
HAL Id: hal-01166771
https://univ-rennes.hal.science/hal-01166771

Submitted on 12 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dipicolylamine styryldiazine derivatives: Synthesis and
photophysical studies

Sylvain Achelle, Julian Rodriguez-Lopez, Filip Bures, Francoise Robin-Le
Guen

To cite this version:
Sylvain Achelle, Julian Rodriguez-Lopez, Filip Bures, Francoise Robin-Le Guen. Dipicolylamine
styryldiazine derivatives: Synthesis and photophysical studies. Dyes and Pigments, 2015, 121, pp.305-
311. �10.1016/j.dyepig.2015.05.026�. �hal-01166771�

https://univ-rennes.hal.science/hal-01166771
https://hal.archives-ouvertes.fr


M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

�



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

1 

�

�

Dipicolylamine Styryldiazine Derivatives: 

Synthesis and Photophysical Studies. 

Sylvain Achelle
a,
*, Julián Rodríguez-López*

,b
, Filip Bureš

c
, and Françoise Robin-le Guen

a 

a
Institut des Sciences Chimiques de Rennes UMR CNRS 6226, IUT de Lannion, rue Edouard 

Branly, BP 30219, F22302 Lannion Cedex, France.  

b
Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071 

Ciudad Real, Spain. 

c
Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University 

of Pardubice, Studentská 573, Pardubice 53210, Czech Republic 

Corresponding authors: *E-mail: sylvain.achelle@univ-rennes1.fr tel: +33 (0)296 469 448; 

julian.rodriguez@uclm.es tel: +34 926 295 300 

Abstract 

Different D-π-A push-pull molecules in which dipicolylamine (DPA) is used as the donor 

group, different diazines as the acceptor groups, and styryl as the π-conjugated spacer have 

been synthesized in a straightforward manner by aldol condensation of 4-(di-2-

picolylamino)benzaldehyde and the appropriate methyldiazine. All of the compounds showed 

π-π* transitions in the UV or visible region and the emission of yellow-green light upon 

irradiation. Significant red shifts were observed in the fluorescence emission maxima of these 

compounds on increasing the solvent polarity, a finding that suggests the formation of an 

intramolecular charge-separated emitting state that is also supported by semi-empirical 
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calculations. In some cases, protonation led to marked color changes, thus showing the ability 

of these molecules to function as colorimetric pH sensors. The DPA and diazine units can act 

as coordination sites for metal cations such as Zn
2+

, Cd
2+

 or Hg
2+

, leading to a blue or red shift 

in the fluorescence spectra due to the change in the intramolecular charge transfer properties. 

This phenomenon could become a powerful tool for the creation of multiple emission colors 

with a single molecule after suitable design. 

Keywords: diazines; metal cations; fluorescence; intramolecular charge transfer; π-

conjugated systems  

1. Introduction 

During the past decade, donor-π-acceptor (D-π-A) push-pull systems that incorporate 

diazine rings as electron-attracting units have been widely studied for their luminescence and 

non-linear optical properties [1]. The fluorescence of these molecules relies heavily on the 

nature of the donor and acceptor parts, and it can be easily modulated by several external 

stimuli. For example, diazine derivatives have been developed as fluorescent sensors for 

polarity [2], pH [2a,c,e,3], metal cations [4], proteins [5] and particular forms of DNA [6]. 

Most recently, 1,3-benzodiazine (quinazoline) units were used as electron-deficient segments 

in D-π-A dyes that displayed solid-state white photoluminescence (PL) and 

electroluminescence (EL) by doping a certain amount of acid into thin films, which has a 

potential application in the fabrication of white organic light emitting diodes (OLEDs) [7].  

In general, D-π-A push-pull systems are highly sensitive to metal coordination, which 

can occur not only in the acceptor part of the molecule but also in the donor part [8]. Binding 

in the A unit leads to a red shift in the emission spectra due to stronger stabilization of the 

LUMO than the HOMO, which results in a lower HOMO-LUMO energy gap. In contrast, 

interaction with the D unit results a blue shift of the fluorescence because the metal 

coordination stabilizes the HOMO more strongly than the LUMO. Of particular interest are 
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molecules that possess metal-binding sites on both the electron-donor and -acceptor parts 

because such systems can show multiple fluorescence colors in response to several metal 

cation inputs [9]. In this context, Shiraishi et al. described a styrylquinoline dye with a 

dipicolylamine (DPA) moiety that showed multicolor fluorescence upon addition of different 

metal cations. For the first time, near white fluorescence was created by the addition of a 

mixture of Cd
2+

 and Pb
2+

 in an appropriate ratio [�a]. 

