymetrix fluidics station 450/250 and Genechip Operating Software and scanned 

with an Affymetrix GeneArray scanner. The raw affymetrix datasets (.CEL) are available in 

the Gene Expression Omnibus database (http://www.ncbi.nlm.nih.gov/geo/) with the 

accession number (GSE46874). 

 

2.3. Microarray analyses 

 Quality controls, including scaling factors, average intensities, background intensities, 

noise (raw Q) values were within acceptable limits for all the arrays. The twelve datasets 

obtained were processed and normalized using the plier program in R. Two different 

statistical analyses were performed: 1) we determined which genes were significantly 

differently expressed (p≤0.05 by t-test, >2fold difference) following exposure of cells to 

TCDD, α-endosulfan or the mixture of the two as compared to the vehicle (DMSO), 2) we 

used the Focus software [57], as described by Garcia-Ortiz [58] to select genes that had at 

least a 1.2-fold mean difference in expression and a default “interest score” of >5. Principal 

component analysis (PCA) was carried out using the svd module in R. Hierarchical clustering 

analysis was performed with the Genepattern software [59] on the statistical scores derived 

from the Focus analysis rather than on the expression levels in order to reduce data 

variability. 

 

 Gene Set Enrichment Analysis (GSEA, http://www.broadinstitute.org/gsea/index.jsp) 

was used to test (using a metric derived from the Kolmogorov-Smirnov statistic [60, 61]) 
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whether the distribution of the genes in our study deviated from random in ranked lists of 

genes up or down regulated by TCDD or 17β-estradiol. Rank-rank hypergeometric overlap 

was also used to identify statistically significant overlap between gene expression signatures 

[62]. The lists of genes were derived from an analysis of publicly available (literature or 

public repositories) genome-wide expression data obtained from exposure of primary human 

hepatocytes [63, 64], HepaRG [42] or mouse primary hepatocytes [65] to TCDD or 17β-

estradiol. Raw data were renormalized with the plier module in R and robust averages 

calculated with Tukey’s Bi weight average algorithm [66]. One way analysis of variance 

(ANOVA) was calculated for each pair of treatment groups and for all treatment groups. FDR 

were calculated by the Benjamini-Hochberg approach [67]. Differentially expressed genes 

were those having a fold change >2 and p<0.05. The data from supplementary files 11 and 17 

from Forgacs et al. [64] were filtered as indicated in the files. Murine expression data from 

Flaveny et al. [65] were also analyzed with Focus. Genes were ranked according to Focus 

scores and filtered to retain only those showing a differential expression with t-test p-values 

less than 0.20 on log ratios. The genes with the highest Focus scores (165 and 195 genes up- 

and down-regulated, respectively, by TCDD) were selected as the gene sets to be compared 

with our samples. Exact area-proportional Euler diagrams were calculated and drawn with 

eulerAPE [68]. 

 

2.4. Functional analysis 

 Biological functions and pathways were generated from the Focus lists of genes up- or 

down-regulated by TCDD plus α-endosulfan (as compared to either DMSO, TCDD or α-

endosulfan alone) and analyzed using Ingenuity Pathway Analysis v.8.3-3003 (IPA, 

Ingenuity Systems, CA).  
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2.5. Quantitative reverse transcriptase PCR 

 A selected set of genes was analyzed by RT-qPCR using cDNA prepared from the 3 

independent culture replicates used for the microarray experiments. The PCR primers used 

are listed in Table S1. Reverse transcription and quantitative PCR were performed as 

previously described [55]. 

 

2.6. Western blotting 

 Cells were scraped into 1X PBS buffer, containing 1% Nonidet P-40, 0.5% sodium 

deoxycholate and 0.1% SDS, protease and phosphatase inhibitors (Sigma). After freezing at -

80°C, the cells were thawed and centrifuged 10 min at 9 000g at 4°C. The protein 

concentration in the supernatant was measured using the bicinchoninic acid method (Pierce) 

with BSA as a standard. The supernatant was aliquoted and kept at -80°C. Equal amounts of 

total proteins were separated by SDS-PAGE and transferred onto nitrocellulose membranes. 

Blocking of the membrane was performed using Odyssey buffer (LI-COR, ScienceTec, 

Courtaboeuf, France) for 1 hour at room temperature followed by incubation overnight at 4°C 

with a primary antibody directed against ADH1 (Acris AP16311PU-N, 1/1 000) or β-actin 

(Abcam 8227, 1/10 000). After three washes with 0.1% Tween-20 in 1X PBS, the membrane 

was incubated with either an anti-goat (IRdye 800 number 926-32214 LI-COR, ScienceTec, 

1/15 000) or an anti-rabbit (IRdye 800 number 926-32211 LI-COR, ScienceTec, 1/10 000) 

secondary antibody. After three washes (0.1% Tween-20 in 1X PBS), signals were quantified 

using the Odyssey infrared Imager (LI-COR, ScienceTec). 
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3. Results 

3.1. Global gene expression in HepaRG cells treated with TCDD and α-

endosulfan  

The concentrations of TCDD (25 nM) and α-endosulfan (10µM) were chosen so as to 

maximize the activation of the corresponding signalling pathways and, thus, to increase the 

number of genes that are differentially expressed. To assess the overt toxicity of these 

concentrations, the viability of the differentiated HepaRG cells was measured and was found 

not to be significantly different following exposure for 72 hours to the mixture or to either 

POP alone as compared to the 0.15% DMSO vehicle (Figure S1, A) or for up to 8 days at 

lower concentrations of the POPs (Figure S1, B). These concentrations were, therefore, used 

to investigate the effects of the POPs on global gene expression. 

Principal component analysis (PCA) of the global variation in transcription of the 

HepaRG genome following exposure to the mixture or to each pollutant alone leads to several 

conclusions. First, the samples clustered by condition, which demonstrates that there is a 

significant difference in the transcription profiles that resulted from exposure to either POP 

alone or the mixture (Figure 1). Further, the samples treated with TCDD (alone or in 

combination with α-endosulfan) consistently mapped to one side of the first principal 

component (55% of the variability). Alpha-endosulfan-treated samples mapped to one side of 

the second principal component (20% of the variability). The first principal component, PC1, 

thus accounts mainly for the effects of TCDD and the second principal component, PC2, for 

the effects of α-endosulfan. Second, the major effects of TCDD and α-endosulfan are largely 

uncorrelated because the corresponding PCA axes are orthogonal. This result is consistent 

with these compounds exerting their effects by different mechanisms (pathways) and with our 

current knowledge of the actions of these pollutants. Third, although the major effects of 

TCDD and α-endosulfan are largely uncorrelated, the principal component analysis also 
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clearly demonstrates that the effects of the mixture of α-endosulfan and TCDD are greater 

than those of TCDD alone as shown by the significant difference (p< 0.05, post-Anova 

Tukey’s test) in the mean PC1 values of the corresponding groups. Thus, in general, α-

endosulfan exacerbates the effects of TCDD in the same direction of change that is most 

strongly associated with TCDD. 

We next analyzed the global transcription data for differentially expressed genes using 

stringent criteria (p≤0.05, >2-fold difference in expression for up-regulated genes and < 0.5-

fold for down regulated genes). The mixture of pollutants significantly altered the expression 

of 182 annotated genes, whereas TCDD and α-endosulfan altered the expression of 98 and 23 

genes, respectively, as compared to the DMSO vehicle. A Euler diagram shows that the 214 

unique genes corresponding to the three treatments can be divided into 7 ensembles (Figure 

2). 

First, the two ensembles labelled A, B are remarkable in that 21 genes (ensemble A) 

were modified only following treatment of the cells with TCDD and 10 genes (ensemble B) 

were modified only following treatment with α-endosulfan (Figure 2, Table S2). Intuitively, 

one would expect that if the expression of a gene was altered following treatment of the cells 

with a pollutant individually, then treatment with a mixture containing that pollutant would 

also affect the expression of the gene. However, in this case, although each pollutant 

significantly alters the expression of certain genes when present alone, the presence of the 

other POP in the mixture abolishes this effect (that is, the expression of the gene is no longer 

found to be significantly differentially expressed by the mixture of the pollutants). This 

suggests that inhibitory cross-talk occurs between the pollutants at the level of gene 

expression. It is important to note that the POP that is inhibitory in the mixture is not 

identified as significantly altering the expression of the gene when used alone. This aspect 

distinguishes ensembles A and B from ensemble C. The single gene in this ensemble (serine 
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dehydratase) was significantly modified by either TCDD (61% decrease in expression) or α-

endosulfan (6.37-fold increase in expression), individually, but in opposite directions, and, 

thus, the gene not being differentially expressed in the mixture (1.66-fold). Second, an 

ensemble of 100 genes (ensemble D) is identified only after treatment of the cells with the 

mixture of the POPs (Figure 2, Table S2). That is, the expression of each of these genes is not 

significantly altered following exposure of HepaRG cells to either TCDD or α-endosulfan 

alone but only to the mixture of the pollutants. Thus, although treatment with either POP 

alone may not result in a significant effect (according to the stringent criteria adopted for 

identifying differentially expressed genes), the mixture of the POPs does result in significant 

alteration in gene expression. Since the experiment was not designed to evaluate additivity or 

synergy of effects, no conclusions can be drawn in this respect although the fold changes in 

expression found for the genes altered by the mixture are not markedly different from the 

sums of the fold changes in expression obtained following exposure to each pollutant alone. 

