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bubble column; f, probe’s response time; l, dynamic viscosity; la, dynamic
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� The impact of la on mass transfer was studied for different liquid rheologies.
� Reduction of kLa with la was non-linear for Newtonian and non-Newtonian fluids.
� Impact of la and UG in kLa was predominantly influenced by changes in hydrodynamics.
� Slug–annular flow was formed in shear thinning fluids, with a reduced active volume.
� Rheology and la need to be considered in design of sludge mass transfer systems.
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a b s t r a c t

The increase of studies relaying on gas to liquid mass transfer in digested sludge (shear thinning fluid)
necessitates a better understanding of the impact of apparent viscosity (la) and rheology in process
performance. Mass transfer retardation due to la variations was investigated in a pilot scale absorption
bubble column for Newtonian and shear thinning fluids with varied superficial gas velocities (UG). A
non-linear reduction of mass transfer efficiency with increasing la was observed, being the impact higher
at low la ranges and high UG. An increase of 114 cPo in l from 1.01 to 115 cPo in glycerol solutions
saturated with UG = 1.73 cm s�1 led to a reduction of 96% in kLa (a = 0.04), while a comparable raise from
115 to 229 cPo implied a reduction of 52% (a = 0.02).

Slug–annular flow regime was identified for shear thinning fluids of high la (1.0% and 1.5% car-
boxymethyl cellulose sodium salt solutions), where bubble buoyancy was conditioned by the l of the
fluid at rest and the active volume for mass transfer was reduced because of the presence of stagnant
areas. Conditions imitating the rheological variability of anaerobically digested sewage sludge were
included within those tested, being a reduction in gas transfer efficiency of 6 percentage points (from
7.6 ± 0.3% to 1.6 ± 0.1%) recorded when increasing la from 130 to 340 cPo. It is thus recommended that
rheology and la variability are accounted for within the design of gas to liquid mass transfer systems
involving digested sewage sludge, in order to avoid reductions in process performance and active volume.
� 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Unit processes that utilise mass transfer in gas–liquid systems
are widely used in both the environmental and industrial sectors
in processes such as polyester production [1], fermentation broths
cultivation [2], xanthan gum production [3] and wastewater treat-
ment. The fluids being considered are often of non simple rheology
and exhibit localised variation in viscosities (l) making under-
standing of such systems difficult. A recent new area of considera-
tion relates to the anaerobic digestion of organic waste and
municipal wastewater in processes such as ammonia stripping
from digestate to reduce toxicity [4], and carbon dioxide (CO2)
enrichment of sewage sludge or food waste for enhanced biogas
production and carbon uptake [5]. For instance, sewage sludge is

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cej.2015.03.051&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.cej.2015.03.051
http://creativecommons.org/licenses/by/4.0/
mailto:E.Cartmell@cranfield.ac.uk
http://dx.doi.org/10.1016/j.cej.2015.03.051
http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej


Y. Bajón Fernández et al. / Chemical Engineering Journal 273 (2015) 656–667 657
considered a fluid of complex matrix exhibiting pseudoplastic
rheological behaviour [6,7], with its apparent viscosity (la) being
highly affected by temperature [8], solid content [9–11] or shear
history [12]. Typical apparent viscosities of such sludges are
commonly thought to range between 150 and 400 cPo (based
on a 2–4% total solid content) although ranges as wide as
50–1000 cPo have been reported (Table 1). This la variability and
complex rheology challenges mass transfer process design based
on empirical correlations obtained for Newtonian fluids and neces-
sitates an understanding of the impact that viscous and rheological
variations can have in process performance.

Increased la has consistently been reported to lead to mass
transfer retardation [13] and its impact reported in terms of
volumetric mass transfer coefficient (kLa) reduction. However,
gas to liquid mass transfer in viscous fluids is still poorly under-
stood, particularly when considering fluids with non-Newtonian
rheological behaviour [14]. Although different fluids have been
investigated, the comparison between studies in order to gain a
broad understanding of the importance of la and rheology on kLa
is limited, due to the dependence of kLa on experimental set-up
and considerations used for its calculation. Sparger type [15], probe
position [16], probe dynamics [16], assumptions for calculation
[16] and data truncation [17] can substantially affect kLa. This
necessitates the development of studies that address the impact
on mass transfer of la, rheological behaviour and operational
conditions with a single experimental set-up and reported
assumptions for calculations.

The gap in knowledge is further evidenced when the reasons
behind the impact of la on mass transfer are considered. Several
mechanisms have been proposed in the literature, such as poorer
gas distribution [13], formation of larger bubbles [18], reduced
bubble breakup due to a higher stability [19], higher resistance
for gas to liquid transfer [2], reduced coalescence efficiency due
to a lower drainage velocity of the liquid film between bubbles
[14], reduced bubble oscillation [14] or increased residence
time [20]. Several of these mechanisms are dependent on the
hydrodynamics inside of the bubble column, which have been
reported as key for understanding mass transfer in multiphase
reactors [21,22]. The transition superficial gas velocity (Utrans)
between bubbly and churn-turbulent flow regimes has been
reported of particular interest to understand mass transfer [23].
However, the effect of liquid la and rheology in Utrans has not been
extensively investigated so far [21]. A better understanding is
hence required to achieve a better design and process operation
in industrial sectors where the performance of gas to liquid mass
transfer systems can be hindered by la variations.

