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 Abstract 

A new approach for the design of logic gates that do not involve chemical inputs is presented here. 

This concept is based on the polarization of a light-sensitive interface. AND and OR logic gates, 

working with cheap reactants, which locally triggered water splitting half reactions, were designed 

and operated. 

 

The transfer of the fundamental concepts of microelectronics and integrated circuits to chemical and 

miniaturized fluidic systems is attracting a tremendous interest.1-7 The design, fabrication and 

operation of components allowing the processing and computation of signals in these media are 

therefore becoming very active areas of research. There has been a growing interest on the 

fabrication of molecular,2-4,8 microfluidic,5,6,9-11 and electrochemical devices12-17 able to control 

signals or perform binary operations. In typical molecular logic gates, the operations are performed 

by molecules or proteins either in solution8,18-21 or immobilized on a surface4,22 that generate a 

detectable chemical output only in a presence of certain external input signals (e.g. optical or 

chemical). Besides, microfluidic-based logic operations are often based on fluids or bubbles inputs, 

generating optical outputs5 or specific patterns.10 Few examples of electrochemical logic gates have 

been reported, most of them involving redox-active molecules immobilized on an electrode and 

generating optical or electrical outputs.12-17 Other appealing examples of electrochemical Boolean 

operators were reported by Berggren et al. who used the conductivity change of a conducting 
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polymer,23 Amatore et al. who designed “artificial neurons” based on paired-band microelectrode 

assemblies24 and Crooks et al. who conceived a microfluidic device generating 

electrochemiluminescence (ECL).25 

In this context, we wish to report herein a novel approach towards logic gates operated by bipolar 

electrochemistry. Bipolar electrochemistry is a phenomenon that allows the generation of 

electrochemical reactions on the surface of conductive objects without the use of electrical 

wires.26,27 It is currently attracting considerable attention in the areas of analytical chemistry,28-32 

materials science,33-41 motion generation42-45 and seawater desalination.46 This phenomenon is 

particularly well suited for the implementation of miniaturized electrochemical systems in fluidic 

devices because of its inherent “wireless” nature.26,27 So far, the unique example of logic operators 

based on the use of bipolar electrochemistry was reported by the group of Crooks.47 Their devices 

were operated by electrical inputs and involved the use of ruthenium-based luminescent complexes 

and an amine co-reactant for the generation of ECL as an output.48 The bipolar electrochemical 

splitting of water was reported by Fleischmann et al.49 and applied recently for steering conducting 

objects43,44 and for the synthesis of Janus particles.50 So far, only little interest51,52 has been given 

to the use of semiconductor (SC)  bipolar electrodes (BEs). It is worth noting that Ongaro et al. 

recently reported the electric field-assisted photoreduction of metal on TiO2 nanofibers.53   
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Fig 1. a) Scheme depicting the cell used for photoelectrochemical experiments performed with a p-

SiH/Pt BE. b) Voltammetric curves showing the anodic behavior of Pt (grey) and the cathodic 

behavior of p-Si with (blue) and without (black) illumination. The curves were obtained at 50 mV.s-1 

in 50 mM H2SO4. 

We introduce here a new concept for the design of bipolar photoelectrochemical logic gates using a 

SC surface as a reactive pole, which allows for the first time to use light as an input signal. The 

fabrication and operation of AND and OR logic gates are described, that operate with the bipolar 

photoelectrochemical splitting of water and do not require direct connections. These devices can be 

very easily implemented and function only with water and a low concentration of supporting 

electrolyte (in the mM range). 

In a typical bipolar electrochemistry experiment, a conducting object is placed in an electrolytic 

solution between two feeder electrodes, as shown in Fig. 1a.  This object can be a conductive surface 

(e.g. a metal wire) or junctions. The application of a potential Eapp between the two feeder 

electrodes generates a potential drop in the solution and therefore leads to the generation of a 

polarization potential V along the object surface, which is maximal between its two ends.26,27 The 

value of this maximum polarization potential, Vmax, is given by the following relation: 

 

〖∆V〗_max  =   E_app/L  ×l×θ                (1) 

with L being the distance between the feeder electrodes (4.6 cm), l the characteristic length of the 

conducting surface and  a dimensionless constant that depends on the potential losses of the cell.34 

If Vmax is sufficiently high, electrochemical reactions can be toposelectively triggered: oxidation at 

the anodic pole (the pole facing the feeder cathode) and reduction at the cathodic pole (the pole 

facing the feeder anode). The conducting surface is then behaving at the same time as an anode and 

a cathode, that is, a BE.26,27 An important aspect is that electron production and consumption must 

be equal at both sides of the BE in order to maintain charge neutrality. In the present work, the logic 
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gates were designed on the basis of the configuration shown in Fig. 1a, with a split-BE26 composed 

of an oxide-free, hydrogen-terminated p-type silicon (p-SiH) cathodic pole and a Pt anodic pole, 

electrically connected outside to the cell. This configuration allowed to easily measure the current 

Ibe flowing through the BE with an ammeter. All the reported experiments were performed in 50 

mM aq H2SO4 in the dark and under irradiation with a halogen lamp. 