Third, two other ensembles are composed of genes which are differentially expressed 

by cells following exposure to either TCDD or the mixture of TCDD and α-endosulfan (70 

genes, ensemble E, Figure 2, Table 1) or to α-endosulfan or the mixture (6 genes, ensemble 

F, Figure 2, Table 1). Thus, exposure to one pollutant results in a significant change in gene 

expression and the addition of the second pollutant does not modify this effect as in 

ensembles A, B and C. For most of the genes in ensembles E and F, TCDD and α-endosulfan 

exert their effects in the same direction (either both increasing or both decreasing gene 

expression). For some genes, TCDD seems to exert the major effect and α-endosulfan does 

not further alter the expression of the gene. Finally, for some genes, α-endosulfan diminishes 

somewhat the effect of TCDD and for one gene, GPX2, TCDD appears to diminish the effect 

of α-endosulfan (similar to the inhibitory cross-talk described for ensembles A, B and C). 

However, in all cases, the effect of the second pollutant is not sufficient to eliminate the gene 
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from the list of differentially expressed genes in contrast to what is observed for the genes in 

ensembles in A, B and C. Although the effect observed in ensembles E and F resembles that 

observed in ensembles A, B and C, the mechanisms involved are not necessarily the same.  

The final ensemble, G, is composed of 6 genes (Figure 2, Table 2) which are 

differentially expressed (p<0.003-0.00001) following all of the treatments (TCDD or α-

endosulfan alone or the mixture). Interestingly, as opposed to all the other ensembles in 

which both increases and decreases in gene expression are found, this ensemble is composed 

of genes in which only a decrease in expression is observed and bothTCDD and α-endosulfan 

exert their effects in the same direction. 

 In a second approach to identify differentially expressed genes, we ranked genes using 

a combination of multivariate and pairwise comparisons among all the conditions using 

somewhat less stringent conditions (a cutoff of 1.2 for the fold change and a Focus score of 5, 

followed by a two-tailed t-test, p<0.05). Exposure of HepaRG cells to the mixture of 

pollutants altered, to a greater extent, the expression of 662 annotated genes (558 upregulated 

and 104 downregulated) as compared to exposure to either chemical alone. An additional 289 

non-annotated transcripts were also found (211 up- and 78 down-regulated). The top 10 up- 

and 10 down-regulated genes are listed in Table 3. 

We then compared the list of those 20 genes (top 10 up- and down-regulated genes) 

with the list of genes identified with the stringent conditions (stringent t-test analysis). Five 

genes (indicated by bold type in Table 3) were found in the genes regulated following 

treatment with the mixture only (Table S1). Nine other genes are common to the list of genes 

whose expression is altered following exposure to TCDD alone and the mixture (Table 1 and 

* in Table 3) or to α-endosulfan alone and the mixture (CYP 2E1, see Table 1). Finally, 3 

genes ($ in Table 3) are found on the list of genes that were found to be altered by exposure to 

all 3 treatments (Table 2). Since the expression of the remaining 3 genes of the Focus list 
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varied less than 2-fold, they were not present in the stringent analysis. The results of the 

Focus analysis were, thus, in good agreement with the more stringent analysis used to 

identify genes that discriminate the effect of exposure to the mixture from that of exposure to 

a unique POP. 

Hierarchical clustering (HC) analysis of the Focus scores of the differentially 

expressed genes demonstrates that the gene expression profile for HepaRG cells exposed to 

the mixture of pollutants clusters with that of cells exposed to TCDD alone in agreement with 

the PCA analysis. The HC analysis also shows that large clusters of genes are more strongly 

up-regulated (Figure 3A, intense red color in black box) or down-regulated (Figure 3B, deep 

blue color in black box) in cells following exposure to the mixture as compared to exposure 

to a single POP. 

 

3.2. Correlation between the microarray, RT-qPCR and immunoblotting 

technologies 

 Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) was used as 

an independent, confirmatory, technique to evaluate the expression of a subset of the genes 

found to be differentially expressed by global genome expression analysis.  We measured the 

expression of 30 genes, 11 up-regulated genes and 19 down-regulated. These genes, taken 

together, exhibit a large range of fold changes, as assessed by whole genome analysis, 

following exposure of cells to the mixture of the POPs or to dioxin and α-endosulfan alone 

(Table S3). The values for the expression of the genes obtained by micrarray analysis and 

RT-qPCR are highly correlated (R2 = 0.97, 0.90 and 0.97 for treatment by TCDD alone, α-

endosulfan alone or the mixture, respectively, Figure S2) suggesting that the global gene 

results are trustworthy.  
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To determine whether exposure to lower concentrations of the POP mixture for longer 

periods of time exhibited the same effects, we exposed HepaRG cells for 8 days to lower 

concentrations of TCDD (0.2nM to 5nM) and a 10-fold lower concentration of α-endosulfan 

(1µM) and to the various mixtures. We examined the expression of two genes (ADH1B and 

G6PC), the expression of which was severely downregulated with the highest concentrations 

previously tested. ADH1B gene expression was markedly decreased after treatment with 5nM 

TCDD and G6PC gene expression was already decreased at the lowest TCDD concentration 

tested (0.2nM TCDD). Although a concentration of 1µM α-endosulfan did not affect 

significantly the expression of either ADH1B (no effect) or G6PC (40% decrease), the 

mixture of the POPs decreased the expression of both genes significantly more as compared 

to the effect of TCDD alone. (Figure 4A). Alteration in the expression of the gene may be 

followed by an effect on the level of the protein present in the cells, as shown by the decrease 

in the amount of ADH1 (Figure 4B), after 3 days of exposure to the POPs (5 or 25nM TCDD, 

10µM α-endosulfan or their mixtures. 

 

3.3. Pathways regulated by the mixture of TCDD and α-endosulfan 

 To elucidate the effects on hepatocyte function following exposure of HepaRG cells 

to the combination of the two pollutants, we used Ingenuity Pathway Analysis (IPA) to assign 

the biological pathways altered by the different treatments. The 4 top network functions 

associated with the genes regulated by the mixture of TCDD and α-endosulfan using the 

Focus analysis were: i) RNA post-transcriptional modification, genetic disorder, lipid 

metabolism; ii) cancer, gastrointestinal disease, genetic disorder; iii) molecular transport, 

RNA trafficking, cell cycle; iv) small molecule biochemistry, DNA replication, 

recombination, repair, cell cycle. The lipid metabolism, small molecule biochemistry and 

molecular transport networks were the top networks associated with genes that were down-
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regulated whereas the other key words were mostly associated with up-regulated genes. The 

associated canonical pathways are given in Table 4. The farnesoid X receptor/retinoid X 

receptor (FXR/RXR), bile acid biosynthesis and glycerolipid metabolism pathway genes 

were down-regulated, as were genes in the glycolysis/gluconeogenesis pathway. The top 

down-regulated network by the mixture of TCDD and α-endosulfan (as well as the top 

molecular and cellular functions network), “lipid metabolism”, derived by the Ingenuity 

network analysis (p< 0.00001) contains the genes shown in Table S4. Only the 11 genes 

exhibiting at least a two-fold change as compared to the control are shown in the table 

although another set of 13 genes belonging to the same network was also derived from the 

Ingenuity analysis with a cutoff of 1.2 for the fold change. For all of these genes, TCDD and 

α-endosulfan exert their effects in the same direction.  

The pathways related to cancer and control of the cell cycle, as well as the AhR 

signaling pathway, were up-regulated. The GTPase RAN (Ras-related nuclear protein) 

signaling pathway was also up-regulated. RAN is involved in cell differentiation and 

transformation, as it acts on the assembly of the mitotic apparatus and in nuclear protein 

import/export and its overexpression is linked to a poor prognosis in cancer [69]. 

There is no other published study on whole genome expression using TCDD and α-

endosulfan with which we can compare our results and thus the information provided here is 

novel. We, thus, compared our results following exposure of HepaRG to TCDD or α-

endosulfan alone with results published in the literature. None of the studies employ 

conditions that are identical to our work, but a similar study evaluated the effect of exposure 

of HepaRG cells to 10 nM TCDD or 30µM 17β-estradiol for 12 or 48 hours [42] and two 

other analyses employed primary human hepatocytes exposed to several concentrations of 

TCDD for different times [63, 64]. Several of the up- and down-regulated gene sets derived 

from these studies were enriched in the most strongly up- and down-regulated genes in our 
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own ranked list when analyzed by the gene set enrichment analysis algorithm (Figure S3). 

