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Abstract  
 

Aim: The aim of this work was to study regulation of the calcineurin antagonist, Regulator of 

Calcineurin1 protein (RCAN1), in rat skeletal muscles following exhaustive physical exercise, 

which is a physiological modulator of oxidative stress. Results: Three skeletal muscles, 

namely Extensor Digitorum Longus (EDL), gastrocnemius, and soleus were investigated. 

Exhaustive exercise increased RCAN1-4 protein levels in EDL and gastrocnemius, but not in 

soleus. Protein oxidation as an index of oxidative stress was increased in EDL and 

gastrocnemius, but remained unchanged in soleus. However lipid peroxidation was increased 

in all three muscles. CuZnSOD and catalase protein levels were increased at 3Hr post exercise 

in soleus, while they remained unchanged in EDL and gastrocnemius.  Calcineurin enzymatic 

activity declined in EDL and gastrocnemius but not in soleus, and its protein expression was 

decreased in all three muscles. The level of PGC1-� protein remained unchanged whereas the 

protein expression of transcription factor NFATc4 was decreased in all three muscles. 

Adiponectin expression was increased in all three muscles. Conclusion: RCAN1-4 expression 

in EDL and gastrocnemius muscles was augmented by the oxidative stress generated from 

exhaustive exercise. We propose that increased RCAN1-4 expression, and the signal 

transduction pathways it regulates, represent important components of the physiological 

adaptation to exercise-induced oxidative stress. 

 

Key words:  Exhaustive exercise, skeletal muscle, oxidative damage, RCAN1, calcineurin, 

  NFATc4, adiponectin.  
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Introduction 

Regulator of Calcineurin1 (RCAN1) is a member of a highly conserved family of proteins 

and is the endogenous and natural modulator of the serine/threonine phosphatase calcineurin 

[1]. The gene encoding the RCAN1 protein was previously known by several names 

including Adapt78, DSCR1, and MCIP1; resulting from multiple discoveries, and 

rediscoveries, in different cells, tissues, animals, and laboratories [2]. The three main isoforms 

of RCAN1 protein expressed in mammalian tissues are RCAN1-4 (~ 25 KDa), RCAN1-1L (~ 

36 KDa), and RCAN1-1S (~ 32 KDa); The 1L and 1S postscripts refer to the long and short 

form lengths of RCAN1 which differ in their N-terminal regions [3-5].  RCAN1-1L and 

RCAN1-1S are the major isoforms chronically expressed and detected in many types of 

tissues and cells, such as the central nervous system, heart, and skeletal muscles. Chronic 

RCAN1-1 overexpression is associated with pathophysiological conditions such as Down's 

syndrome (1.9 - fold in fetal brain tissue and up to 3-fold within the adult hippocampus)[6, 7] 

, cancer, cardiac disorders and Alzheimer's' disease. [1, 8-11]. Conversely RCAN1-1L 

underexpression may be associated with the severity of symptoms in patients with 

Huntington's disease [12]. Interestingly it has been found that acute expression of RCAN1 

isoform 4 can transiently protect cells against oxidative stress and calcium-mediated stresses 

[13-15]. RCAN1-4 can also be induced by other stresses, including biomechanical stress and 

psychological stress [16, 17].  

Exercise can induce an oxidative stress response. Indeed the response to exercise depends on 

intensity, duration and type of exercise [18, 19, 23]. The beneficial effects of regular exercise 

have been known for a long time. During muscle contraction a mild burst in reactive oxygen 

species (ROS) production [20, 21] as well as mechanical strain, calcium flux, ATP turn-over, 

and intracellular oxygen pressure have all been implicated in the activation of signal 

transduction cascades regulating skeletal muscle adaptations to exercise [22]. Conversely, 

exercise when exhaustive, cause an excessive ROS generation, oxidative stress [23], an 

inflammatory response, and structural damage to muscle cells [24]. Skeletal muscle is 
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composed of heterogeneous fiber types that vary markedly with respect to ultrastructural 

morphology, contractile physiology, metabolic capabilities, speed and strength of contraction 

and susceptibility to fatigue [25]. Evaluating myosin ATPase in skeletal muscle led to the 

identification of three types of skeletal muscle fibers, namely type I, IIA, or IIB [26, 27]. 