This paper assessed the impact of la on CO2 gas to liquid mass
transfer and hydrodynamics for fluids of different rheologies
(Newtonian and non-Newtonian), with a single experimental
Table 1
Rheological properties and viscosities reported for sludge. Where TS, total solids; SRT, sol

References Material Material characterisation Flu

[10] Digested sludge TS = 2.3%
SRT = 58 d

Pse

[9] Fermented sludge TS = 4% Pse

[39] Liquid manure 2.5% 6 TS 6 12.1% Pse

[38] Anaerobically digested sludge SS = 24 kg m�3

[6] Thickened digested sludge TS = 3.23%

[11] Anaerobically digested sludge 2% 6 TS 6 8% Pse
set-up and reported assumptions for kLa calculations. Absorption
tests with varied la, rheologies and gas flowrates were performed
in a high aspect ratio bubble column, where kLa and flow regime
patterns were investigated while considering dissolved gas
measuring probe dynamics. Results are discussed in the basis of
differences between fluids of varied rheologies and particularised
for those conditions imitating the behaviour of anaerobically
digested sewage sludge.
2. Materials and methods

2.1. Fluids selection and solutions preparation for the absorption tests

Absorption tests with liquid phases of different la and rheologi-
cal behaviours were performed, including those operational condi-
tions mimicking the operation of ADs. The fluids to be used were
selected based on having different rheologies, published la data
availability and stable la to pH variations. Glycerol (P98%;
Fisher Scientific, Loughborough, UK) and carboxymethyl cellulose
sodium salt (CMC) (MW = 700,000; Sigma–Aldrich, Dorset, UK)
were chosen as Newtonian and non-Newtonian fluids, respectively.
The la of the solutions tested was obtained from the studies of
Segur and Oberstar [22] and Eshtiaghi et al. [6] for glycerol and
CMC, respectively. CMC solutions with high polymer concentration
(>1%) can exhibit a shear thickening or shear thinning behaviour as

a function of shear rate ð _!Þ [24]. In this study conditions in the
shear thinning range were utilised, where rheological properties
can be modelled with the simplified Cross viscosity model
(Eq. (1)) [6]. Suitable parameters to be used in the Cross viscosity
model for solutions with different CMC concentration can be con-
sulted in the work of Eshtiaghi et al. [6]. CMC was selected because
it suitably mimics the rheological properties of digested sludge in

steady state at high shear rates ( _! > 20 s�1) [6]. The rheological
behaviour of a CMC solution is conditioned by the molecular
weight and the concentration of the polymer used to generate that
solution [25]. In order to ensure that data could be extrapolated
between studies, CMC with the same molecular weight and from
the same supplier (MW = 700,000 g mol�1; Sigma–Aldrich, Dorset,
UK) as Eshtiaghi et al. [6] was used.

l ¼ l0

1þ K _!m
ð1Þ

where l0, zero shear viscosity; K, consistency index; _!, shear rate;
m, Cross rate constant.

The solutions to be used in the absorption tests were prepared
by dissolving the correct amount of chemical in deionized (DI)
water at room temperature. The CMC solutions were prepared
under continuous stirring at 300–400 rpm using a RW20 digital
ids retention time; SS, suspended solids.

id behaviour la (cPo) Conditions

udoplastic 200–400 cPo

udo-plastic thixotrophic 6150 cPo T = 25 �C
_! ¼ 36:71 s�1

udoplastic (if TS P 2.5%) – 6–8 cPo if TS = 2.5%
– 10–30 cPo if TS = 5.4%
– 250–2930 cPo if TS = 12.1%

T = 35 �C

37–406 cPo

50–1000 cPo T = 25 �C

udoplastic thixotrophic – 6310 cPo if TS 6 4%
– 310–625 cPo if TS = 4–5%

la at 30 rpm
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paddle stirrer (IKA, Staufen, Germany). Any CMC aggregate was
dissolved by stirring the solution at 200–250 rpm overnight.

2.2. Absorption experimental rig description

A high aspect ratio bubble column (2 m tall and 10.1 cm diame-
ter) was used to develop CO2 absorption tests (Fig. 1). The column
was filled up to 1.7 m with the liquid phase. A manifold divided the
incoming gas stream into seven inlets, which were connected to a
perforated plate placed at the bottom of the column. A metallic
mesh with 0.5 mm hole size was mounted on top of the plate,
acting as a finer diffuser. CO2(g) was used for the absorption tests
and N2(g) was bubbled between replicates to achieve full
desorption of the CO2. A sufficient resting time was allowed for
any bubbles entrapped in the liquid phase to be removed. N2(g)
and CO2(g) were supplied from gas cylinders (BOC, Manchester,
United Kingdom) and their flowrate regulated by mass flow
controllers (MFC) (Premier Control Technologies, Norfolk, United
Kingdom). The free CO2 concentration in the liquid phase was
monitored using an InPro5000(i) dissolved CO2 sensor (Mettler
Toledo Ltd., Leicester, UK) installed in the centre of the cross
sectional area at 1.5 m from the diffusion mesh and connected to
a Multi-parameter Transmitter M400 (Mettler Toledo Ltd.,
Leicester, UK). Each absorption test was developed at least in dupli-
cates and in triplicates in the majority of the cases.