For the only study employing 17β-estradiol [42], the down-regulated gene sets for both the 

12 and 48 hour treatments with 30µM 17β-estradiol and the up-regulated gene set for the 12 

hour treatment were enriched in the down- and up-regulated genes of our ranked list for α-

endosulfan with FDRq (false discovery rate) < 1x10-5 and FWER (family wise error rate 

according to Benjamini and Hochberg [67] <1x10-4. Rank rank hypergeometric overlap also 

identified statistically significant overlap between the expression signatures found by Jennen 

et al. [42] for 17β-estradiol (both 12 and 48 hour treatments) and our own for α-endosulfan 

(see Figure S3 for representative GSEA curves and Rank Rank Hypergeometric heat maps). 

For TCDD, most enrichment was found (based on the normalized enrichment scores) for the 

up and down-regulated gene sets of Jennen et al. [42] following exposure of HepaRG to 

10nM TCDD for 12 or 48 hours. Significant enrichment was also found for the up- and 

down-regulated sets of Forgacs et al. [64] following exposure of primary hepatocytes to 

10nM TCDD for 12 and 48 hours as well as the up-regulated gene set for exposure for 24 

hours. Less significant enrichment was found for the gene set of up-regulated genes of 

Carlson et al. [63] following exposure of primary hepatocytes to 10nM TCDD, although the 

FDRq was < 1x10-5 and the FWER was <1x10-4 (data not shown). Finally, we compared the 

lists of genes that were differentially regulated by treatment with TCDD alone in our samples 

with those of a microarray study performed on primary mouse hepatocytes [55]. Although the 

lists of genes that were most strongly up- and down-regulated by TCDD in the mouse 

hepatocytes mapped among the most strongly up- and down-regulated genes in our ranked 

list, when analyzed by the Gene SetEnrichment Analysis algorithm (GSEA, p<0.001; data not 

shown), the FDR and FWER values were not as significant as for the gene sets from the 

HepaRG cell line or the primary human hepatocytes.  
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Taken together, the results attest to an overlap in the regulations of gene expression by 

estradiol and α-endosulfan in HepaRG cells as well as to common effects of exposure to 

TCDD in the HepaRG cell line and primary human hepatocytes. 

 

4. Discussion 

Elucidation of the mechanisms by which mixtures of compounds, which act via 

different pathways or xenosensors, can affect cell function may be useful for further 

understanding how toxicants interact and how these interactions might affect toxicity. 

However, as concerns human hepatotoxicity, there is no one model system that is ideal for 

elucidating these mechanisms. Epidemiological studies may be incomplete as to exposure, 

may have small numbers of participants which limit the power of the statistical analyses for 

detection of effects, may have concomitant exposures to other counfouding factors that may 

have effects and, finally, may involve extrapolations over long periods of time that may lead 

to considerable errors in estimations of initial exposure. In vivo animal models are limited by 

the differences that exist between animals and humans and by the difficulty in extrapolating 

effects found in animals to humans [70, 71]. 

Primary cultures or permanent cell lines, in vitro, are not exposed to the local factors 

derived from the organ or to factors originating at a distance in the organism. Nevertheless, in 

vitro studies present advantages for studying cell type specific mechanisms and have been 

promoted by regulatory agencies as alternatives to animal studies [71, 72] and 

transcriptomics has proven useful in identifying pathways perturbed by toxicants [73]. 

However, species specific differences exist between animal and human primary hepatocyte 

cultures [63]. Further, human primary cultures exhibit variability due to differences in the 

donors with respect to genetics [74], demographics, disease and drug therapies [75-77] and 

this variability may be manifest following xenobiotic exposure [78]. Finally, there may also 
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be differences in the response to toxicants between human primary hepatocytes and 

established human hepatic cell lines [79-81] or among established human hepatocyte cell 

lines [42, 82, 83]. 

In this study, we have used a human liver-derived cell line, HepaRG, to provide novel 

information concerning the effects on hepatocyte function of a mixture of POPs that exert 

their effects via different xenosensors. TCDD, which binds to the AhR, and α-endosulfan, 

which acts via the ER and/or PXR signalling pathways, were chosen because they both 

accumulate in the liver in animals and humans, they are suspected of having non-

carcinogenic hepatic toxicity and there is knowledge of their effects individually (at least for 

TCDD) that may help to understand the effects of the mixture. The concentrations that were 

employed maximize the activation of the corresponding signalling pathways without leading 

to overt toxicity during the course of the experiment.  

To our knowledge, this is the first genome-wide study in a human hepatic cell model 

of the effects of α-endosulfan alone or in combination with TCDD thus providing novel 

information on the modulation of global gene expression by the ER and/or PXR xenosensors 

alone and in combination with the AhR. The results demonstrate that, for the most part, the 

effects of TCDD and α-endosulfan on HepaRG hepatocytes are uncorrelated, which is 

consistent with these compounds exerting their effects by different mechanisms (pathways). 

However, it is also clear that the combined effects of α-endosulfan and TCDD are greater 

than those of each POP alone. Thus, for concentrations at which TCDD or α-endosulfan, 

individually, do not alter gene expression significantly, the mixture does produce a significant 

modification in the expression of 100 genes, although it should be emphasized that no 

conclusions can be made regarding the additivity or synergy of effects given that only a 

single concentration of each pollutant was studied. Further, although inspection of Table S2 

reveals that many genes appear to exhibit some modulation in the level of their expression 
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after treatment with one pollutant, these changes are not significant given the stringency of 

the statistical analysis and the low level of expression of those genes in many cases. This may 

illustrate the delicacy of establishing zero-effect levels. 

We also found evidence for what appears to be selective inhibitory crosstalk within 

the AhR and ER/PXR pathways. TCDD, in the mixture, inhibited the effects of α-endosulfan 

on the expression of 10 genes and α-endosulfan inhibited the effects of TCDD on 21 genes 

(Table 1). Serine dehydratase, the expression of which is affected by both TCDD and α-

endosulfan, but not the mixture, may be added to these ensembles although the mechanisms 

may not be the same. Several mechanisms for inhibitory AhR-ERα cross-talk, which may be 

gene/response and cell-context dependent, have been derived from the study of various non-

hepatic models [84-86]. Our observations would appear to be novel for a human hepatic-

derived cell line and the genes identified, if validated, might be useful targets to further 

understand these negative mechanisms of regulation in the liver. 

Our investigation further revealed that the response to the mixture of these endocrine 

disruptors involves both increases and decreases in the expression of many genes which 

belong to several pathways. However, the drastic down-regulation of genes involved in 

several metabolic pathways, such as lipid metabolism, which is the top network for down-

regulated genes, is particularly striking. mRNA expression is almost abolished for some of 

the genes by the mixture. Indeed, some genes, which were not identified as targets after 

treatment by a single pollutant because the fold change in their expression was below the cut 

off, are identified following treatment by the combination of pollutants as a result of a 

significant change in their expression. 

Among the genes belonging to the lipid metabolism network (See Table S4) is ADH4, 

a member of the alcohol dehydrogenase family, which is organized as a cluster on 

chromosome 4 (ADH1A, B, C, ADH4 and ADH6). Interestingly, the drastic down-regulation 
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of the expression of several of these ADHs has been linked to increased aggressiveness and a 

lower survival rate in breast, liver or lung cancer [87, 88]. The expression of these genes, as 

well as those of RDH16 (retinol dehydrogenase) and CYP2E1, all of which metabolize 

ethanol and/or retinoids, was decreased 70 to 80% in HepaRG cells exposed to both 

pollutants. These changes in the level of mRNA were paralleled by changes in the amount of 

protein as shown for ADH1. Moreover, we observed a similar type of regulation using lower 

concentrations of pollutants and a longer time of exposure. 

The members of the alcohol dehydrogenase family metabolize a wide variety of 

substrates such as ethanol and vitamin A, various aliphatic alcohols and lipid peroxydation 

products. Several studies have shown clearly that dioxins, through the AhR, disturb retinoid 

homeostasis, in particular by decreasing hepatic vitamin A and by increasing oxidation of the 

retinoids [89]. A few studies suggest a role for other pollutants, such as pesticides, in the 

deregulation of retinoid homeostasis [90]. 

The drastic down-regulation, up to 80%, of the expression of the alcohol 

dehydrogenase gene family by the combination of dioxin and α-endosulfan could thus 

exacerbate the modulation of vitamin A content and retinoic acid production induced by a 

single pollutant in the liver, thus further affecting signalling through the RAR-RXR pathway. 