Type I fibers have the slowest twitch rate and type IIB fibers have the fastest. Type IIA fibers 

twitch speed lie in between of type I and type IIB [27]. Soleus, a muscle with a high 

percentage of type I fibers has a higher mitochondrial density and oxidative capacity, a slower 

twitch time and a weaker twitch force. Extensor Digitorum Longus (EDL), a muscle with 

high percentage in type II fibers inversely has lower mitochondrial density and oxidative 

capacity, but more glycolytic metabolism, a faster twitch time and stronger twitch force. 

Interestingly resistance to oxidative stress is greatly dependent on muscle fiber composition 

[28]. Fast twitch fibers may be more susceptible to oxidative stress than slow twitch fibers 

[29]. 

Calcineurin is a calcium-regulated serine/threonine protein phosphatase implicated in the 

transduction of calcium signals elicited by the motor neurons to the myofibers [25, 30]. 

Calcineurin-dependent signals are mainly transduced to the nucleus by nuclear factor of 

activated T cells (NFAT). NFAT is a family of five transcription factors, four of them 

(NFATc1, c2, c3, and c4) are regulated by calcineurin through dephosphorylation of multiple 

serine/threonine residues, leading to nuclear translocation and eventually DNA binding [30-

32]. In skeletal muscles NFAT has been proposed to cooperate with the transcription factor 

MEF2, downstream of calcineurin to increase the transcription of prototypical oxidative 

muscle fiber genes, including the transcriptional factor peroxisome proliferator-activated 

receptor-� co-activator (PGC 1-�) [25]. PGC-1� participates in the regulation of skeletal 

muscle metabolism, particularly energy homeostasis. It has also been reported that NFATc4 

negatively regulates adiponectin expression in adipocytes [33]. Adiponectin is a circulating 

hormone secreted by adipose tissue, which modulates fatty acid oxidation and energy 

consumption in muscle [34]. Adiponectin is abundantly expressed in the sarcolemma of 
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human skeletal muscle tissue fibers [35]. Collectively, all these observations give a great 

interest in RCAN1-calcineurin-NFAT signaling axis in skeletal muscle and exercise. 

Skeletal muscle has a large capacity to deal with and adapt to damage. The molecular 

mechanisms responsible for muscle recovery after damage are currently being unraveled.  

The aim of this work was to study RCAN1 in skeletal muscle following exhaustive exercise 

as a modulator of oxidative stress. Skeletal muscle represents 40% of body mass in most 

mammals, hence a very important organ [36] and on the other hand, RCAN1 expression is 

prominent in skeletal muscle [3]. We hypothesized that oxidative damage caused by free 

radical generation during exhaustive exercise should provoke an increase in the oxidative 

responsive RCAN1 protein in skeletal muscles, which would subsequently lead to 

physiological adaptation through calcineurin signaling pathway. Three different skeletal 

muscles were investigated: Soleus, a predominantly slow twitch muscle rich in type 1 fibers; 

Extensor Digitorum Longus (EDL), a fast twitch muscle rich in type 2 fibers; and 

gastrocnemius, a ‘mixed muscle’ which contains both type 1 and type 2 fibers. 

 

 

Materials and Methods 

Animals: Thirty two male Wistar rats, each seven weeks old, were purchased from Elevage 

Janvier (Bretagne, France) and quarantined for one week followed by one week of 

familiarization. They were housed in ordinary cages at room temperature of 25 ± 3°C with a 

12Hr light and dark cycle. They had ad libitum access to food in the form of dry pellets and 

water. They were randomly divided into four groups of eight rats. Three groups of 

experimental rats, submitted to an Exhaustive exercise protocol [20], and then sacrificed 

either immediately or 3Hr or 6Hr after exercise. A control group of eight rats without exercise 

were sacrificed under the same conditions.  