The characteristics of the liquid phases and operational condi-
tions (superficial gas velocities (UG) and associated average shear

rates ð _!avÞ obtained with Eq. (2) [26]) used in the absorption tests
are compiled in Table 2.

_!av ¼ 50 � UG ð2Þ

where UG is the superficial gas velocity in cm s�1.
A flow regime map for DI water:glycerol solutions was obtained

by observation of the hydrodynamics in the column for each la

tested, for UG between 0.16 and 3.7 cm s�1 increased with a step
of 0.2 cm s�1. Flow regimes were categorised as imperfect bubbly,
churn-turbulent or slug flow as described by Kantarci et al. [21]
Fig. 1. Set-up of the pilot scale bubble
and Cheng et al. [27]. The gradual transition between regimes for
increasing UG [23] was categorised as a transition range. The
Utrans, considered for the first UG leading to churn-turbulent flow
regime, was also determined for all the liquid phases tested.

2.3. Considerations for the calculation of volumetric mass transfer
coefficients

The calculation of kLa from CO2 absorption tests was based on
the iterative resolution of Eq. (5). This equation was obtained from
the combination of the two film theory by Lewis and Whitman
(Eq. (3)) and that modelling the response time of the probe (f) as
a first order process (Eq. (4)). Eq. (5) has been widely used in this
or equivalent forms in the literature [16,28], when the probe’s
dynamics cannot be neglected. Consideration of the probe dynam-
ics was necessary since the characteristic time of the mass transfer
tf = (kLa)�1 did not meet the criterion tf > 10f [16]. An average f of
91.5 s was identified as suitable for all the conditions tested. This
was measured as the time required to reach 63% of the final solu-
bility when submitted to a step change in CO2 concentration [29].

dC
dt
¼ kLaðC� � CÞ ð3Þ

dCsensor

dt
¼ ðC � CsensorÞ

f
ð4Þ

Csensor ¼ C� þ C� � C0

1� fkLa
� fkLa � exp

�t
f

� �
� expð�kLa � tÞ

� �
ð5Þ

where C, concentration in the liquid phase; C�, solubility as equilib-
rium CO2 concentration at infinite time; C0, concentration at time
cero; Csensor, concentration measured by the probe; kLa, volumetric
mass transfer coefficient; f, probe’s response time.

The impact on mass transfer of other species of the bicarbonate
equilibrium apart from dissolved CO2 was negligible, since the pH
was below 5.9 at the end of all the absorption tests performed [29].
The impact that CO2 depletion on the gas phase has on kLa was
column used for absorption tests.



Table 2
Operational conditions used in the absorption tests.

UG (cm s�1)

0.61 1.73 2.85

_!av (s�1)

30.5 86.5 142.5

Concentration (% weight) la (cPo) at T of test Concentration (% weight) la (cPo) at T of test Concentration (% weight) la (cPo) at T of test

Glycerol 0 0.9 0 1.0 0 0.9
10 1.4 10 1.3 10 1.4
30 2.4 30 2.4 30 2.4
50 5.8 50 5.7 50 6.2
70 22.1 70 23.3 70 24.4
87 124 87 115 87 120
90 215 90 229 90 219

CMC 0.5 200 0.5 140 0.5 130
1.0 710 1.0 420 1.0 340
1.5 1900 1.5 900 1.5 650

Note: Differences in l of solutions of same glycerol concentration are due to correction as per the temperature of each test.
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considered to be offset with the axial pressure variation in the
column [16]. Experimental data between 20% and 98% of the final
solubility were used for kLa determination [16,17]. This truncation
discarded the data with a higher ratio of signal to noise [17] and is
in accordance with the literature recommendation of a 30%
maximum truncation of the total saturation value [17,30]. It was
evident that the adjustment between the second order mass
transfer model (Eq. (5)) and the real experimental data was higher
if the first part of the data set was discarded (Fig. 2), being the error
defined as per Eq. (6). The kLa values were corrected to 20 �C with
Eq. (7), considering a value of c of 1.0192 [31].

Error ¼ ABSðCmodel � CsensorÞ
Csensor

� 100 ð6Þ

ðkLaÞ20 ¼
ðkLaÞT
cðT�20Þ ð7Þ

where Cmodel, concentration estimated with Eq. (5); Csensor, concen-
tration measured by the probe; (kLa)T, volumetric mass transfer
coefficient at temperature T; (kLa)20, volumetric mass transfer
coefficient at 20 �C.

The results are reported as per alpha (a) and theta factors (h).
Alpha factor (Eq. (8)) was defined as a parameter to assess the
impact of la in mass transfer, when normalised against DI water.
Theta factor (Eq. (9)) was stated as a parameter to assess the
impact of UG, when normalised against the lowest one tested in
the saturation tests: 0.61 cm s�1.

a ¼
ðkLalÞ20 �C

ðkLawaterÞ20 �C
ð8Þ
0

0.2

0.4

0.6

0.8

1

0 200 400

C/
C*

�me (s

experimental data m

Fig. 2. Example of absorption experimental data and adjustment of model obtained with
solution saturated with CO2(g) at medium UG = 1.73 cm s�1.
h ¼
ðkLaÞUG

� �
20 �C

ðkLaÞ0:61

� 	
20 �C

ð9Þ

where ðkLaÞUG
, volumetric mass transfer coefficient obtained with

UG, (kLa)l, volumetric mass transfer coefficient obtained with a liq-
uid phase with l.