In fact, hepatic vitamin A depletion in rodent models after treatment with TCDD has been 

linked to CYP1A1 induction and increased metabolism of this nutrient [91]. It has been 

suggested that alteration of retinoid metabolism could play a role in the wasting syndrome 

associated with dioxin exposure [92]. Our results also suggest that the almost complete 

inhibition of the expression of several enzymes involved in retinoid and/or alcohol 

metabolism by the combination of TCDD and α-endosulfan may profoundly alter the 

homeostasis of vitamin A and impair the protective role of retinoic acids in cancer, aging or 

immuno-stimulation. 
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 The combination of pollutants also inhibited the genes for several enzymes which 

belong to the FXR/RXR axis, which plays a role in bile acid signalling. The expression of a 

key enzyme involved in bile acid biosynthesis from cholesterol (CYP7A1) was down-

regulated by 80%, following treatment with the mixture of POPs (Table S4). TCDD also 

decreased CYP7A1 expression in a rat liver model [92]. The expression of the canalicular 

half-transporters ABCG5/G8, which associate at the plasma membrane to control the 

excretion of excess cholesterol from the liver, was inhibited by 70% following treatment with 

the combination of pollutants (Table S4). Thus, the down-regulation of these genes may 

contribute to increased cellular cholesterol and fatty liver disease [93] and, along with other 

factors, to the development of the metabolic syndrome [94]. The treatment with the mixture 

also resulted in a 90% decrease in expression of the gene for the liver catalytic subunit of 

glucose 6 phosphatase (G6PC). G6PC is the final enzyme in gluconeogenesis and 

glycogenolysis which provides energy and controls the serum glucose level in the blood 

during fasting. These results are in line with the 50% decrease in the expression of G6PC that 

is observed in both the human hepatoma cell line HuH7 treated with the PXR agonist 

rifampicin [95] and in chick embryo hepatocytes treated with TCDD [96]. Several 

epidemiological studies indicate an association between obesity and the metabolic syndrome 

and the concentration of POPs in serum [4, 6, 97] and our results concerning the effects on 

hepatocyte gene expression may be consistent with a role of POPs in this syndrome. Finally, 

exposure to numerous pollutants is often associated with an increase in cancer [98] and the 

up-regulation of the genes involved in AhR signalling, the molecular mechanisms of cancer 

and cell cycle checkpoint control that we observe is consistent with these studies. 

In the future, comparison of acute and “chronic” exposures to lower pollutant 

concentrations will be important. The HepaRG cell line is a human model of choice for 

studying such sub-chronic treatments since the differentiated cells stably express (for two 
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weeks at least) several CYPs and receptors for xenobiotics [39]. Our results obtained with an 

8-day treatment with low doses of TCDD and α-endosulfan indicate that low doses over 

longer periods of time can lead to changes in gene expression similar to those obtained with 

an acute treatment at higher concentrations of POPs.  

Epidemiological studies have associated chronic exposure to low levels of POPs with 

metabolic disorders such as insulin resistance or disruption of lipid metabolism [97, 99, 100]. 

Indeed, there are major concerns about the fact that living organisms are exposed to complex 

mixtures of POPs throughout their lifespan and that the effects of combinations are not well 

characterized. Our transcriptomic study was thus designed to pinpoint which genes had their 

expression severely dysregulated by the combination used. Our findings emphasize that 

deleterious hepatocellular effects may be more pronounced with a mixture of POPs which act 

through different signalling pathways as compared to each POP alone. We are currently 

investigating the effects of the mixture on a number of metabolic pathways down-regulated in 

the study and deciphering which receptors are involved in these effects.  

With respect to the effects of TCDD, although manifestations of hepatotoxicity 

(hepatocellular tumors, cytoplasmic vacuolization, multinucleate hepatocytes, inflammation, 

steatosis, necrosis) have been noted [101-103] in several laboratory animals (mouse, rat, 

chicken, guinea pig, rabbit, zebra fish), the United States Environmental Protection Agency 

in its reanalysis of key issues related to dioxin toxicity [24] noted that “hepatic effects were 

evident in virtually all rodent studies that looked for them and are often severe, although not 

evident in humans”. Further, it is not clear whether toxicant-associated steatohepatitis 

develops in humans exposed to TCDD [104] and although there appears to be an association 

between dioxin and type 2 diabetes a causal link is not necessarily implied [5, 10, 105, 106]. 

Continued investigation in a variety of model systems clearly seems warranted to further 

elucidate the mechanisms of action of these pollutants in humans. 



 24 

In conclusion, this study provides novel information on the increased effects on global 

gene expression of a mixture of environmental POPs, as compared to each one individually, 

in a human liver-derived model and, in particular, on the down-regulation of genes involved 

in metabolic pathways. It also demonstrates that in spite of their effects being largely 

uncorrelated, TCDD and α-endosulfan act together to affect the expression of a significant 

number of genes by several different mechanisms. Finally, the study provides novel 

information concerning the usefulness of the HepaRG cell line as a model system for 

studying human hepatocyte specific xenobiotic effects. 
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Figure legends 

 

Figure 1. Principal Component Analysis (PCA) of the top 1,000 most variable genes. The 

expression profiles discriminate the experimental conditions. The total variance explained by 

either component is given in %. Triangles represent the samples and the lines connect the 

samples from the same experimental condition: DMSO (blue), α-endosulfan (grey), TCDD 

(red), mixture of TCDD and α-endosulfan (white).  
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Figure 2. Exact-area proportional Euler diagram for the genes that are differentially 

regulated by the POP treatments. The total numbers of genes up- and down-regulated (p-

value ≤ 0.05, >2-fold change, absolute value) following exposure of differentiated HepaRG 

cells to 25nM TCDD, 10µM α-endosulfan or their combination for 30H are shown.  
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Figure 3. Hierarchical clustering analysis of 80 genes showing the greatest changes 

compared to vehicle (0.15% DMSO). Increased (N=40) and decreased (N=40) levels of 
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expression are shown in the left (A) and right (B) panels, respectively. The rows represent the 

genes. The columns represent the enrichment scores for each gene in the treatments. The 

black lined boxes indicate gene clusters that show strongly increased up-regulation (A) or 

down-regulation (B) after treatment of cells with the mixture as compared to the individual 

POPs. Red and blue colors indicate up- and down-regulation, respectively. 
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Figure 4. mRNA and protein levels of ADH1B and G6PC after pollutant exposure. A. 
HepaRG cells were exposed for 8 days to DMSO (0.15%), to a range (0.2, 0.5, 1, and 5 nM) 
of TCDD concentrations, to 1µM α-endosulfan or to the combination of 1µM α-endosulfan 
with the various concentrations of TCDD. The levels of mRNA, as measured by RT-qPCR, 
are expressed as the fold-change as compared to the control value. * represents the level of 
significance of the fold-change as compared to the control (*, p<0.05, **, p<0.01, ***, p< 
0.001) and $ represents the the level of significance of the fold-change of the mixture as 



 38 

compared to TCDD treatment alone (§, p<0.05, §§, p<0.01, §§§, p<0.001). The values are the 

results of 5 independent experiments performed in triplicate. B. HepaRG cells were exposed 
for 72H to DMSO (0.15%), TCDD (5 or 25nM), α-endosulfan (10µM) or the mixtures. A 
typical Western blot analysis of the ADH1 protein is shown above and, below, the 
quantification of 3 independent experiments. *, p<0.05.  
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Tables 
 

Table 1 
Genes regulated in cells following exposure to either TCDD or αααα-endosulfan alone and to their combination 