Exercise Protocols and Specimen Collection: Rats weighing 315 ± 15 g were exercised until 

exhaustion following a treadmill protocol [20]. Briefly, we used a progressive intensity, motor 
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driven, treadmill exercise, consisting of an initial bout of 5 min at 11m/min with consecutive 

3m/min increments every 5 min at a constant grade of 15%. Exhaustion was defined as the 

inability of a rat to right itself when being laid on its side, due to extreme physical exercise-

associated fatigue. The running time before exhaustion was between 60 minutes ± 5 minutes 

depending on the animals. Control rats were not exercised. Rats were anaesthetized with 

intraperitoneal injection of ketamine–HCl and xylazine cocktail (100 mg/kg and 5 mg/kg, 

respectively). Three different skeletal muscles were harvested: Soleus, Extensor Digitorum 

Longus (EDL), and gastrocnemius. The samples were frozen immediately and stored at 

−80
0
C until used.  

The entire experiment and all animal care procedures were conducted in compliance with the 

guidelines established by the “animal experimentation ethic committee”, University of 

Rennes1, France (CREEA) with authorization number: 35100, following the use of the 

French Farming Minister’s Guide for the Care and Use of Laboratory Animals, and the formal 

approval documents may be obtained upon request. 

Sample Preparation for Immunoblot Analysis: 100mg of each muscle was homogenized in 

1ml buffer using a Polytron tissue grinder, and then sonicated using Vibracell sonicator. The 

buffer contained 200mM Tris - PH 7.4, 20mM NaCl, 0.5 % TritonX-100, and protease 

inhibitor cocktail tablets (Roche Applied Science, Penzberg, Germany). The homogenate was 

spun at 12000g for 15min at 4
0
C.  For conventional western blotting, using Bradford’s assay 

[37] 100µg of total protein was measured in the homogenate and was resolved by 12.5 % 

SDS-PAGE. For adiponectin immunoblot, electrophoresis runs under non-denaturing and 

non-reducing condition. The tissue homogenate was mixed with loading buffer deprived of 

SDS and �-mercaptoethanol and directly loaded on 5 % polyacrylamide gel deprived of SDS. 

The proteins were electrophoretically transferred to nitrocellulose membranes (BioRad, 

Hercules, USA), and immunoblotted with the relevant primary antibodies (details of 

antibodies in the next paragraph). An overnight application of the primary antibodies in 

nonfat milk-TBS solution at 4
0
C was followed by extensive washing in 0.05% TBS-Tween. 
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Blots then were incubated with secondary goat anti-rabbit (IRDye ® 800CW 2:10,000) or 

goat anti-mouse (IRDye ® 680 2:10,000) HP-conjugated antibodies in nonfat milk-TBS 

solution. The Li-Cor Odyssey Infrared Imaging Detection System was used for visualization 

of protein bands. Quantitative densitometry analysis was carried out using Image Gauge V4.0 

software. In all Immunoblots, Hsc 70 (72 KDa), a constitutively expressed chaperone variant 

of heat shock protein 70, which is not modulated by physical exercise, was used as an equal 

loading control [38]. 

Antibodies: The “common” RCAN1 antibody directed against invariant exon7 of RCAN1 

which recognizes all isoforms of RCAN1, was generously provided by Prof. Kelvin J.A. 

Davies (USC, Los Angles, USA) . Calcineurin, adiponectin and catalase antibodies were 

purchased from sigma Aldrich (Saint-Louis, USA). PGC1-� antibody was purchased from cell 

signaling (Danvers, USA). All NFAT antibodies were purchased from Abcam (Cambridge, 

UK). CuZnSOD, MnSOD and GPx antibodies were purchased from Enzo Life Science 

(Farmingdale, USA). All of these antibodies were diluted in skimmed milk or BSA solution 

in the ratio recommended by their producers. 

Protein Oxidation: The procedure is based on the spectrophotometric detection of protein-

hydrazone formed by the reaction of dinitrophenylhydrazine (DNPH) with protein carbonyl 

moieties [39]. Briefly 100mg of the tissues were homogenized in 1ml of the same 

homogenization buffer used for immunoblot, containing 1mM EDTA and 0.1% digitonin. 

Samples were centrifuged at 10000g at 4ºC for 15 min and the supernatants were checked for 

nucleic acid contamination. Contaminations were eradicated using 1% streptomycin 

following centrifugation at 4000g for 15 min at room temperature. Two doses of 300 �l of the 

supernatant from each muscle were transferred to two plastic tubes, one as Sample (S), other 

one as Control (C). 