3. Results and discussion

3.1. Impact of viscosity and superficial gas velocity on mass transfer

A significant reduction of kLa with la was observed for the two
fluids and all the operational conditions tested. The relationship
between la and kLa was non linear, with the normalised decrease
of kLa per la increase (DkLa/Dla) being lower at higher la of the
liquid phase (Fig. 3). To illustrate, for absorption tests in glycerol
solutions with medium UG (1.73 cm s�1), an increase of 114 cPo
in l from 1.01 to 115 cPo led to a reduction of 96% in kLa
(a = 0.04), while a comparable raise from 115 to 229 cPo generated
a reduction of 52% (a = 0.02) (Fig. 3a). Similarly, kLa was reduced by
94% (a = 0.06) with an increase of la from 0.92 to 130 cPo in tests
with CMC solutions at high UG (2.85 cm s�1), while an increase
from 130 to 340 cPo reduced kLa by 43% (a = 0.04).

The impact of la in kLa was greater with higher UG, both for CMC
and glycerol, as evidenced by the lower alpha factor obtained with
increasing UG for a given liquid la (Fig. 3). For glycerol solutions
with a l of ca. 120 cPo (87% glycerol), alpha factors of 0.05, 0.04
and 0.02 were obtained for UG of 0.61, 1.73 and 2.85 cm s�1,
respectively. For equivalent la ranges in CMC solutions (i.e. 0.5%
0

100
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600 800 1000
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)

)

odel predic�on error

Eq. (2). Error is defined as per Eq. (5). Data corresponding to a 30% weight glycerol
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CMC) alpha factors of 0.18, 0.13 and 0.06 were obtained for
increasing UG of 0.61, 1.73 and 2.85 cm s�1. The higher impact of
la experienced when operating with higher UG was attributed to
variations in the flow regime inside of the system, as explained
below (Fig. 4).

When comparing different CMC solutions of close la, a lower
alpha factor was obtained for increasing CMC concentrations.
Alpha was 0.03 for absorption tests performed in 1.5% CMC solu-
tions with UG of 2.85 cm s�1 (650 cPo) and 0.12 for 1.0% CMC solu-
tions bubbled with UG of 0.61 cm s�1 (710 cPo) (Fig. 3). This
indicates a higher negative impact of la for increased CMC concen-
trations and was attributable to an alteration of bubble shape,
increased viscoelastic behaviour and to mass transfer being
affected by the l of the fluid at rest (as opposed to by la deter-

mined with _!av). These aspects offered a greater resistance to
CO2 gas to liquid transfer [2] and affected fluid hydrodynamics as
explained below.

As far as gas flowrate is concerned, an increase in UG enhanced
mass transfer for all the experimental conditions tested, being the
benefits (reported as h) higher for lower la of the liquid phase
(Fig. 5). For DI water tests (l of 0.9–1 cPo) theta factor was 3.1
and 7.1 for medium (1.73 cm s�1) and high UG (2.85 cm s�1),
0.0
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Fig. 3. Impact of la on kLa for (a) DI water:glycer
respectively. For glycerol solutions with a l of ca. 115 cPo (i.e.
87% glycerol), theta factor was 2.1 and 2.3 for medium and high
UG, respectively. An increase in UG led to formation of bigger and
more numerous bubbles and to a higher turbulence inside of the
column (Fig. 4). The enhanced mass transfer obtained for increas-
ing UG (Fig. 5), suggests that the impact of the effects positively
affecting kLa (number of bubbles and higher turbulence) was
greater than that hindering process efficiency (reduced specific
surface area per bubble). The reduced benefit obtained when
increasing UG through liquid phases of higher la (Fig. 5) was attrib-
uted to a greater part of the bubbles’ oscillation energy being dis-
persed as viscous dissipation [14], which lead to a reduced
turbulence and flow regimes less efficient for mass transfer as
described below.

Similar trends of enhanced mass transfer for higher UG and
reduced benefits at higher la of the liquid phase were obtained
for CMC solutions (Fig. 5b). Theta was 2.2 and 2.5 for 0.5% CMC
solutions (130–140 cPo) as opposed to the 3.1 and 7.1 values
recorded for DI water (1.0 cPo), with medium and high UG (1.73
and 2.85 cm s�1), respectively. However, an irregularity in the
trend was observed for the highest CMC concentration tested
(650–1900 cPo). Theta factors of 1.7 and 2.2 were obtained for
150 200 250

 (cPo)

73 m·s-1 0.0285 m·s-1m⋅s-1 m⋅s-1

000 1500 2000

cPo)

3 m·s-1 0.0285 m·s-1m⋅s-1 m⋅s-1

ol solutions and (b) DI water:CMC solutions.
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Fig. 4. Flow regime map for DI water:glycerol solutions of different viscosities. Obtained in a bubble column of 10.1 cm diameter and 2 m height.