 
Gene symbol Gene name mRNA fold-change by  

 
Genes regulated by either TCDD or the combination TCDD plus αααα-endosulfan  TCDD combination 
CYP1A2  cytochrome P450, family 1, subfamily A, polypeptide 2  51.40 34.27 
CYP1B1  cytochrome P450, family 1, subfamily B, polypeptide 1  49.38 48.21 
CYP1A1  cytochrome P450, family 1, subfamily A, polypeptide 1  37.55 38.48 
STC2  stanniocalcin 2  29.30 43.20 
SERPINB2 serpin peptidase inhibitor, clade B (ovalbumin), member 2  26.07 38.3 
TMEM156  transmembrane protein 156  13.37 16.72 
SLC37A2  solute carrier family 37 (glycerol-3-phosphate transporter), member 2  8.70 16.36 
ALDH3A1  aldehyde dehydrogenase 3 family, memberA1  6.49 5.88 
C3orf59  chromosome 3 open reading frame 59  6.42 6.41 
MBL2  mannose-binding lectin (protein C) 2, soluble (opsonic defect)  6.07 5.33 
IGFBP1  insulin-like growth factor binding protein 1  4.28 3.51 
SLC7A5  solute carrier family 7 (cationic amino acid transporter, y+ system), member 5  3.98 4.79 
TIPARP  TCDD-inducible poly(ADP-ribose) polymerase  3.90 4.19 
CYBASC3  cytochrome b, ascorbate dependent 3  3.89 4.01 
IL17RB  interleukin 17 receptor B  3.70 3.70 
IER3 a immediate early response 3  3.25-3.27 4.08-4.12 
RAP1GAP  RAP1 GTPase activating protein  2.84 3.26 
GDF15  growth differentiation factor 15  2.81 3.55 
SYT12  synaptotagmin XII  2.66 3.26 
HSD17B2  hydroxysteroid (17-beta) dehydrogenase 2  2.63 2.49 
PAPPA  pregnancy-associated plasma protein A, pappalysin 1  2.51 2.64 
GRIA3  glutamate receptor, ionotrophic, AMPA 3  2.40 2.56 
SLC7A11  solute carrier family 7, (cationic amino acid transporter, y+ system) member 11  2.38 3.75 
ASAM  adipocyte-specific adhesion molecule  2.36 2.67 
VWCE  von Willebrand factor C and EGF domains  2.32 2.39 
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BMF  Bcl2 modifying factor  2.31 2.38 
EREG  epiregulin  2.31 2.40 
RUNX2  runt-related transcription factor 2  2.26 2.14 
MCCC1  methylcrotonoyl-Coenzyme A carboxylase 1 (alpha)  2.18 2.14 
AKR1B10 aldo-keto reductase family 1, member B10 (aldose reductase)  2.18 2.57 
PNMA2  paraneoplastic antigen MA2  2.15 2.45 
STON2  stonin 2  2.11 2.23 
CYP19A1  cytochrome P450, family 19, subfamily A, polypeptide 1  2.11 2.48 
SLC6A6  solute carrier family 6 (neurotransmitter transporter, taurine), member 6  2.07 2.46 
TMEM138  transmembrane protein 138  2.07 2.32 
PLEKHF1  pleckstrin homology domain containing, family F (with FYVE domain) member 1  2.05 2.48 
NPTX2  neuronal pentraxin II  2.04 2.66 
UGCG  UDP-glucose ceramide glucosyltransferase  2.04 2.38 
GPR175  G protein-coupled receptor 175  2.03 2.21 
SLCO2B1  solute carrier organic anion transporter family, member 2B1  0.50 0.44 
PLGLA plasminogen-like A  0.49 0.49 
MCTP1  multiple C2 domains, transmembrane 1  0.49 0.50 
DLEU2L  deleted in lymphocytic leukemia 2-like  0.49 0.44 
SLC22A7  solute carrier family 22 (organic anion transporter), member 7  0.48 0.28 
CYP4X1  cytochrome P450, family 4, subfamily X, polypeptide 1  0.48 0.36 
ABCG8  ATP-binding cassette, sub-family G (WHITE), member 8  0.47 0.33 
SLC38A4  solute carrier family 38, member 4  0.45 0.26 
ACOT12  acyl-CoA thioesterase 12  0.45 0.43 
ADRA1A  adrenergic, alpha-1A-, receptor  0.44 0.39 
KDR  kinase insert domain receptor (a type III receptor tyrosine kinase)  0.44 0.41 
ABCG5  ATP-binding cassette, sub-family G (WHITE), member 5  0.44 0.30 
FABP1  fatty acid binding protein 1, liver  0.43 0.27 
LEAP2  liver expressed antimicrobial peptide 2  0.42 0.30 
SERPINA7  serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 7  0.42 0.33 
FMO5  flavin containing monooxygenase 5  0.41 0.38 
LOC100129488  hypothetical protein LOC100129488  0.41 0.27 
GPD1  glycerol-3-phosphate dehydrogenase 1 (soluble)  0.39 0.31 
SLC2A2  solute carrier family 2 (facilitated glucose transporter), member 2  0.38 0.21 
SLC10A1  solute carrier family 10 (sodium/bile acid cotransporter family), member 1  0.38 0.47 
PPP1R3B  protein phosphatase 1, regulatory (inhibitor) subunit 3B  0.36 0.33 
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THRSP  thyroid hormone responsive (SPOT14 homolog, rat)  0.36 0.39 
CXCL13  chemokine (C-X-C motif) ligand 13  0.35 0.41 
HAO2  hydroxyacid oxidase 2 (long chain)  0.34 0.17 
CTGF connective tissue growth factor 0.34 0.37 
DNAJC15  DnaJ (Hsp40) homolog, subfamily C, member 15  0.32 0.41 
RDH16  retinol dehydrogenase 16 (all-trans)  0.31 0.16 
MFSD2  major facilitator superfamily domain containing 2  0.30 0.25 
CYP4B1  cytochrome P450, family 4, subfamily B, polypeptide 1  0.28 0.36 
PFKFB1  6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 1  0.26 0.31 
DKK1  dickkopf homolog 1 (Xenopus laevis)  0.18 0.20 
  mRNA fold-change by  
Genes regulated by either  αααα-endosulfan or the combination TCDD plus αααα-endosulfan  αααα-endosulfan combination 
GPX2  glutathione peroxidase 2 (gastrointestinal)  2.36 2.04 
CYP2B6  cytochrome P450, family 2, subfamily B, polypeptide 6  2.14 2.35 
LOC221442  hypothetical LOC221442  2.08 2.11 
CYP2E1  cytochrome P450, family 2, subfamily E, polypeptide 1  0.49 0.19 
LOC441120  hypothetical LOC441120  0.35 0.41 
CYP7A1  cytochrome P450, family 7, subfamily A, polypeptide 1  0.28 0.21 

The mRNA fold change for each gene corresponds to the ratio of mRNA expression for cells exposed to each treatment (25nM TCDD or 10µM α-
endosulfan or their combination) versus that for untreated cells (0.15% DMSO). The values (fold change >2 for up-regulated genes or < 0.5 for down-
regulated genes) are the means of three microarray experiments. All the genes are significantly differentially expressed with p < 0.05 by Fisher t-test 
analysis. a Values correspond to several probes in the microarray. 
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Table 2 
Genes differentially down-regulated in HepaRG cells following exposure to either 25nM 

TCDD or 10µM αααα-endosulfan or their combination for 30 hours) 

 

Gene symbol Gene name mRNA fold change 

 TCDD 
αααα-

endosulfan 
combination 

G6PC  glucose-6-phosphatase, catalytic subunit  0.23 0.38 0.09 

ADH4  alcohol dehydrogenase 4 (class II), pi polypeptide  0.38 0.40 0.13 

HMGCS2 
3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2 
(mitochondrial)  

0.50 0.46 0.19 

GNMT  glycine N-methyltransferase  0.33 0.43 0.20 

CPS1  carbamoyl-phosphate synthetase 1, mitochondrial  0.35 0.47 0.22 

AFM  afamin  0.50 0.48 0.27 

 
All these genes exhibit at least a 2-fold change in expression for cells exposed to all 3 

treatments as compared to the control condition. The values are the means of three microarray 

experiments (p ≤ 0.05). Down-regulated genes show a fold change <1 as compared to the 

control condition. 
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Table 3 

Focus analysis top regulated genes differentially expressed following exposure of cells to 

the combination of TCDD + αααα-endosulfan as compared to all other treatments 

Gene symbol Gene name / function mRNA fold change by 
TCDD + α-endosulfan  

Up-regulated genes  

STC2* stanniocalcin 2 / oxidative stress 43.20 

SERPINB2* serpine peptidase inhibitor, member 2 / cell migration 38.30 

SLC37A2* solute carrier family 37, member 2 / stress response 16.36 

SLC7A11* solute carrier family 7, (cationic amino acid transporter, y+ system) member 
11 / oxidative stress 

3.75 

GDF15* growth differentiation factor 15 / stress response 3.55 

AKR1B10* aldo-keto reductase family 1, member B10/ fatty acid biosynthesis 2.57 

CA12 carbonic anhydrase XII / hypoxic stress 2.45 

serpine 1 serpine peptidase inhibitor / cell migration 1.89 

MT1A metallothionein 1A / oxidative stress 1.83 

ST3GAL5 ST3 beta-galactoside alpha-2,3-sialyltransferase 5 / cell differenciation & 
proliferation 

1.78 

Down-regulated genes  

G6PC $ glucose 6 phosphatase, catalytic chain / glucose metabolism 0.09 

ADH4 $ alcohol dehydrogenase 4/ retinoid  and alcohol metabolism 0.13 

HAO2* hydroxyacid oxidase 2 / fatty acid oxidation 0.17 

HMGCS2 $ 3-hydroxy-3-methylglutaryl-CoA synthase 2 /ketone bodies synthesis 0.19 

CYP2E1 cytochrome P450 2E1/ alcohol metabolism 0.19 

SLC2A2* solute carrier family 7, (facilitated glucose transporter) member 2 0.21 

ADH1A  alcohol dehydrogenase 1A/ retinoid  and alcohol metabolism 0.28 

ADH1B alcohol dehydrogenase 1B / retinoid  and alcohol metabolism 0.33 

ADH1C alcohol dehydrogenase 1C/ retinoid  and alcohol metabolism 0.38 

HSD17B6 hydroxysteroid (17-beta) dehydrogenase 6 homolog / retinoid metabolism 0.41 

Genes in bold, *, and $, were found to be differentially expressed in cells exposed to the 

mixture, to TCDD alone or the mixture or to all 3 treatments, respectively by t-test analysis. 