1200 �l of DNPH was added to each of the S and 1200 �l of 2.5 M HCL in each C tube and 

were incubated at room temperature in dark for 15 minutes. 1ml of 20% trichloroacetic acid 

was added to each solution, vortexed and incubated on ice for 5 min following a 
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centrifugation at 10000g for 10 min at 4ºC. The pellet was next suspended in 1 ml 10% 

trichloroacetic acid (following another centrifugation at 10000g for 10 min at 4ºC). The pellet 

was manually suspended with a spatula in 1 ml ethanol/ethyl acetate solution (1:1 v/v ratio), 

vortexed thoroughly and then centrifuged at 10000g for 10 min at 4ºC, three consecutive 

times. Finally the pellet was resuspended in 750 �l of 6M guanidine hydrochloride (sigma 

Aldrich, Saint-Louis, USA) by vortexing following a spin at 10000g for 10 min at 4ºC. The 

absorbance of the supernatant was measured at 365nm. 

Lipid Peroxidation: A rough estimate of lipid peroxidation was obtained by measuring the 

formation of thiobarbituric acid reactive substances [40, 41]. For these assays, 100mg of each 

muscle was homogenized in 1ml of the same buffer used for immunoblotting, containing 

0.1mM butylated hydroxytoluene. Two ml of thiobarbituric acid solution containing 0.350g 

thiobarbituric acid (purchased from sigma Aldrich, Saint-Louis, USA), and 15g trichloroacetic 

acid in sufficient quantity of 0.25N HCL to make up the final volume to 100ml solution, was 

added to 1ml of each muscle homogenate. This mixture was vortexed in a glass test tube for 

one minute and was incubated in water bath at 100°C for 15 minutes. The tubes were cooled 

down to room temperature and were kept on ice for 5 minutes. The colored solution 

containing thiobarbituric acid-adducts was extracted using 3 ml of n-buthanol following a 

spin at 3,000 rpm for 10 min. The organic phase was collected to measure its absorbance at 

535nm. Lipid peroxide levels are expressed in terms of MDA equivalents, determined by 

constructing a calibration curve using standard amounts of MDA.  

Calcineurin Enzymatic Activity Assay: Calcineurin enzymatic activity assay was carried out 

using calcineurin Cellular Activity Assay Kit (Enzo life science, Farmingdale, USA). The 

method is based on the complex formed between malachite green molybdate and free 

orthophosphate under acidic condition [42, 43]. Briefly the free phosphatases in the 

homogenate were removed using gel filtration column and the total phosphatase activity, 

EGTA buffer phosphatase activity, okadaic acid (OA) phosphatase activity and a combination 

of OA and EGTA buffer activity were carried out for each sample under the same condition 
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and in the same 96 well plate. The standard graph of PO4 versus optical density at 620nm was 

drawn to calculate the released phosphate for each set of the reaction to determine the 

calcineurin activity.  

Statistical Analysis: Statistical analysis, ANOVA and, when appropriate, post-hoc Dunnet’s 

test were undertaken using SigmaStat software. All values were expressed as mean ± S.D. 

P<0.05 was set as the levels for significance testing.  

 

 

 

Results 

Modulation of the Levels of RCAN1 Isoforms by Exhaustive Exercise: RCAN 1-1L, 

RCAN1-1S and RCAN1-4 were detected in all three muscles. The three RCAN1 isoforms 

were differentially expressed in the three skeletal muscles with the protein content of all 

RCAN1 isoforms being highest in soleus. RCAN1-1L was the highest-expressed isoform in 

all muscles.  

Exhaustive exercise differentially modulated the RCAN1 isoforms. RCAN1-4 increased 

significantly 3Hr after exercise until 6Hr in EDL and gastrocnemius, but no significant 

changes were seen in soleus after exercise. RCAN1-1L and -1S were not affected by exercise 

in any muscle [Fig.1]. 