(a)

(b)

Fig. 5. Impact of UG on kLa for (a) DI water:glycerol solutions and (b) DI water:CMC solutions. Values normalised with the lowest UG used in the absorption tests
(UG = 0.61 cm s�1).
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1.0% CMC solutions (340–710 cPo) for medium (1.73 cm s�1) and
high (1.73 cm s�1) UG, respectively (Fig. 5b), while significantly
higher values (2.5 and 3.3, respectively) were recorded for 1.5%
CMC solutions (650–1900 cPo).

3.2. Impact of viscosity and superficial gas velocity on hydrodynamics

Hydrodynamics in bubble columns strongly influence mass
transfer [21,23] and hence need to be further understood in rela-
tion to la and rheological variations. For comparable la between
the Newtonian and non-Newtonian fluids tested, like CMC 0.5%
with low UG and glycerol 90%, the flow regime inside of the column
was similar (transition to churn-turbulent). However, bubble size
was bigger for CMC solutions (greater z-component), which
indicated that bubble size was affected by the non-Newtonicity
of the CMC solutions with the l of the fluid at rest influencing
the minimum bubble buoyancy required for detachment.

A significant variation in the hydrodynamics inside of the bub-
ble column was observed when la or UG were changed. Imperfect
bubbly, churn-turbulent and slug flow regimes were identified as
defined by Bouaifi et al. [30] and the boundaries between them
in glycerol solutions compiled in a flow regime map (Fig. 4). At
low UG (<0.37 cm s�1) imperfect bubbly regime was maintained
irrespective of l, although a reduction on the number of bubbles
and bigger bubble size was observed for increasing l when
maintaining a constant UG. An increase in UG deviated the pattern
towards transition regime, where the initial homogeneous flow
was disturbed and a more intense turbulence was observed. The
UG leading to transition regime was reduced with increasing l of
the liquid phase, varying between 1.89 and 0.37 cm s�1 for glycerol
solutions with l of 1.4 and 235 cPo, respectively. A further increase
in UG led to fully developed churn-turbulent regime, with Utrans

being dependent on the l of the liquid phase. Fully developed
churn-turbulent regime was observed with UG > Utrans =
3.1 cm s�1 for glycerol solutions with l of 1.3 cPo (10% glycerol)
and with values as low as UG > Utrans = 0.79 cm s�1 for glycerol
solutions with l of 234 cPo (90% glycerol).

For l < 124 cPo (87% glycerol) a further increase in UG led to an
increased level of turbulence without deviating the flow regime
from churn-turbulent. At higher liquid l (P124 cPo) a new transi-
tion range was observed, which was characterised by slug bubbles
occupying all the column cross sectional area but presenting a high
instability (Fig. 6a). For the highest l tested for glycerol (ca.
230 cPo) fully developed slug flow regime was obtained in the
top part of the column with UG from 1.6 to 3.3 cm s�1 (Fig. 6b).
Further increases of gas flowrate lead to breakage of the slug
bubbles and a transition flow with mixed characteristics of slug
flow and churn-turbulent regimes.

Similarly, for 0.5% CMC solutions imperfect bubbly regime was
observed inside of the bubble column for low UG (60.58 cm s�1),
while transition and churn-turbulent flows were observed when
increasing UG. Fully developed churn-turbulent regime was
observed for UG > Utrans = 0.996 cm s�1, which is close to the values
obtained for glycerol with similar la (87% glycerol, Fig. 4). For 1.0%
CMC solutions with UG 6 2.24 cm s�1 and 1.5% CMC solutions with
UG 6 3.28 cm s�1 the bubbles generated at the bottom of the col-
umn merged into bigger bubbles and led to a single raising chain
in the centre of the column, without a variation of flow regime
being observed for the experimental conditions tested. A lack of
oscillation for single bubbles rising in stagnant CMC solutions
has been previously reported [32] and associated with the solu-
tions’ high la [33], which leads to a great level of viscous dissipa-
tion. The volume active for mass transfer appeared to be limited to
the central plume of raising bubbles, with non-mixed areas of
higher la in the outer annulus. Conventional slug flow (slugs
covering all the cross sectional area of the column) was reached
for UG P 2.45 cm s�1 in the case of 1.0% CMC solutions and for
UG P 3.49 cm s�1 in tests performed in 1.5% CMC solutions.

The regime observed for 1.0% CMC solutions with
UG 6 2.24 cm s�1 and 1.5% CMC solutions with UG 6 3.28 cm s�1