The diazine ring is an excellent candidate to be incorporated in such structures because 

of its high electron-withdrawing character and potential ligand properties. Thus, taking 

advantage of our experience in the synthesis of arylvinyl (styryl) diazines and benzodiazines 

[�a-b,e,�a,10], we report here the straightforward preparation of a series of D-π-A push-pull 

molecules in which DPA is used as a donor group and different diazine-based groups 

[pyridazine, pyrimidine, pyrazine, quinoxaline and di(pyridin-2-yl)pyrimidine] are used as 

acceptors. The DPA group is a strong electron donor that can act as a coordination site for 

metal cations and this unit has been widely used for the design of new fluorophores [8a,11]. 

On the other hand, we previously showed that 4-arylvinyl-2,6-di(pyridyn-2-yl)pyrimidines 

can coordinate various metal cations, such as Zn
2+

, Sn
2+

 and Ca
2+

, to give a red-shifted 

emission [12]. 

The photophysical properties of the prepared compounds are also reported, including 

solvatochromism and the effect that treatment with acid and selected metal cations (Zn
2+

, 

Cd
2+

, Hg
2+

) has on the luminescence properties. 

2. Experimental  

2.1.General.  

4-(Di-2-picolylamino)benzaldehyde (1) [13] and 4-methyl-2,6-dipyridin-2-yl-pyrimidine 

[10e] were obtained as described previously. In air- and moisture-sensitive reactions, all 

glassware was flame-dried and cooled under nitrogen. NMR spectra were acquired at room 
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temperature on a Bruker AC-300 spectrometer. Chemical shifts are given in parts per million 

relative to TMS (
1
H, 0.0 ppm) and CDCl3 (

13
C, 77.0 ppm). Acidic impurities in CDCl3 were 

removed by treatment with anhydrous K2CO3. High resolution mass analyses were performed 

at the “Centre Regional de Mesures Physiques de l’Ouest” (CRMPO, University of Rennes1) 

using a Bruker MicroTOF-Q II apparatus. UV/vis spectra were recorded on a Jasco V-530 

spectrophotometer using standard 1 cm quartz UV cells. Fluorescence spectra were recorded 

on a Jasco FP-750 spectrofluorimeter. Compounds were excited at their absorption maxima (band 

of lowest energy) to record the emission spectra. The ΦF values were calculated using a well-known 

procedure with two different standards, quinine sulfate in 0.1 M H2SO4 and 9,10-diphenylanthracene 

in cyclohexane [14]. Stokes shifts were calculated by considering the lowest energetic absorption 

band.  

2.2. General Procedure for the synthesis of arylvinyldiazine (styryldiazines).  

4-(Di-2-picolylamino)benzaldehyde (1) (110 mg, 0.36 mmol) and the appropriate 

methyldiazine derivative (0.72 mmol; 0.36 mmol for 4-methyl-2,6-dipyridin-2-yl-pyrimidine; 

0.18 mmol for 4,6-dimethylpyrimidine) were dissolved in anhydrous THF (15 mL). K
t
BuO 

(1.44 mmol, 161 mg, 4 eq.) was slowly added at room temperature and the solution was 

heated under reflux for 15 h. The mixture was allowed to cool and water was added. THF was 

evaporated and the mixture was extracted with CH2Cl2. The organic layer was dried over 

MgSO4 and the solvent was removed under vacuum. The crude product was purified by flash 

chromatography. 