Effect of Exhaustive Exercise on Oxidative Stress Markers: Protein carbonyl levels, as a 

marker of protein oxidation, showed no significant change in soleus muscle throughout the 

post exercise time, or in control rats. In contrast to this, protein carbonyls increased 

significantly in EDL and gastrocnemius at 3Hr post exercise, and continued increasing until 

6Hr post exercise [Fig. 2A]. 

The levels of thiobarbituric acid (TBA)-reactive materials, as a very rough potential indicator 

of lipid peroxidation, increased in all three muscles immediately after exhaustive exercise 

(0Hr) compared to control rats [Fig. 2B]. TBA levels in EDL and gastrocnemius increased 
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continuously up to 6Hr post exercise. In soleus, however, TBA levels after increasing 

immediately after exhaustive exercise, then remained almost unchanged from 0Hr group until 

6Hr. 

Effect of Exhaustive Exercise on the Levels of Antioxidant Enzyme Proteins in Rat Skeletal 

Muscles: CuZnSOD [Fig. 3] and Catalase [Fig. 4] protein levels were modulated in response 

to exhaustive exercise only in soleus muscle. Both CuZnSOD and Catalase protein levels 

increased significantly in soleus at 3Hr post-exercise and continued to increase until 6Hr post-

exercise [Figs 3 and 4]. In contrast, Glutathione peroxidase (GPx) and MnSOD protein levels 

were not affected by exhaustive exercise [Fig. 5]. 

Effect of Exhaustive Exercise on both the Levels and Activity of Calcineurin: The levels of 

calcineurin protein decreased from controls to 6Hr post exercise in all three muscles. This 

decline was significant at 3Hr post exercise in soleus muscles, and at 6Hr post exercise in 

EDL and gastrocnemius muscle.  

Beside the down-regulation in the levels of calcineurin after exhaustive physical exercise, 

calcineurin enzymatic assay showed a significant decrease at 3Hr post exercise in EDL and 

gastrocnemius muscles but no change was observed in soleus muscle [Fig.6]. 

PGC 1-� may not Respond to a Single Bout of Exhaustive Exercise: Although there was an 

apparent, and consistent, trend towards increased levels of transcriptional factor peroxisome 

proliferator-activated receptor-� co-activator (PGC 1-�) protein in all three muscles after a 

single bout of exhaustive exercise, the increases did not reach statistical significance. It is 

possible that a single bout of exercise is not sufficient to significantly upregulate PGC 1-�  

[Fig.7]. 

NFATc4 is Down-regulated in All Muscles After Exhaustive Exercise: Of all four NFAT 

protein isoforms, the only variant modified by exhaustive exercise was NFATc4, which 

showed a significant decrease at 6Hr post exercise in all three muscles [Fig.8]. NFATc4 is the 

only necessary isoform for transcription of MyHC-2B which is the fastest fiber amongst 4 
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types of muscle fibers [44] and is the only isoform of NFAT which is not tightly associated to 

the immune system but is fairly ubiquitous [45].  

Adiponectin is Increased in All Muscles After Exhaustive Exercise: The protein level of 

adiponectin was increased in all three muscles 6Hr after a single bout of exhaustive exercise 

[Fig.9]. 

 

 

 

 

Discussion 

The major finding of our experiments is that a single bout of exhaustive exercise modulates 

only the expression of RCAN1 isoform 4, in rat EDL and gastrocnemius muscles. We also 

observed a much lower basal level of RCAN1-4 protein compared to RCAN1-1L protein, 

which has been previously reported [46]. Even though the content of RCAN1-4 was highest 

in soleus, exercise did not modulate significantly the expression of RCAN1-4 in this muscle. 

In our experiment, exercise did not have any effect on other RCAN1 isoforms, but it has been 

reported that the pattern of expression and the roles of different RCAN1 isoforms might be 

independent from each other [46, 47]. An increase in modulatory calcineurin-interacting 

protein 1(MCIP1) has been reported in human skeletal muscle during recovery from eccentric 

exercise [48]. 

RCAN1-4 is known to be a cytoprotective element in the adaptive response to oxidative stress 

[13, 14], whereas altered RCAN1-1 expression has been associated with pathologies [1, 8-11].  