CYP2E1 was found to be altered following treatment with α-endosulfan alone and the 

mixture by t-test analysis. The values are the fold change by the combination compared to the 

control condition. Up-regulated and down-regulated genes show fold changes >1 and <1, 

respectively, as compared to the control condition.
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Table 4 

Top canonical pathways regulated in cells exposed to the combination of TCDD and αααα-

endosulfan 

Name of pathway p-value ratio a 

by Up-regulated genes  

Pyrimidine metabolism 2.05 E-07 18/231 

Role of CHK proteins in cell cycle checkpoint control 2.05 E-06 8/35 

RAN signaling 4.82 E-05 5/23 

AhR signaling 6.96 E-05 13/154 

Molecular mechanisms of cancer 1.10 E-04 22/372 

by Down-regulated genes  

FXR/RXR activation 3.31 E-14 12/103 

Bile acid biosynthesis 4.99 E-09 7/100 

Metabolism of xenobiotics by CYPs 2.52 E-08 9/209 

Glycolysis/Gluconeogenesis 4.90 E-08 8/142 

Glycerolipid metabolism 8.42 E-08 8/156 
 

a The ratio corresponds to the number of genes regulated by the combination of TCDD plus α-
endosulfan as compared to the total number of genes in the specific pathway, found by the 
Ingenuity Pathway Analysis.  
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Supplementary Tables 
 

Table S1 
Primer sequences for RT-qPCR assays 

 
Gene Forward Primer (5’-3’) Reverse Primer (5’-3’) 

ADH1A GGCATCAGCACCTTCTCAC GACCTTGGCAACATTGACTG 

ADH1B GGCAGAGAAGACAGAAACGAC CAACCTCCACATCCTCAATG 

ADH1C CTGCTTCGCTCTGGAAAG GAGGAGGCTGAAAACTGC 

ADH4 GCATTGAAGAGGTTGAAGTAGC GATAACAGTGGCATCAGTATGG 

ADH6 GGAAGTTCGCATAAAGGTTG CAAGATGGTGGGATACAAGAG 

CYP2E1 ACTATGGGATGGGGAAACAG GAGGATGTCGGCTATGACG 

SERPINB2 GCTGTTTGGTGAGAAGTCTG GCCTTTGGTTTGAGTCTTG 

STC2 GGAAGAGGGGAGCACAAAG CAGCGTTGACCAAACAGTG 

SLC7A11 TGGCAGTGACCTTTTCTGAG CCTGGAGACAGCAAACACAC 

DTL GTCCCAGTTCCTCCTTTTG CCAGTGAGCCATCCATTC 

SLC9A9 GCTGCTCCTCGTGTTCTTC TGCTTCCTGGTGTTGTGAG 

ABCG8 GCCTCCTTCTTCAGCAATG TCAGCCCTTCAAAACACC 

ALDH3A1 CAGAAGGTGGCTTATGGG ACGCTGGTTGATGAACTG 

AFM ATGAAGTTGCCAGAAGGAAC ATTGTGTGACAGGTATTGCC 

AQP9 GCAGCTTAGCGAAAGAAACC TGCAACTGCCATTGAAAATC 

GPX2 TTTGGACATCAGGAGAACTG TTCAGGTAGGCGAAGACAG 

MBL2 ATGGTGGCAGCGTCTTAC CCTGGTTCCCCCTTTTC 

SLC22A7 CGTTGGGGGAAGAAAGG CGGCGAAGAAGAAAGTGG 

SLC38A4 GCAGTCCTTGTGGCAGTAAC CCCCTATGAATCCGAAGATG 

G6PC TTGTGGTTGGGATTCTGG CTGTGGATGTGGCTGAAAG 

SDS ATGAAGGTGCCACAGTCAAG TCAAAGGGGGGAATGTAGAC 

HMGCS2 CCCGTCTAAAGGTGTTCTG AGCCCAGGACAGTGATTG 

CYP1A1 GGTCAAGGAGCACTACAAAACC TGGACATTGGCGTTCTCAT 

CYP1A2 ACAGCACAACAAGGGACACA TGCCAAACAGCATCATCTTC 

CYP3A4 GATGGCTCTCATCCCAGACTT AGTCCATGTGAATGGGTTCC 

CYP2B6 TTCAGGAGGAGGCTCAGTGT GGCCGAATACAGAGCTGATG 

RPL13A AAGGTCGTGCGTCTGAAG GAGTCCGTGGGTCTTGAG 

GDF15 GCTACGAGGACCTGCTAAC ACTTCTGGCGTGAGTATCC 

NEIL3 TTCCAGCCAGAATGTCTTGAG CCGAAATGAATCCGTAAAGC 

HAO2 CCTGAACTGTGGGTAGTGATG GCCTGAAAGTCTGTCAAACAC 

SLC2A2 CACTTGGCACTTTTCATCAG AGGTATCTGGGGCTTTCTG 

CA12 TCTTGGCATCTGTATTGTGG GGCTGGCTTGTAAATGACTC 

CYP7A1 CCATTCCAGCGACTTTCTG AGCCTCAGCGATTCCTTG 

PON1 CATAAAAGTGCTCAGGTCCCACAG TGGAATTGGGGATCACTGGAAG 

SULT2A1 CCTGAACTGTGGGTAGTGATG GCCTGAAAGTCTGTCAAACAC 
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Table S2 

Genes exhibiting at least a 2-fold change in expression in HepaRG cells exposed for 30 hours 

to either 25nM TCDD only or 10µM αααα-endosulfan only or the combination of TCDD plus αααα-endosulfan only 

Gene symbol Gene name mRNA fold change by 

 TCDD α-endosulfan combination 

Genes regulated by TCDD only    

KRTAP21-1 keratin associated protein 21-1 3.65 3.97*  3.51*  

TRPV6  transient receptor potential cation channel, subfamily V, member 6  2.40 0.92 1.15 

S100A8  S100 calcium binding protein A8  2.26 0.83 1.84 

HK2  hexokinase 2 2.24 0.92 2.23*  

UBE2U  ubiquitin-conjugating enzyme E2U (putative)   2.23 1.16 1.43 

SCN1A  sodium channel, voltage-gated, type I, alpha subunit  2.11 1.17 1.62 

SLC22A3  solute carrier family 22 (extraneuronal monoamine transporter), member 3   0.50 0.99 0.55 

RASGEF1B  RasGEF domain family, member 1B  0.50 1.00 0.59 

CLEC4E  C-type lectin domain family 4, member E   0.50 0.50*  0.37*  

ABI3BP  ABI family, member 3 (NESH) binding protein   0.50 1.00 0.59 

SLC16A12  solute carrier family 16, member 12 (monocarboxylic acid transporter 12)   0.49 1.44 0.65 

MRC1  mannose receptor, C type 1  0.49 0.73 0.42*  

ABCD2  ATP-binding cassette, sub-family D (ALD), member 2  0.49 0.98 0.54 

MCF2  MCF.2 cell line derived transforming sequence  0.49 0.94 0.54 

CIDEC  cell death-inducing DFFA-like effector c  0.48 1.10 0.63 

OR10R2 olfactory receptor, family 10, subfamily R, member 2  0.48 0.83 0.39*  

KCNB1  potassium voltage-gated channel, Shab-related subfamily, member 1  0.48 1.41 0.82 

GHR  growth hormone receptor  0.48 1.03 0.56 

OR7E18P  olfactory receptor, family 7, subfamily E, member 18 pseudogene  0.48 1.00 0.90 

GYS2  glycogen synthase 2 (liver)  0.46 1.34 0.56 
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GZMK  granzyme K (granzyme 3; tryptase II)  0.43 0.63 0.81 

Genes regulated by αααα-endosulfan only    

OR2T4  olfactory receptor, family 2, subfamily T, member 4  1.59 2.44  2.03* 

SFRP4  secreted frizzled-related protein 4  0.79 2.19 1.65 

NCRNA00052  non-protein coding RNA 52  0.63 0.50 0.68 

CPA3  carboxypeptidase A3 (mast cell)  1.04 0.50 0.90 

LIPI  lipase, member I  1.22 0.49 0.85 

FAM99A family with sequence similarity 99, member A 3.01*  0.27 0.62 

CNGA1  cyclic nucleotide gated channel alpha 1  0.57 0.47 0.50*  

FAM71D  family with sequence similarity 71, member D  1.08 0.44 0.69 

LOC651503  seven transmembrane helix receptor  1.42 0.34 0.94 

LOC441233  hypothetical gene supported by AK128010  0.76 0.25 0.43*  

Genes regulated by the combination TCDD plus αααα-endosulfan only    

LOC100130904  similar to CD177 molecule  2.64*  2.39*  3.64 

VDR  vitamin D (1,25- dihydroxyvitamin D3) receptor  2.58*  1.26 3.38 

LOC732275  similar to hCG1645603  0.98 1.31 3.04 

DTL  denticleless homolog (Drosophila)  1.42 1.76 2.99 

FAM111B  family with sequence similarity 111, member B  1.58 1.87 2.83 

SLC9A9  solute carrier family 9 (sodium/hydrogen exchanger), member 9  2.11*  1.29 2.75 

GPRC5B  G protein-coupled receptor, family C, group 5, member B  1.42 2.18*  2.72 

E2F7  E2F transcription factor 7  1.65 1.61 2.71 

EXO1  exonuclease 1  1.56 2.06*  2.68 

DCLK1  doublecortin-like kinase 1  1.61 1.87 2.62 

NEIL3  nei endonuclease VIII-like 3 (E. coli)  1.69 1.92 2.62 

XRCC2  X-ray repair complementing defective repair in Chinese hamster cells 2  1.51 1.66 2.57 

RIBC2  RIB43A domain with coiled-coils 2  1.62 1.84 2.55 
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PTPRE  protein tyrosine phosphatase, receptor type, E  2.02*  1.35 2.47 