2.2.1. 4-[2-(4-Di-2-picolylaminophenyl)vinyl]pyrimidine 2a

The crude product was purified by flash chromatography (alumina, eluent: petroleum 

ether/ethyl acetate 1:1). Orange solid: 61% (82 mg). Mp: 144–145 °C. 
1
H NMR (300 MHz, 

CDCl3): δ 4.87 (s, 4H), 6.73 (d, 2H, J = 8.7 Hz), 6.81 (d, 1H, J = 15.9 Hz), 7.20 (d, 1H, J = 

2.1 Hz), 7.25–7.23 (m, 4H), 7.42 (d, 2H, J = 8.7 Hz), 7.67–7.61 (m, 2H), 7.76 (d, 1H, J = 15.9 
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Hz), 8.63–8.56 (m, 3H), 9.07 (s, 1H). 
13

C NMR and JMOD (75 MHz, CDCl3): δ 162.9 (C), 

158.1 (C), 156.8 (CH), 149.81 (CH), 149.76 (CH), 149.4 (C), 137.5 (CH), 136.9 (CH), 129.4 

(CH), 124.7 (C), 122.3 (CH), 121.2 (CH), 120.8 (CH), 118.0 (CH), 112.7 (CH), 57.2 (CH2). 

HRMS (ESI/ASAP): m/z calculated for C24H22N5 [M + H]
+ 

380.1875, found 380.1882. 

2.2.2. 4-[2-(4-Di-2-picolylaminophenyl)vinyl]-2,6-dipyridin-2-yl-pyrimidine 2b

The crude product was purified by flash chromatography (alumina, eluent: ethyl 

acetate/isopropanol 9:1) followed by crystallization from CH2Cl2/n-heptane. Orange solid: 

64% (123 mg). Mp: 84–86 °C. 
1
H NMR (300 MHz, CDCl3): δ 4.90 (s, 4H), 6.75 (d, 2H, J = 

8.4 Hz), 7.26–7.17 (m, 5H), 7.43 (t, 2H, J = 6.0 Hz), 7.51 (d, 2H, J = 8.4 Hz), 7.67 (t, 2H, J = 

7.5 Hz), 7.97–7.88 (m, 3H), 8.44 (s, 1H), 8.64–8.62 (m, 2H), 8.77–8.67 (m, 3H), 8.90 (d, 1H, 

J = 4.2 Hz). 
13

C NMR and JMOD (75 MHz, CDCl3): δ 165.6 (C), 163.4 (C), 163.0 (C), 158.2 

(C), 155.6 (C), 154.5 (C), 150.0 (CH), 149.8 (CH), 149.4 (CH), 149.3 (C), 137.6 (CH), 137.0 

(CH), 136.9 (CH), 136.8 (CH), 129.4 (CH), 125.2 (CH), 125.2 (C), 124.5 (CH), 123.9 (CH), 

122.8 (CH), 122.2 (CH), 122.1 (CH), 120.8 (CH), 112.6 (CH), 112.2 (CH), 57.2 (CH2). 

HRMS (ESI/ASAP): m/z calculated for C34H28N7 [M + H]
+ 

534.2406, found 534.2413. 

2.2.3. 2-[2-(4-Di-2-picolylaminophenyl)vinyl]pyrazine 2c

The crude product was purified by flash chromatography (alumina, eluent: petroleum 

ether/ethyl acetate 1:1). Yellow solid: 63% (85 mg). Mp: 150–151 °C. 
1
H NMR (300 MHz, 

CDCl3): δ 4.87 (s, 4H), 6.72 (d, 2H, J = 8.7 Hz), 6.91 (d, 1H, J = 15.9 Hz), 7.24–7.17 (m, 

4H), 7.42 (d, 2H, J = 8.7 Hz), 7.65–7.59 (m, 3H), 8.31 (d, 1H, J = 2.4 Hz), 8.46 (d, 1H, J = 

2.4 Hz), 8.55 (s, 1H), 8.62–8.60 (m, 2H). 
13

C NMR and JMOD (75 MHz, CDCl3): δ 158.3 

(C), 149.8 (CH), 149.0 (C), 144.1 (CH), 143.4 (CH), 142.0 (C), 141.4 (CH), 136.9 (CH), 

135.1 (CH), 128.8 (C), 125.3 (CH), 122.2 (CH), 120.8 (CH), 119.9 (CH), 112.7 (CH), 57.3 

(CH2). HRMS (ESI/ASAP): m/z calculated for C25H22N5 [M + H]
+ 

380.1875, found 380.1880. 
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2.2.4. 2-[2-(4-Di-2-picolylaminophenyl)vinyl]quinoxaline 2d