First, both materials used for the split-BE were investigated separately by voltammetry in a classical 

three-electrode electrochemical cell. The anodic response of Pt was independent of light and, as 

shown in Fig. 1b, displayed an anodic current starting at 1.1 V vs SCE, which corresponds to O2 

evolution: 

 

2 H2O → O2 + 4 H+ + 4 e-        (2) 

 

Unlike metals, the electrical properties of SC electrodes can be dramatically changed by light. For 

instance, p-type Si requires the generation of minority carriers (i.e. electrons) to operate as a 

photocathode, therefore irradiation with a wavelength higher than the material band gap (1.1 eV) is 

necessary in order to promote electrochemical reduction reactions at its surface.54 Consistent with 

that, no cathodic current was generated in the dark at p-SiH (black curve in Fig. 1b) while a significant 

photocurrent beginning at -0.6 V vs SCE was observed under illumination (blue curve), which 

corresponds to proton reduction: 

 

4 H+ + 4 e- → 2 H2                   (3) 
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These preliminary data suggest that reduction of water cannot occur at the cathodic pole (p-SiH) of 

the BE in the dark. Because the charge consumption must be equal at both sides of the BE,26,27 this 

blocking behavior should also prevent oxidation reaction to occur at the anodic pole and therefore 

no current should flow through the object. On the contrary, bipolar reactions should be possible 

under illumination, if the applied electric field is sufficiently high to generate a Vmax > 1.7 V 

between the ends of the BE, corresponding to the thermodynamic value that must be overcame in 

order to trigger reactions (2) and (3), as determined by Fig. 1b. These conditions should lead to the 

generation of a faradaic current Ibe flowing through the BE, as illustrated in Fig. 1a. 

 

Fig 2. Curves showing the current flowing through the BE, Ibe as a function of the potential applied 

between the feeder electrodes Eapp in the dark (black curves) and under illumination (blue curves) 

for a) 1.9 cm-long and b) 3.2 cm-long BE. The insets are schemes representing the corresponding 

cells. 

In order to assess thermodynamic and kinetic parameters directly on the BE, Ibe measurements were 

performed while imposing different values of Eapp, with and without illumination. Two characteristic 

BE lengths, l1 = 1.9 cm and l2 = 3.2 cm, were used in this work. From the data shown in Fig. 2, it is 

obvious that a similar trend was obtained for both BEs. Under illumination, Ibe was equal to zero 

until values Eapp1 = 7 V and Eapp2 = 5 V were respectively reached for l1 and l2 and then Ibe 

increased with Eapp. These threshold values correspond to the potentials to apply in order to 
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generate a Vmax of 1.7 V and locally trigger reactions (2) and (3). The highest value, Eapp1 was 

found for the smallest l value, which is well in line with eq. (1). This relation allowed us to calculate 

that ~50 % of the applied electric field is effectively restituted to the BE (average  = 0.54), due to 

losses that may be attributed to field perturbation in the cell or potential drops at the solid/liquid or 

solid/solid interfaces. As expected, dark currents were found in both cases much lower than 

photocurrents (~25 times for Eapp = 10 V, see Fig S1) thanks to the insulating behavior of p-SiH under 

these conditions. These data demonstrate that illumination and applied potential generate large 

current modifications in these BEs that can be easily measured. Therefore, such a configuration is 

very well-suited for the fabrication of two-input logic gates, which will be now described. 

The two inputs can be defined as Eapp (In1) and illumination (In2), whereas the current Ibe can be 

considered as the output signal. Based on data of Fig. 2a, we decided to set In1 = 0 for Eapp = 7 V and 

In1 = 1 for Eapp = 10 V, in order to obtain a sufficiently high output signal when all the inputs will be 

equal to 1. The threshold output value was arbitrary set to 1.5 mA. The transient signals In1 and In2 

and the resulting outputs for both systems are shown in Fig. 3a-d and summarized in the 

corresponding truth tables (Fig. 3f,g). The 1.9 cm-long BE (Fig. 3c) exhibited an output signal "1" (Ibe 

> 1.5 mA) only when In1 = In2 = 1. All the other combinations yield an output signal of "0" (Ibe < 1.5 

mA). Therefore, this system acted as an AND gate. As shown in Fig. 3e, generation of H2 and O2 

bubbles was observed at both reactive poles of the BE when Output = "1", confirming the triggering 

of reactions (2) and (3). The release of H2 bubbles from the BE surface caused the current 

fluctuations that are visible in the output signal (Fig. 3c). In contrast, the 3.2 cm-long BE (Fig. 3d) was 

found to be always in its state "1" when illuminated, which is in good agreement with the data 

shown in Fig. 2b. Even if the latter configuration is not so beneficial in terms of Boolean logic (a YES 

gate, performing the operation Output = In2), it will be very useful in the following for the design of 

an OR logic gate. 
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Fig. 3. Time-dependent profiles of the applied input signals a) In1 (In1 = 0 for Eapp = 7 V and In1 = 1 

for Eapp = 10 V), b) In2 (In2 = 0 when the light is OFF and In2 = 1 when the light is ON) and the output 