can be named as slug–annular flow (Fig. 6c), where oblate ellip-
soidal caps, skirted or inverted tear drop shaped bubbles (Fig. 7)
were effectively stabilised by the non-mixed fluid in the outer
annulus, which appeared to apply a dragging force imitating a wall
effect. The slug–annular flow found in this study partly resembles
the pseudo-slug flow described in horizontal pipes, where a
continuous liquid film is formed on the pipe wall and slugs touch-
ing the top of the pipe are only formed occasionally, being the gas
stream normally confined within the pipe’s core [34,35]. However,
the analogy is limited since gravity leads to a non-symmetric flow
pattern in horizontal pipes while axisymmetric flow pattern can be
considered in vertical systems [34]. Besides, the slugs formed in
pseudo-slug flow in horizontal pipes tend to have a temporal nat-
ure [36], while slugs observed in this study travelled the majority
of the column height without significant disturbances. Annular
regime has previously been described for vertical tubes [35].
However, the gas phase was previously envisaged as continuous
and the liquid as partly dispersed [34]. The new slug–annular flow
described in this study is characterised by liquid occupying the
entire column but being divided into two separate regions: outer
stagnant annulus and liquid contained in the centre of the column,
being the latest disturbed only by ascendant slugs of gas (Fig. 6c).
Small stagnant gas bubbles were found entrapped in the external
annulus close to the column wall, which further confirmed that
non-mixed areas with scarce contribution to mass transfer were
present. The inner part of the bubble column was characterised

by _! > _!av and la lower than that predicted with _!av (Fig. 6c),
while the stagnant liquid areas found in the outer annulus where

subjected to a _! < _!av that lead to la higher than in the bulk of

the fluid. A non-uniform _! and la distribution in the cross sec-
tional area of bubble columns with CMC solutions was previously
reported by Nishikawa et al. [37] for UG < 4 cm s�1 when studying
heat transfer.

In slug–annular regime bubble size and bubble shape were con-
ditioned by both UG and la. In 1.0% CMC solutions oblate ellipsoidal
caps with a short tail were observed (Fig. 7a), which progressively
transformed into skirted bubbles when UG was increased (Fig. 7e).
Quasi spherical shaped bubbles with a short tail (inverted tear
drop) were characteristic of 1.5% CMC solutions, with an increase
in UG leading to bigger bubbles (reduced outer annulus) with simi-
lar shape (Fig. 7). The difference in bubble shape observed for CMC
solutions of different concentrations was believed associated with
the increased elastic behaviour of the solutions at higher polymer
concentrations. An increase in bubble size in Newtonian fluids has
been reported to progressively alter bubble shape from spherical to
oblate ellipsoidal to spherical cap [38]. However, bubbles ascend-
ing in viscoelastic fluids present an inverted tear drop shape
because a negative wake is formed behind the bubble [38].
Benchabane and Bekkour [24] reported a critical CMC concentra-
tion of 2.5% below which a viscous behaviour is expected and
above which elasticity gains importance. However, this transition
between rheology models was observed to be progressive, with
an increased CMC concentration leading to higher deviations from
viscous behaviour. The evolution in bubble shape observed in 1.0%
CMC solutions (Fig. 7a, c and e) was hence characteristic of
Newtonian fluids [38] and indicated that the solution presented a
predominantly viscous behaviour. However, the inverted tear drop
shape observed in 1.5% CMC solutions (Fig. 7b, d and f) evidenced
the importance of elasticity at higher CMC concentrations.

The described evolution in bubble shape could be further
explained attending to dimensionless numbers. The oblate



Fig. 6. Types of slug flow regimes observed: (a) unstable slug flow or transition between churn-turbulent and slug flow regimes observed for 87% glycerol solutions with
UG = 2.45 cm s�1 (l = 124 cPo), (b) stable slug flow observed for 90% glycerol solutions with UG = 1.83 cm s�1 (la = 220 cPo) and (c) slug–annular flow observed for 1.0% CMC
solutions with UG = 1.62 cm s�1.
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ellipsoidal shape observed for lower _! (lower Reynolds number

(Re)) (Fig. 7a) and the skirted bubble shape pictured at high _!
(Fig. 7e) are in agreement with previous literature. Bhaga and
Weber [39] described oblate ellipsoidal bubbles formed at low Re
numbers and spherical caps at Re P 45. Clift et al. [40] reported a
correlation between bubble shape and dimensionless numbers,
which evidenced that spherical caps are characteristic of condi-
tions with high Re and Eötvös numbers (e.g. Fig. 7e).

When different CMC solutions of similar la are compared, a big-
ger bubble size was observed for the highest CMC concentration.
Fig. 7(a) and (f) evidences the presence of bigger bubbles for tests
with 1.5% CMC solutions at high UG (la = 650 cPo) than for 1.0%
CMC at low UG (la = 710 cPo), being the bubbles flatter for reduced
CMC concentrations. Part of this difference in bubble size could be
attributed to the higher gas flowrate required with 1.5% CMC solu-
tions to achieve a la comparable to 1.0% CMC (shear thinning
fluid). However, bubble volume was considerably bigger for higher
CMC concentrations even when an equivalent UG was applied
(Fig. 7a, c and e VS Fig. 7b, d and f). Bubbles formed in solutions
of higher CMC concentration consistently presented a higher verti-
cal component (c > a in Fig. 7), which was attributed to the
described impact of viscoelasticity in bubble shape and to the
influence of the l of the fluid at rest in buoyancy for detachment.
In unmixed shear thinning fluids (e.g. CMC), the at rest l appears



Fig. 7. Bubble shape, bubble size and evolution of liquid working volume actively used for gas to liquid mass transfer in the slug–annular flow regime observed in shear
thinning fluids (1.0% CMC and 1.5% CMC solutions).
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to effectively act as a pseudo-yield stress that needs to be over-
come by bubble buoyancy. A higher bubble vertical component
and reduced cross sectional area lead to a more favourable balance
between drag force (function of bubble cross sectional area) and
buoyancy (function of bubble volume), which allows the bubble
to overcome the opposing forces and rise in a stable plume with
a reduced active volume for mass transfer. This concept is in
accordance with previous references reporting bubble shape to
be influenced by yield stress [41] and with the mathematical
simulations of Tsamopoulos et al. [42], which predicted an elonga-
tion of the vertical component of bubbles when formed in fluids of
increasing yield stress.