The crude product was purified by flash chromatography (alumina, eluent: petroleum 

ether/ethyl acetate 1:1). Yellow solid: 84% (129 mg). Mp 112–113 °C. 
1
H NMR (300 MHz, 

CDCl3): δ 4.88 (s, 4H), 6.75 (d, 2H, J = 8.7 Hz), 7.13 (d, 1H, J = 15.9 Hz), 7.21–7.18 (m, 

2H), 7.27–7.24 (m, 2H), 7.48 (d, 2H, J = 8.7 Hz), 7.68–7.62 (m, 4H), 7.75 (d, 1H, J = 15.9 

Hz), 8.03–7.99 (m, 2H), 8.62–8.60 (m, 2H), 8.97 (s, 1H). 
13

C NMR and JMOD (75 MHz, 

CDCl3): δ 158.2 (C), 151.4 (C), 149.9 (CH), 149.2 (CH), 144.5 (CH), 142.6 (C), 141.2 (C), 

136.9 (CH), 136.4 (CH), 130.1 (CH), 129.1 (CH), 128.9 (CH), 128.6 (CH), 125.3 (C), 122.2 

(CH), 121.2 (CH), 120.8 (CH), 112.7 (CH), 57.2 (CH2). HRMS (ESI/ASAP): m/z calculated 

for C28H23N5Na [M + Na]
+ 

452.1851, found 452.1851. 

2.2.5. 3-[2-(4-Di-2-picolylaminophenyl)vinyl]pyridazine 2e

The crude product was purified by flash chromatography (alumina, eluent: petroleum 

ether/ethyl acetate 1:1). Yellow solid: 64% (86 mg). Mp: 171–172 °C. 
1
H NMR (300 MHz, 

CDCl3): δ 4.88 (s, 4H), 6.74 (d, 2H, J = 8.7 Hz), 7.13 (d, 1H, J = 16.2 Hz), 7.22–7.18 (m, 

2H), 7.37 (dd, 1H, J1 = 4.8 Hz, J2 = 8.7 Hz), 7.44 (d, 2H, J = 8.7 Hz), 7.59–7.54 (m, 2H), 

7.68–7.62 (m, 2H), 8.62–8.61 (m, 2H), 8.97 (dd, 1H, J1 = 1.5 Hz, J2 = 4.8 Hz). 
13

C NMR and 

JMOD (75 MHz, CDCl3): δ 159.0 (C), 158.9 (C), 158.3 (C), 149.8 (CH), 148.5 (CH), 136.9 

(CH), 135.0 (C), 128.9 (CH), 126.2 (CH), 125.2 (C), 123.4 (CH), 122.2 (CH), 121.0 (CH), 

120.8 (CH), 112.7 (CH), 57.3 (CH2). HRMS (ESI/ASAP): m/z calculated for C24H22N5 [M + 

H]
+ 

380.1875, found 380.1879.  

2.2.6. 4,6-Bis[2-(4-di-2-picolylaminophenyl)vinyl]pyrimidine 3 

The crude product was purified by flash chromatography (alumina, eluent: petroleum 

ether/ethyl acetate 1:1). Orange solid: 52% (64 mg). Mp: 110–112 °C. 
1
H NMR (300 MHz, 

CDCl3): δ 4.87 (s, 8H), 6.72 (d, 4H, J = 8.7 Hz), 6.80 (d, 2H, J = 15.9 Hz), 7.10 (s, 1H), 7.22–
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7.18 (m, 8H), 7.42 (d, 4H, J = 8.7 Hz), 7.66–7.60 (m, 4H), 7.73 (d, 2H, J = 15.9 Hz), 8.61–

8.59 (m, 4H), 8.95 (s, 1H). 
13

C NMR and JMOD (75 MHz, CDCl3): δ 163.0 (C), 158.2 (C), 

149.2 (C), 136.9 (CH), 136.6 (CH), 129.3 (CH), 125.0 (C), 122.2 (CH), 122.1 (CH), 121.7 

(CH), 120.85 (CH), 120.77 (CH), 112.6 (CH), 57.2 (CH2). HRMS (ESI/ASAP): m/z

calculated for C44H39N8 [M + H]
+ 

679.3292, found 679.3284.