Exhaustive exercise can cause cell damage [21, 24, 49] through increased oxidative stress [50, 

51]. We observed clear evidence of muscle oxidative damage using protein oxidation 

(carbonyls) and lipid peroxidation markers [52-54]. Protein carbonyls were significantly 

increased in EDL (55%) and gastrocnemius (48%) 3Hr after exercise, yet no significant 

change in protein carbonyls was observed in soleus, whilst lipid peroxidation increased 

significantly in all three muscles after exercise. These observations suggest that the protein 
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levels of RCAN1-4 were increased in EDL and gastrocnemius to protect these muscles from 

oxidative stress. Indeed in another experiment, diabetic and non diabetic rats were trained for 

8 weeks and then submitted to exhaustive exercise. Oxidative stress markers remained 

unchanged and the protein RCAN1-4 did not increase in  EDL, gastronecmius and soleus 

(unpublished data). 

The fact that RCAN1-4 remained unchanged in soleus may suggest that soleus is protected 

from oxidative stress through alternative mechanisms. Interestingly, in this regard, we 

observed a net increase in the antioxidant SOD and catalase protein levels in soleus, but no 

change in EDL or gastrocnemius. Soleus in which large number of fibers are of the slow 

twitch variety, works longer than other muscles in endurance exercise [55], which may mean 

that it experiences more oxidative stress than the other muscle groups.  Slow twitch fibers 

have typically more robust antioxidant defenses [28, 29], and produces more superoxide and 

hydrogen peroxide than the other muscles via leakage of electrons from mitochondrial 

oxidative phosphorylation [49, 56, 57]. The increase in catalase and CuZnSOD is a possible 

mechanism to explain why no increase in protein carbonyl was observed post exercise in 

soleus. 

Since RCAN1 proteins negatively regulate the activity of calcineurin, a decrease in 

calcineurin enzymatic activity is expected when RCAN1 is upregulated, and this was 

observed in our experiments. In EDL and gastrocnemius where RCAN1-4 levels increased 

significantly post-exercise, the enzymatic activity of calcineurin decreased significantly. In 

contrast, calcineurin enzymatic activity remained unchanged in soleus where the protein level 

of RCAN1-4 also remained unchanged.  

It has been shown that PGC-1� is more expressed in oxidative fibers [58]. As expected in our 

experiment the protein level of PGC-1� was highest in the soleus. Normally glycolytic fibers 

express lower levels of PGC-1� and they exhibit a greater degree of atrophy than oxidative 

fibers in disease or systemic models of muscle atrophy [59-61]. It has been reported that 

several weeks of endurance exercise training may induce PGC-1� mRNA, mitochondrial 
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biogenesis and mitochondrial content independent of calcineurin activation [62-64]. In the 

single bout of exhaustive exercise used in our experiments, in which animals reached 

exhaustion after around one hour of exercise, there was a clear decrease in calcineurin activity 

(due to RCAN1 upregulation) but increases in PGC-1� levels failed to reach statistical 

significance, despite displaying a clear and consistent upward trend. We conclude that more 

than a single bout of exercise is required for a truly significant difference in PGC-1� and 

mitochondrial biogenesis. 

NFATc4 was down-regulated post exercise in all three muscles. RCAN1 can repress NFAT 

signaling via inhibition of calcineurin [31], but can also be activated via a calcineurin-NFAT 

pathway [25, 42], thereby forming a negative feedback loop for RCAN1 gene regulation. It is 

known that all NFATs are regulated by calcineurin [30, 32, 42] and NFAT negatively 

regulates the expression of adiponectin [33]. Indeed, we observed a net increase in 

adiponectin expression in all three muscles 6Hr after a single bout of exhaustive exercise, 

where NFATc4 was downregulated. It has been recently reported that 6-month exercise 

training induced a 7 folds increase in adiponectin mRNA in rat skeletal muscle and a 2.1 fold 

increase in adiponectin protein content in membrane extracts of rat skeletal muscle [65]. 

Therefore, the increase in adiponectin expression following NFATc4 down-regulation is 

probably a mechanism to increase fatty acid oxidation and energy consumption in skeletal 

muscles. 