The stable plume of rising bubbles of the slug–annular flow
allowed a visual observation of the coalescence process for 1.0%
and 1.5% CMC solutions. At lower la the rising bubbles collided
more frequently with others in a higher position, resulting in
coalescence. On the contrary, bubbles formed in 1.5% CMC solu-
tions tended to maintain their relative distance in the vertical
chain of bubbles throughout the height of the column and
coalescence was not observed apart from that taking place close
to the diffusion device. Retardation in the drainage of the liquid
film between bubbles for higher la was hence evidenced, which
appeared responsible for a reduced bubble coalescence and
break-up.

3.3. Mechanistic understanding

Variations of kLa associated with la and rheological changes
were related with the influence of these on bubble buoyancy,
bubble shape, viscoelasticity, viscous dissipation of bubble
oscillation energy (turbulence level), retardation in drainage of
liquid film between bubbles (coalesce and break-up) and at rest
l in shear thinning fluids; all of which in turn determined the
hydrodynamics in the system. The reduction in mass transfer
efficiency associated with a la raise was hence attributed to a
combination of effects. The increase in the size of the bubbles
formed at higher la implied a reduction of specific surface area
with negative implications in kLa [20]. Besides, bubbles tended to
coalescence close to the diffusion mesh, leading to bigger bubbles
in the bulk of the column and resulting in slug flow or annular-slug
flow for some of the higher la tested (Figs. 4 and 7). Slug flow
regime is associated with poor mass transfer [43], leading to lower
kLa values. Furthermore, higher la led to a reduced turbulence and
radial oscillation, due to a partial absorption of oscillation energy
as viscous dissipation [14] and limiting the positive impact of
turbulence on mass transfer. A flow without radial dispersion
was hence observed for the highest la tested, where bubbles
appeared stable in a vertical chain and the probability of collision
leading to bubble break-up was clearly reduced [14,19]. The higher
impact of la in kLa at higher UG (lower alpha factor for increasing
UG for a given liquid la (Fig. 3)) was again related with the
hydrodynamics inside of the bubble column. This can be illustrated
with glycerol solutions, where a change of l for the lowest UG

tested (0.61 cm s�1) did not deviate the flow pattern from imper-
fect bubbly. On the contrary, at higher UG, an increase in l changed
the hydrodynamics from imperfect bubbly (<1.4 cPo) to transition
regime, churn-turbulent regime and even slug flow (ca. 230 cPo).
Since slug flow is the least favourable regime for mass transfer
[43], the variation of hydrodynamics towards regimes of lower
turbulence explains the varied impact of l for different gas
flowrates.

Mass transfer was enhanced with higher UG, with the benefit
being reduced at higher la of the liquid phase both for
Newtonian (glycerol) and non-Newtonian (CMC) solutions
(Fig. 5b). However, an irregularity in the trend was observed for
the highest CMC concentration tested (1.5%), where higher theta
factors than for lower concentrations of CMC were obtained (2.5
and 3.3 for UG of 1.73 cm s�1 and 1.73 cm s�1, respectively, for
1.5% CMC solutions and 1.7 and 2.2 for 1.0% CMC). This irregularity
was due to the particular implications that the non-Newtonian
nature of CMC solutions has in bubble shape (specific surface area,
Fig. 7), bubble buoyancy and in the system hydrodynamics. Slug
flow was achieved in 1.0% CMC solutions at a lower UG than for
1.5% CMC solutions, 2.45 and 3.49 cm s�1, respectively. Therefore,
for the same UG = 2.85 cm s�1 the bubbles formed in 1.0% CMC
solutions were characterised by a higher cross sectional area and
a lower vertical component than for 1.5% CMC solutions, where
bubbles had a higher z-component and stagnant areas characteris-
tic of slug–annular flow were present in the outer annulus of the
column (Fig. 6). Consequently, a lower volume of liquid was
actively involved in mass transfer for 1.5% CMC solutions, which
effectively implied a higher gas rate (amount of gas per liquid
volume treated) and hence a greater positive impact of increased
UG in kLa (higher h). The two liquid regions described in slug–
annular flow are visualised as decoupled in terms of mass transfer.
While increased kLa are expected in the inner core (higher gas
rate), mass transfer in the outer stagnant annulus appeared
virtually limited to diffusion mechanisms. It must be considered
that the dissolved CO2 probe was fixed in the centre of the cross
sectional area of the bubble column, being the kLa values reported
obtained for the area active for mass transfer in the case of
slug–annular regime.