3. Results and Discussion

3.1. Preparation of Styryldiazine Derivatives.  

Styryldiazine derivatives are generally obtained by aldol condensation of aldehydes with 

methyldiazines in basic media [�,5,�a,10,15]. In this way, the target compounds 2a–e were 

prepared in moderate-to-good yield by this well-established protocol from 4-(di-2-

picolylamino)benzaldehyde (1) and the corresponding methyldiazine in refluxing THF using 

potassium tert-butoxide as the base (Scheme 1). The 4,6-distyrylpyrimidine derivative 3 was 

also obtained in moderate yield starting from 4,6-dimethylpyrimidine.  

<Scheme 1.> 

The new compounds exhibited good solubility in a variety of solvents, especially in 

THF, acetonitrile and chlorinated solvents, which allowed unequivocal characterization by 

NMR spectroscopy. The 
3
J(H,H) coupling constants of �16.0 Hz for the vinylic protons in the 

1
H NMR spectra indicated the selective formation of trans-configured double bonds in all 

condensation reactions. 

3.2. UV-vis and Fluorescence Spectroscopy.  

The photophysical properties of compounds 2 and 3 were examined by UV-vis and 

fluorescence spectroscopy in acetonitrile at 25 °C and the results are summarized in Table 1. 

As one would expect, all of the absorption spectra showed a similar pattern with a π-π* 

transition in the UV or visible region at �max = 364–410 nm accompanied by one or two extra 

bands at higher energy (Figure 1, see also Supporting Information). Typical emission maxima 
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were obtained in the green-yellow region on irradiating the solutions. Pyrazine derivative 2c

exhibited the highest fluorescence quantum yield (ΦF = 0.24). In a similar way to other 

styryldiazine compounds [10d], quinoxaline derivative 2d showed a red-shifted absorption 

and emission band when compared to pyrimidine (2a), pyrazine (2c) and pyridazine (2e) 

derivatives. As far as pyrimidine derivatives are concerned, the introduction of pyridin-2-yl 

substituents at positions 2 and 4 of the pyrimidine ring in 2b led to bathochromic shifts in the 

absorption and emission spectra. Comparable red shifts were observed on going from 4-

styrylpyrimidine 2a to 4,6-distyrylpyrimidine 3, as observed previously for related systems 

[2b].  

Table 1. Optical Spectroscopy Data for Dipicolylamine Styryldiazine Derivatives. 

Compd
a λabs, nm (ε, mM

–1⋅cm
–1

) λem, nm ΦF
b Stokes shift, cm

–1

2a 254 (32.2), 326 (15.8), 377 (24.2) 502 0.04 6605 

2b 273 (37.4), 402 (27.7) 557 0.13 6922 

2c 259 (21.3), 326 (12.6), 377 (19.8) 522 0.24 7584 

2d 257 (18.9), 299 (17.0), 410 (29.0) 593 0.15 7527 

2e 255 (15.7), 364 (20.3) 496 0.03 7311 

3 253 (27.3), 330 (18.9), 396 (26.9) 551 0.10 7104 
a
 All spectra were recorded in acetonitrile solutions at room temperature at c = 5.3–12.8 ×

10
–6

 M. 
b
 Fluorescence quantum yield (±10%) determined relative to quinine sulfate in 

0.1 M H2SO4 (ΦF = 0.54) and 9,10-diphenylanthracene in cyclohexane (ΦF = 0.90) as 

standards.  

 <Figure 1.> 

It is worth noting that the fluorescence spectra showed significant solvatochromism 

(Table 2). An increase in the solvent polarity led to bathochromic shifts of the emission 

maxima, although the solvatochromic range was lower than for dimethylamino analogs [10d]. 

As an example, the spectra registered for compound 2b are shown in Figure 2, where the 

maximum emission wavelength at �em = 473 nm in the least polar solvent (cyclohexane) is 
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red-shifted by about 95 nm (�νem = 3536 cm
–1

) in DMSO (�em = 568 nm). This finding 

supports a highly polarized excited singlet state generated by the intramolecular charge 

transfer from the donor dipicolylamino group to the acceptor diazine groups. The large Stokes 

shifts (Table 1) are also indicative of the high polarizability of these systems due to the 

presence of both donor and acceptor groups coupled by a π-conjugated spacer. Nevertheless, 

solvatochromism is almost negligible in the absorption spectra, suggesting the absence of a 

significant electronic interaction between groups in the ground state. 