SEC14L4  SEC14-like 4 (S. cerevisiae)  2.18*  1.41 2.46 

RAD51  RAD51 homolog (RecA homolog, E. coli) (S. cerevisiae)  1.41 1.86 2.45 

CA12  carbonic anhydrase XII  1.73 1.61 2.45 

PFKP  phosphofructokinase, platelet  1.87 1.30 2.35 

FBXW10  F-box and WD repeat domain containing 10  1.51 1.59 2.31 

C22orf9  chromosome 22 open reading frame 9  1.93 1.18 2.29 

ORC1L  origin recognition complex, subunit 1-like (yeast)  1.42 1.49 2.27 

HIST1H3A  histone cluster 1, H3a  1.28 1.64 2.26 

G6PC2  glucose-6-phosphatase, catalytic, 2  2.13*  2.06*  2.22 

HIST1H3B  histone cluster 1, H3b  1.31 1.64 2.21 

CDRT1  CMT1A duplicated region transcript 1  1.46 1.68 2.19 

CCL20  chemokine (C-C motif) ligand 20  1.57 1.35 2.14 

SSH1  slingshot homolog 1 (Drosophila)  1.55 1.22 2.13 

ARMC9  armadillo repeat containing 9  1.81 1.05 2.12 

ALPP  alkaline phosphatase, placental (Regan isozyme)  1.44 1.40 2.12 

ARSI arylsulfatase family, member I 2.42*  0.92 2.12 

MCM5  minichromosome maintenance complex component 5  1.39 1.56 2.11 

FAM46C  family with sequence similarity 46, member C  1.86 1.21 2.11 

ADAM12  ADAM metallopeptidase domain 12  1.72 1.54 2.08 

CDC6  cell division cycle 6 homolog (S. cerevisiae)  1.27 1.50 2.07 

MLLT1  
myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila); 
translocated to, 1  

1.87 1.20 2.06 

MYC  v-myc myelocytomatosis viral oncogene homolog (avian)  1.74 1.40 2.06 

NCF2  neutrophil cytosolic factor 2  1.32 1.41 2.06 

CDCA7  cell division cycle associated 7  1.55 1.57 2.05 

WDR76  WD repeat domain 76  1.22 1.54 2.05 

MCM2  minichromosome maintenance complex component 2  1.45 1.35 2.05 
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SRXN1  sulfiredoxin 1 homolog (S. cerevisiae)  1.55 1.48 2.03 

CCNE2 cyclin E2  1.20 1.36 2.03 

CFHR3 complement factor H-related 3  0.64 0.74 0.50 

CYP2A6 cytochrome P450, family 2, subfamily A, polypeptide 6  0.54 0.92 0.50 

AHSG  alpha-2-HS-glycoprotein  0.62 0.66 0.50 

CYP2A13 cytochrome P450, family 2, subfamily A, polypeptide 13  0.55 0.91 0.50 

DGAT2  diacylglycerol O-acyltransferase homolog 2 (mouse)  0.57 0.80 0.50 

PDE8B  phosphodiesterase 8B  0.51 1.00 0.50 

ABCC9  ATP-binding cassette, sub-family C (CFTR/MRP), member 9  0.55 0.92 0.49 

C12orf27  chromosome 12 open reading frame 27  0.61 0.88 0.49 

HFE2  hemochromatosis type 2 (juvenile)  0.56 0.65 0.49 

CIDEB  cell death-inducing DFFA-like effector b  0.61 0.82 0.49 

SLCO1B1  solute carrier organic anion transporter family, member 1B1  0.62 0.81 0.49 

AQP9  aquaporin 9  0.53 0.97 0.49 

C7orf45  chromosome 7 open reading frame 45  0.78 0.74 0.49 

RORC  RAR-related orphan receptor C  0.61 0.72 0.48 

SLC38A3  solute carrier family 38, member 3  0.64 0.77 0.48 

ALDOB  aldolase B, fructose-bisphosphate  0.59 0.80 0.48 

CCIN  calicin  0.87 0.68 0.48 

LST-3TM12  organic anion transporter LST-3b  0.64 0.80 0.48 

CYP2A7 cytochrome P450, family 2, subfamily A, polypeptide 7  0.51 0.91 0.48 

SELENBP1  selenium binding protein 1  0.53 0.91 0.48 

CALML4  calmodulin-like 4  0.56 0.82 0.47 

ANG  angiogenin, ribonuclease, RNase A family, 5  0.60 0.74 0.47 

CDC20B  cell division cycle 20 homolog B (S. cerevisiae)  0.67 0.64 0.47 

PLA2G12B  phospholipase A2, group XIIB  0.60 0.75 0.46 

DAB1  disabled homolog 1 (Drosophila)  0.52 090 0.46 

CFHR2  complement factor H-related 2  0.57 0.90 0.46 

SCGN  secretagogin, EF-hand calcium binding protein  0.51 0.92 0.46 
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GLYAT  glycine-N-acyltransferase  0.52 0.94 0.46 

LOC441178  hypothetical LOC441178  0.67 0.52 0.46 

OTC  ornithine carbamoyltransferase  0.57 0.70 0.45 

PKLR  pyruvate kinase, liver and RBC  0.74 0.71 0.45 

PON1  paraoxonase 1  0.6 0.75 0.45 

GLYATL1  glycine-N-acyltransferase-like 1  0.51 0.75 0.45 

SLC10A5  solute carrier family 10 (sodium/bile acid cotransporter family), member 5  0.59 0.75 0.44 

SLC22A10  solute carrier family 22, member 10  0.66 0.53 0.44 

AGXT2  alanine-glyoxylate aminotransferase 2  0.55 0.84 0.43 

HRG  histidine-rich glycoprotein  0.64 0.61 0.43 

ANGPTL5  angiopoietin-like 5  0.96 1.11 0.41 

ARG1  arginase, liver  0.56 0.72 0.41 

HSD17B6  hydroxysteroid (17-beta) dehydrogenase 6 homolog (mouse)  0.57 0.74 0.41 

PCK2  phosphoenolpyruvate carboxykinase 2 (mitochondrial)  0.51 0.73 0.41 

SULT1E1  sulfotransferase family 1E, estrogen-preferring, member 1  0.48*  0.72 0.41 

SLC17A4  solute carrier family 17 (sodium phosphate), member 4  0.53 0.83 0.40 

SLC5A9  solute carrier family 5 (sodium/glucose cotransporter), member 9  0.53 0.83 0.40 

LRRC31  leucine rich repeat containing 31  0.54 0.68 0.40 

BDH1  3-hydroxybutyrate dehydrogenase, type 1  0.59 0.69 0.39 

HSD3B1  hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1  0.62 0.71 0.39 

ADH1C  alcohol dehydrogenase 1C (class I), gamma polypeptide  0.57 0.71 0.38 

RANBP3L  RAN binding protein 3-like  0.51 0.79 0.38 

PGLYRP2  peptidoglycan recognition protein 2  0.62 0.60 0.37 

BBOX1  
butyrobetaine (gamma), 2-oxoglutarate dioxygenase (gamma-butyrobetaine 
hydroxylase) 1  

0.40*  0.81 0.36 

ANXA13  annexin A13  0.50*  0.72 0.35 

ADH6  alcohol dehydrogenase 6 (class V)  0.56 0.65 0.35 

ADH1B  alcohol dehydrogenase 1B (class I), beta polypeptide  0.65 0.67 0.33 

PSMAL  growth-inhibiting protein 26  0.54 0.58 0.33 
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FOLH1  folate hydrolase (prostate-specific membrane antigen) 1  0.55 0.58 0.32 

UGT2B17  UDP glucuronosyltransferase 2 family, polypeptide B17  0.69 0.57 0.31 

ADH1A  alcohol dehydrogenase 1A (class I), alpha polypeptide  0.61 0.56 0.28 

 
The mRNA fold change for each gene corresponds to the ratio of mRNA expression for cells exposed to each treatment (25nM TCDD or 10µM 
α-endosulfan or the combination) versus that for untreated cells (0.15% DMSO). The values (fold change >2 for up-regulated genes or < 0.5 for 
down-regulated genes) are the means of three microarray experiments. All the genes are significantly differentially expressed with p < 0.05 by 
Fisher t-test analysis for the treatment designated for each sub-group. For the other treatments, the fold change was either below two-fold change 
or not statistically significative (labeleld with an asterisk * , if p-value >0.05). The genes underlined in the first two sections of the table are those 
retained after filtering with increased stringency (fold change>2.2 or <0.46, p-value<0.05), see text for discussion. 