3.4. Practical implications for gas to liquid mass transfer in sludge

The conditions that would imitate the common operation of

sewage sludge ADs (l and _!) were included within those tested.
A range of la of 150–400 cPo was considered to cover the variabil-
ity observed in digested sludge with a 2–4% total solid content

(Table 1) [6,10,11,44]. A range of 50–80 s�1 covers the _! most fre-
quently used in design of full scale ADs [11] and was represented
by the absorption tests performed at low and medium UG,
_!av ¼ 30:5 s�1 and _!av ¼ 86:5 s�1, respectively. Since CMC has
been reported to suitably mimic the rheological properties of

digested sludge in steady state at high _! (above 20 s�1) [6], the
results of this study give indication of the trends expected when
performing mass transfer in digested sludge, for applications such
as CO2 uptake by biotransformation to methane [5] or control of
ammonia toxicity in ADs [4].

It was concluded that fluid la and rheology need to be
thoroughly characterised and included in the design of any mass
transfer system involving digested sludge, since a poor character-
isation of these variables can have a double negative implication
in the performance of a gas to liquid mass transfer system. On
the one hand, a variation of la that has not been accounted for
in the design stage, could significantly reduce the performance of
the process. A reduction of 43% in kLa was obtained with a la

increase from 130 to 340 cPo (0.5 to 1.0% CMC), which is within
the reported range of la variability in digested sludge (Table 1).
Gas flowrate could be increased as a means to compensate for
the reduced performance. Theta factors of 1.7–2.5 were obtained
when increasing UG from 0.61 to 1.73 cm s�1 and of 2.2–3.3 when
applying 2.85 cm s�1 for CMC solutions. However, this required
3–5 times higher gas flowrates, with the associated increased
operational costs that may offset the benefits of an enhanced kLa.
When assessing la impact in terms of the diffusion system perfor-
mance, an increase of la from 130 to 340 cPo in CMC solutions
implied a reduction in gas transfer rate (GTR) (Eq. (10)) from
31.4 ± 1.4 to 19.0 ± 0.3 mg s�1 and in gas transfer efficiency (GTE)
(Eq. (11)) from 7.6 ± 0.3% to 1.6 ± 0.1%. Since sewage sludge la is
highly influenced by solid content [9] and temperature [8], these
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need to be particularly characterised and accounted for since the
design stage of a gas to liquid mass transfer system.

GTR ðmg s�1Þ ¼ ðkLaÞ20 �C � ðC
� � CÞ � V ð10Þ

GTE ð%Þ ¼ SGTR � ð _FCO2 Þ
�1 � 100 ð11Þ

where C, concentration in the liquid phase; C , solubility as equilib-
rium CO2 concentration at infinite time; _FCO2 , incoming CO2 mass
flow rate; (kLa)20, volumetric mass transfer coefficient at 20 �C; V,
volume of liquid inside of the bubble column.

On the other hand, this study evidenced the existence of a slug–
annular flow in shear thinning fluids with rheological behaviour
comparable to that of anaerobically digested sewage sludge (e.g.
CMC solutions). In this hydrodynamic regime, slug-like bubbles
appeared stabilised by stagnant liquid of high la rather than by
the column wall itself, challenging the common statement of slug
flow being limited to the operation of laboratory scale bubble col-
umns of small diameter [23]. A stable plume of rising bubbles
without radial oscillation and a reduced volume of liquid actively
involved in mass transfer were hence observed for 1.0% and 1.5%
CMC solutions. The reduced viscous forces in the central part of
the column (la < ðlaÞav ) led to higher alpha factors (lower impact
of la) for CMC than for glycerol solutions of similar la (Fig. 3),
when placing the dissolved CO2 probe in the centre of the cross
sectional area. However, the stagnant areas of reduced mass trans-
fer efficiency present in the outer annulus of the column should be
avoided in a full scale operation. In practical terms, the appearance
of slug–annular flow in a volume of shear thinning fluid with CO2

injection could lead to a reduced active volume for mass transfer
due to the system operating as several individual bubble columns
separated by stagnant areas. Whereas kLa would be higher than
predicted in each column core, mass transfer in the outer annulus
would be mainly limited to that associated with diffusion mecha-
nisms. In order for this to be avoided, special consideration should
be given towards the design of efficient gas distribution systems in
mass transfer processes involving digested sludge, with an
increased number of diffusion devices per surface area than when
dealing with Newtonian fluids of similar la. Alternatively, addi-
tional mixing devices capable of disturbing the fluid stagnant areas
could be considered.

4. Conclusions

Mass transfer retardation due to increased la was investigated
for Newtonian and shear thinning fluids. A non-linear reduction of
mass transfer efficiency with increasing la was observed, being the
impact higher at low la ranges and high UG.

The impact of both la and UG in kLa was predominantly influ-
enced by changes in the system hydrodynamics through an alter-
ation of bubble buoyancy, bubble shape, turbulence level and
drainage of the liquid film between bubbles. Slug–annular flow
was observed for shear thinning fluids of high la, including rheo-
logical conditions imitating digested sewage sludge, where kLa
was conditioned by the l of the fluid at rest and the active liquid
volume for mass transfer was reduced because of the presence of
a stagnant outer annulus. Particular emphasis should be placed
in selecting the number of diffusion systems per unit area to be
used in a mass transfer system involving sewage sludge, in order
to avoid a reduction in process performance and active volume
as a consequence of viscous or rheological variations.
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