 

 

 

 

Conclusion 

 RCAN1 is the natural endogenous regulator of calcineurin. Its regulation could help in 

managing many oxidative stress related pathophysiological complications like Alzheimer 

disease and diabetes mellitus. Indeed pharmacological inhibitors of calcineurin notably 

Cyclosporin A and Tacrolimus (FK 506) are associated with profound metabolic side effects 
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including diabetogenic effects and dyslipidemia [66]. We propose that RCAN1-4 expression 

in response to oxidative damage induced by exhaustive exercise inhibits calcineurin signaling 

pathway resulting in a decrease in NFATc4 and an increase in adiponectin. This mechanism 

represents an important component of the physiological adaptation to exercise. Thus, 

RCAN1-4 may offer a promising scope for non-pharmacological management of such 

disorders through physical activity, with the prospect of lesser undesirable side effects than 

the drugs.  
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List of Abbreviations: 

ANOVA: analysis of variance 

CREEA: regional committee on ethics and animal experimentation  

DSCR1: down syndrome critical region gene 1 

EDL: extensor digitorum longus 

EDTA: ethylenediaminetetraacetic acid 

EGTA: ethylene glycol-bis(2-aminoethylether)-N,N,N',N'- tetraacetic acid 

 

GPx: glutathione peroxidase 

HCL: hydrochloric acid 

HCS 70: heat shock 72 KDa  

HP: hematoporphyrin 

Hr : hour 

MCIP1: modulatory calcineurin-interacting protein 1 

MDA: malondialdehyde 

MEF2: myocyte enhancer factor-2 

MyHC-2B: myosin heavy chain 2b 

NaCl : sodium chloride 

DNPH: 2,4-dinitrophenylhydrazine 

NFAT: nuclear factor of activated T-cells 

OA: okadaic acid 

PGC1-� : peroxisome proliferator-activated receptor gamma coactivator 1-alpha 

PO4: phosphate 

RCAN1: regulator of calcineurin 1 

ROS: reactive oxygen species 

SDS: sodium dodecyl sulfate 

SDS-PAGE: sodium dodecyl sulfate polyacrylamide gel electrophoresis 
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SEM: Standard error of the mean 

CuZnSOD: copper zinc superoxide dismutase 

MnSOD: manganese superoxide dismutase 

TBA: thiobarbituric acid 

TBS: tris-buffered saline 
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Figure legends  

• Fig. 1. Effect of exhaustive exercise on the levels of RCAN1 protein isoforms in rat 

skeletal muscles. For each muscle, immunoblots of RCAN1 against our common anti-

RCAN1 antibody revealed three expressed isoforms: RCAN1-1L (36KDa ), RCAN1-

1S (32KDa) and RCAN1-4 (25KDa). Levels of RCAN1 isoforms A)  in EDL,  B) in 

gastrocnemius and C) in soleus. HSC70 was used as a loading control in all the 

immunoblots.  Results are expressed as mean values ± SEM’s of 5 rats per group, 

corrected for loading errors by HSC70 levels. Statistically significant differences were 



RCAN1 and Exhaustive Exercise June 18, 2015 Revision 

 29

tested by ANOVA at the p < 0.05 level, and are indicated in the figures by asteriscs 

(*). 

• Fig 2. Effect of exhaustive exercise on markers of oxidative stress in rat skeletal 

muscle. A) Protein oxidation was assayed spectrophotometrically by analysis of 

carbonyl content at 355 nm in samples prepared from EDL, gastrocnemius and soleus 

muscle.  B) lipid peroxidation was estimated in the same muscles by formation of 

thiobarbituric acid reactive substances (including malondialdehyde). Both techniques 

are described in Materials & Methods. Results are expressed as mean values ± SEM’s 

of 5 rats per group. Statistically significant differences were tested by ANOVA and 

are indicated in the figures by single asteriscs (*) at the p < 0.05 level.  

• Fig. 3. Effect of exhaustive exercise on the levels of CuZn Superoxide Dismutase in 

rat skeletal muscles. CuZnSOD levels were assayed in EDL, gastrocnemius, and 

soleus by immunoblot, as described in Materials & Methods. Representative 

immunoblots are shown in the upper panels for each muscle, and average protein 

levels are shown for each muscle in the bar graphs. HSC70 was used as a loading 

control in all the immunoblots.  Results are expressed as mean values ± SEM’s of 5 

rats per group, corrected for loading errors by HSC70 levels. Statistically significant 

differences were tested by ANOVA at the p < 0.05 level, and are indicated in the 

figures by asteriscs (*). 