 52 

Table S3 
Comparison of the changes in the expression of selected target genes by microarray and RT-qPCR analysis 

 
  mRNA fold change 

  TCDD α-endosulfan combination 

Gene symbol Gene name µarray RT-qPCR µarray RT-qPCR µarray RT-qPCR 

ADH1A alcohol dehydrogenase 1A (class I), alpha polypeptide  0.6 0.40 0.55 0.18 0.28 0.09 

ADH1B alcohol dehydrogenase 1B (class I), beta polypeptide  0.65 0.32 0.67 0.44 0.33 0.13 

ADH1C alcohol dehydrogenase 1C (class I), gamma polypeptide  0.55 0.41 0.68 1.48 0.37 0.57 

ADH4 alcohol dehydrogenase 4 (class II), pi polypeptide  0.38 0.29 0.40 0.28 0.13 0.08 

ADH6 alcohol dehydrogenase 6 (class V)  0.56 0.49 0.65 0.62 0.35 0.29 

CYP2E1 cytochrome P450, family 2, subfamily E, polypeptide 1  0.51 0.41 0.49 0.34 0.20 0.10 

CYP1A1 cytochrome P450, family 1, subfamily A, polypeptide 1  37.55 69.13 1.30 0.86 38.48 54.10 

SERPINB2 serpin peptidase inhibitor, clade B (ovalbumin), member 2  26.31 55.03 1.48 1.26 39.25 56.18 

STC2 stanniocalcin 2 29.56 47.08 0.63 1.09 43.20 80.76 

SLC7A11 solute carrier family 7, (cationic amino acid transporter, y+ system) 
member 11 

2.36 2.54 1.91 1.28 3.73 3.25 

DTL denticleless homolog (Drosophila)  1.39 1.82 1.73 1.69 2.97 2.87 

SLC9A9 solute carrier family 9 (sodium/hydrogen exchanger), member 9  2.1 2.24 1.28 0.96 2.73 2.52 

ABCG8 ATP-binding cassette, sub-family G (WHITE), member 8  0.47 0.53 0.78 0.88 0.33 0.36 

ALDH3A1 aldehyde dehydrogenase 3 family, member A1 6.47 22.58 0.92 1.12 5.88 17.9 

AFM afamin 0.5 0.45 0.48 0.35 0.27 0.21 

AQP9 aquaporin 9 0.53 0.44 0.97 0.87 0.48 0.4 

GPX2 glutathione peroxidase 2 (gastrointestinal)  1.34 1.55 2.35 3.16 2.05 2.76 

MBL2 mannose-binding lectin (protein C) 2, soluble (opsonic defect)  5.89 11.45 0.67 0.93 5.14 9.27 

SLC22A7 solute carrier family 22 (organic anion transporter), member 7  0.48 0.41 0.61 0.49 0.28 0.20 

SLC38A4 solute carrier family 38, member 4 0.44 0.44 0.59 0.46 0.26 0.20 

G6PC glucose-6-phosphatase, catalytic subunit 0.23 0.18 0.38 0.23 0.09 0.04 

SDS serine dehydratase  0.39 0.23 6.37 5.76 1.66 1.37 

HMGCS2 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2 (mitochondrial)  0.50 0.40 0.46 0.28 0.19 0.08 
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GDF15 growth differentiation factor 15 2.81 3.43 1.38 0.94 3.55 5.01 

NEIL3 nei endonuclease VIII-like 3 (E. coli) 1.69 1.56 1.92 1.34 2.62 2.25 

HAO2 hydroxyacid oxidase 2 (long chain) 0.34 0.12 0.64 0.28 0.17 0.04 

SLC2A2 solute carrier family 2 (facilitated glucose transporter), member 2 0.38 0.26 0.69 0.45 0.21 0.12 

CA12 carbonic anhydrase XII 1.73 1.57 1.61 1.01 2.45 2.09 

CYP7A1 cytochrome P450, family 7, subfamily A, polypeptide 1 0.66 0.56 0.28 0.27 0.21 0.27 

PON1 paraoxonase 1 0.64 0.53 0.75 0.54 0.45 0.33 

SULT2A1 
sulfotransferase family, cytosolic, 2A, dehydroepiandrosterone 

(DHEA)- preferring, member 1 
0.63 0.49 0.93 0.7 0.52 0.34 

 
The mRNA fold change for each gene corresponds to the ratio of mRNA expression for cells exposed to each treatment (25nM TCDD or 10µM 
α-endosulfan or their combination) versus that for untreated cells (0.15% DMSO). The values (fold change >1 for up-regulated genes or < 1 for 
down-regulated genes) are the means of three microarray or three or more independent RT-qPCR experiments.
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Table S4 

Genes belonging to the top down-regulated network in cells exposed to the combination of TCDD and αααα-endosulfan treatment 

 

Gene symbol Gene name mRNA fold-change 

  TCDD α-endosulfan combination 

G6PC glucose-6-phosphatase, catalytic subunit 0.23 0.38 0.009 

ADH4 alcohol dehydrogenase 4 (class II), pi polypeptide  0.38 0.40 0.13 

RDH16 retinol dehydrogenase 16 (all-trans)  0.31 0.55 0.16 

HAO2 hydroxyacid oxidase 2 (long chain) 0.34 0.64 0.17 

CYP7A1 cytochrome P450, family 7, subfamily A, polypeptide 1 0.65 0.28 0.21 

CPS1 carbamoyl-phosphate synthetase 1, mitochondrial  0.35 0.47 0.22 

ABCG5 ATP-binding cassette, subfamily G (WHITE), member 5 0.43 0.62 0.30 

UGT2B17 UDP glucuronosyltransferase 2 family, polypeptide B17 0.69 0.57 0.31 

ABCG8 ATP-binding cassette, subfamily G (WHITE), member 8 0.47 0.78 0.33 

ADH1C alcohol dehydrogenase 1C (class I), gamma polypeptide  0.55 0.68 0.37 

PON1 paraoxonase 1 0.63 0.75 0.48 

 
All the genes listed belong to the top down-regulated network, lipid metabolism. The mRNA fold change for each gene (fold change >1 for up-
regulated genes or < 1 for down-regulated genes) corresponds to the ratio of mRNA expression for cells exposed to each treatment (25nM TCDD 
or 10µM α-endosulfan or their combination) versus untreated cells (0.15% DMSO). The values are the means of three microarray experiments. 
All the genes are significantly differentially expressed with p < 0.05 by Fisher t-test analysis. The values for gene expression following treatment 
with TCDD or α-endosulfan alone are shown for comparison. 
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Supporting Information Legends 

 

Figure S1. Cell viability after 3 or 8 days of exposure to pollutants. A. HepaRG cells (6 X 

104 cells/well in a 96 well plate) were exposed for 72H to the control medium or TCDD 

(25nM), or α-endosulfan (10µM) or the mixture. B. HepaRG cells were exposed for 8 days to 

a range (0.2, 0.5, 1, and 5 nM) of concentrations of TCDD, to 3 or 10µM α-endosulfan and to 

the combinations of 3µM (mixture 1) or 10µM (mixture 2) α-endosulfan with the various 

concentrations of TCDD (lowest to highest from left to right). Cell viability was measured in 

3 (A) or 4 (B) independent experiments in triplicate using the WST-1 kit (Roche Applied 

Science) according to the manufacturer’s instructions. The viability is expressed as the % of 

the control condition (100%). No statistical difference in the viability of the cells after the 

various treatments was found. 
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Figure S2. Comparison between the levels of expression of genes as measured by 

microarrays and RT-qPCR. A. Comparison for the treatment with TCDD (25nM, 30H). B. 

Comparison for the treatment with α-endosulfan (10µM, 30H). C. Comparison for the 

combined treatment with TCDD (25nM, 30H) and α-endosulfan (10µM, 30H). The 

correlation coefficients R2 are 0.97, 0.90, and 0.97 for the treatments with TCDD, α-

endosulfan and the mixture, respectively. 
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Figure S3. Gene Set Enrichment Analysis (GSEA) and Rank Rank Hypergeometric 

Overlap Analysis. A. GSEA plots for the gene sets up-regulated by TCDD (first row) derived 
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from the data of Jennen et al. [42] (left, 10nM TCDD, 48H treatment) and Forgacs et al. [58] 

(right, 10 nM TCDD, 12H treatment), for gene sets down-regulated by TCDD (second row) 

from the data of Jennen et al. [42] (left, 10 nM TCDD, 48H treatment) and Forgacs et al. [58] 

(right, 10 nM TCDD, 48H treatment), for gene sets up- and down-regulated by 17β-estradiol 

(third row) from the data of Jennen et al. [42] (left, up-regulated, right, down-regulated, 30 

mM 17β-estradiol, 12H treatment). The abscissas correspond to the ordered list of genes that 

are differentially expressed for HepaRG cells treated or not by TCDD in this study. The 

ordinates represent the cumulative distribution (enrichment score, green line) for the cells 

(HepaRG or primary human hepatocytes, published data) treated or not with TCDD. The red 

and blue colors indicate enrichment and depletion, respectively, of genes. B. Rank rank 

hypergeometric overlap heat plots of expression data from this paper (abscissas) and that from 

Jennen et al. [42] (ordinates) for treatment with 10 µM α-endosulfan, 30H and 30 µM 17β-

estradiol, 12H, respectively (top) and for treatment with 25 nM TCDD, 30H and 10 nM 

TCDD, 12H, respectively (bottom). The metric on the right represents the log10-transformed t-

test P-value. Pixels with positive values (red) indicate a higher than expected number of 

overlapping genes and pixels with negative values (blue) indicate a lower than expected 

number of overlapping genes. Overlap is seen here by the orange areas.  

 