Ibe measured for c) a 1.9 cm-long BE acting as an AND gate and d) a 3.2 cm-long BE. Both BEs are 

composed of a p-SiH cathodic pole and a Pt anodic pole. The red line indicates the threshold current 

of 1.5 mA. e) Photograph of the split BE showing the evolution of H2 and O2 bubbles at the cathodic 

pole (left) and at the anodic pole (right), respectively. f,g) Truth tables summarizing the results 

obtained in f) Fig. 3c and g) Fig. 3d. 
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For comparison, split BEs only composed of Pt wires were also investigated and were found to 

perform the following operations: Output = "1" whatever the states of In1 and In2 for l = 3.2 cm (see 

Fig. S2 in the Supporting Information) and Output = In1 for l = 1.9 cm, as shown in Fig. 4c. These 

results were expected because the conductivity of metals like Pt is not sensitive to light, therefore 

the output was always independent of In2. The latter configuration was particularly attractive since it 

allowed to reach the combination that was missing in the truth table of Fig. 3g in order to get an OR 

gate, (i.e. Output = 1 when In1 = 1 and In2 = 0). An interesting strategy to combine the BE 

configurations of Fig. 3d and 4c was to use a hybrid BE made of a light-sensitive component as well as 

a component non-sensitive to light. The simplest design, depicted in Fig. 4e,f, consisted in the 

connection in parallel of a p-SiH surface with a Pt wire. The output signal of such a BE with the 

corresponding truth table are shown in Fig. 4d,h. As expected, this BE acted as an OR gate with the Pt 

wire being the cathodic pole when In1 = 1 and In2 = 0, and p-SiH being the cathodic pole when In1 = 

0 and In2 = 1. These experiments demonstrate that AND and OR logic gates operated by bipolar 

photoelectrochemical water splitting can be designed and easily operated. 
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Fig. 4. Time-dependent profiles of the applied input signals a) In1 (In1 = 0 for Eapp = 7 V and In1 = 1 

for Eapp = 10 V), b) In2 (In2 = 0 when the light is OFF and In2 = 1 when the light is ON) and the output 

Ibe measured for c) a 1.9 cm-long BE with two Pt reactive poles and d) a 3.2 cm-long BE com-posed 

of a p-SiH/Pt cathodic pole and a Pt anodic pole acting as an OR gate. The red line indicates the 

threshold current of 1.5 mA. e,f) Cell schemes showing the OR gate operating when e) In1 = 1 and In2 

= 0 and f) In1 = 0 and In2 = 1. g,h) Truth tables summarizing the results obtained in g) Fig. 4c and h) 

Fig. 4d. 

The percentages of current flowing through the BEs were calculated for the AND and the OR logic 

gates and are reported in Table S1. Interestingly, they varied from values smaller than 0.4% when 

Output = "0" to values greater than 5% when Output = "1", with a maximum of 22% for the OR gate 

when In1 = In2 = 1. In order to assess the time stability of the involved surfaces, cycling tests were 

performed with the AND gate by imposing switching cycles to In1 while keeping In2 = 1. As shown in 
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Fig. 5, Ibe was found to be constant over numerous switching cycles. Such a stability of the p-SiH-

based BE is thus very promising for future integration of the logic gates in fluidic devices. 

 

Fig. 5. Curve showing the time evolution of the output signal Ibe for the AND gate when In 1 is 

switched ON and OFF. The red line indicates the threshold current 1.5 mA. 

 

Conclusions 

In this work, we have demonstrated a new strategy for the design of electrochemical logic gates 

working with optical and electrical inputs. Robust and stable AND and OR gates, operated with cheap 

reactants (i.e. acidic water) were fabricated. The inputs were mediated by electric and 

electromagnetic fields and the gates did not required direct connection. Thanks to their “wireless” 

implementation, these devices should be easily downscaled and therefore could be operated with 

LEDs in miniaturized devices such as micro-fluidic channels and lab-on-chips with suitable electric 
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fields (see eq. 1). It should be also possible to combine several gates in a single fluidic device and use 

the current flowing through the BE to perform additional logic operations or to supply integrated 

electronic devices.44 Additionally, a signal other than the bipolar current (i.e. bubble production or 

the generation of an optically-active compound at a reactive pole) could be considered as output, in 

order to minimize the electrical connections. In this first report, SC/metal BEs were employed but it is 

evident that our approach can be extended to p-SC/n-SC BEs which will enlarge the panel of available 

operations and reduce the cost of the devices. Considering that a very large panel of materials and 

co-catalysts combinations can be used as BEs and that the electrolyte composition will have a direct 

effect on the output values, we believe that this work pave the way to a broad family of signal 

processing devices for chemical and fluidic systems. 
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