• Fig. 4. Effect of exhaustive exercise on the levels of Catalase in rat skeletal muscles.  

Catalase protein levels were assayed in EDL, gastrocnemius, and soleus by 

immunoblot, as described in Materials & Methods. Representative immunoblots are 

shown in the upper panels for each muscle, and average protein levels are shown for 

each muscle in the bar graphs. HSC70 was used as a loading control in all the 

immunoblots.  Results are expressed as mean values ± SEM’s of 5 rats per group, 

corrected for loading errors by HSC70 levels. Statistically significant differences were 
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tested by ANOVA at the p < 0.05 level, and are indicated in the figures by asteriscs 

(*). 

• Fig. 5. Effect of exhaustive exercise on the levels of Glutathione Peroxidase and 

MnSOD protein levels in rat skeletal muscles. Glutathione Peroxidase (A) and 

MnSOD (B) protein levels were assayed in EDL, gastrocnemius, and soleus by 

immunoblot, as described in Materials & Methods. Representative immunoblots are 

shown for each muscle. HSC70 was used as a loading control in all the immunoblots.   

• Fig. 6. Effect of exhaustive exercise on the protein levels and enzymatic activity of 

calcineurin in rat skeletal muscles. Calcineurin protein levels and activity A) in EDL, 

B) in gastrocnemius and  C) in soleus. Results are expressed as mean values ± SEM’s 

of 5 rats per group, with calcineurin protein corrected for loading errors by HSC70 

levels. Calcineurin enzymatic activity was measured as described in Materials & 

Methods. Statistically significant differences were tested by ANOVA at the p < 0.05 

level, and are indicated in the figures by asteriscs (*). 

• Fig. 7. Effect of exhaustive exercise on the levels of PGC1-� protein in rat skeletal 

muscle.  PGC1-� protein levels were measured in EDL, gastrocnemius, and soleus by 

immunoblot, as described in Materials & Methods. HSC70 was used as a loading 

control in all the immunoblots.  Results are expressed as mean values ± SEM’s of 5 

rats per group, corrected for loading errors by HSC70 levels. Statistically significant 

differences were tested by ANOVA at the p < 0.05 level, and are indicated in the 

figures by asteriscs (*). 

 

• Fig. 8. Effect of exhaustive exercise on the levels of NFAT isoforms in rat skeletal 

muscles. The upper panels show representative immunoblots for NFATc4 in EDL, 

gastrocnemius and soleus muscles. Then lower panels show the average levels of 

NFATc4. HSC70 was used as an equal loading control in all the immunoblots. Results 
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are expressed as mean values ± SEM’s of 5 rats per group, corrected for loading errors 

by HSC70 levels. Statistically significant differences were tested by ANOVA and are 

indicated in the figures by single asteriscs (*) at the p < 0.05 level 

• Fig. 9. Effect of exhaustive exercise on the levels of Adiponectin in rat skeletal 

muscles. The upper panels show representative immunoblots for adiponectin in soleus, 

gastrocnemius and EDL muscles. Then lower panels show the average levels of 

adiponectin . HSC70 was used as an equal loading control in all the immunoblots. 

Results are expressed as mean values ± SEM’s of 5 rats per group, corrected for 

loading errors by HSC70 levels. Statistically significant differences were tested by 

ANOVA and are indicated in the figures by single asteriscs (*) at the p < 0.05 level. 

Highlights 

• Exhaustive exercise increases oxidative damage and RCAN1-4 expression in muscles 

• Up regulation of RCAN1-4 decreases calcineurin activity  

• NFATc4 is downregulated and adiponectin is increased in muscles after exercise  

• RCAN1-4 represents an important component of physiological adaptation to exercise 
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FIGURE 2 
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FIGURE 3 
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FIGURE 4 
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FIGURE 5 
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FIGURE 4 
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FIGURE 7 
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FIGURE 8 
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FIGURE 9 
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