Table 2. Emission Solvatochromism of Arylvinyldiazine Derivatives in Various Aprotic 

Solvents.

�� Cyclohexane THF DCM Acetonitrile DMSO 

ET(30)
a
 = 30.9 ET(30)

a
 = 37.4 ∆ET(30)

a
 = 40.7 ∆ET(30)

a
 = 45.6 ∆ET(30)

a
 = 45.1

Compd� λem, nm λem, nm� λem, nm� λem, nm� λem, nm� �νem, b
 cm

–1

2a 435 474 494 502 511 3419 

2b 473 518 531 557 568 3536 

2c 446 484 506 522 531 3589 

2d 493 536 557 593 600 3617 

2e 432, 457 459 477 496 500 3148
c

3 440, 459 512 527 551 552 4611
c

a
 Dimroth–Reichardt polarity parameter,

16
 kcal⋅mol

–1
. 

b
�νem = ν (cyclohexane) – ν (DMSO).    

c
 Using the more energetic emission band in cyclohexane. 

<Figure 2.>

Acetonitrile solutions of compounds 2d and 3 underwent significant color changes 

upon addition of TFA (Figure 3). Initially DPA is the most basic moiety in both molecules, 

but the electron-donating character of the DPA styryl chain increases the basicity of the 

quinoxaline and pyrimidine heterocyclic rings and makes it difficult to envisage the structure 

of the protonated species. We previously observed this phenomenon in related diazines and 

demonstrated the potential of these compounds as colorimetric pH sensors [�a,2e,�a,10c-e]. 
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On the other hand, the emission was totally quenched after treatment with acid, as is generally 

observed for amino electron donor substituted diazines [�a,10d]. 

<Figure 3.> 

The emission properties of compounds 2a–d were also investigated in the presence of 

an excess of the metal cations Zn
2+

, Cd
2+

 and Hg
2+

. The results are presented in Table 3. 

Different types of behavior were observed depending on the nature of the diazine ring. The 

addition of Zn
2+

, Cd
2+

 or Hg
2+ 

led to a red shift associated with significant quenching of the 

fluorescence intensity in the case of pyrimidine derivatives 2a–b, whereas a blue shift was 

observed for pyrazine and quinoxaline derivatives 2c and 2d. The emission spectra and 

fluorescence color changes observed for pyrazine derivative 2c are shown in Figures 4 and 5, 

respectively. It can be observed that only a moderate decrease in the fluorescence quantum 

yield was detected: ΦF (2c) = 0.24, ΦF (2c + Zn
2+

) = 0.04 and ΦF (2c + Cd
2+

) = 0.12. 

The emission characteristics are due to the different intramolecular charge transfer 

(ICT) properties of these push-pull molecules in response to coordination of the respective 

metal cations. Both the diazine and DPA groups can act as the metal binding site. Initially, the 

blue shift in 2c–d indicates a decreased CT into the molecules due to coordination of the 

metal cation on the DPA electron-donating group. Analogously, the red shift in 2a–b could be 

explained by extra binding of the metal cation on the electron-attracting part of the 

pyrimidine, as reported for a related compound [�a]. Indeed, pyrimidine is a stronger base 

than pyrazine and quinoxaline. These results show that metal cations can be used as external 

stimuli for the modulation of emission colors in these systems. Nevertheless, further 

quantitative investigations are required to determine the optimum stoichiometry and 

coordination properties. This work is currently in progress in our laboratories.  

Table 3. Emission Maxima
a
 of 2a–d after Treatment with Excess Metal Cations.

b

� No cation + Zn
2+

 + Cd
2+

 + Hg
2+
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Compd
a
� λem, nm λem, nm� λem, nm� λem, nm�

2a 502 516 507 526 

2b 557 592 580 606 

2c 522 447 481 517 

2d 593 523 554 595 
a
 Acetonitrile solutions. 

b
 Chloride salts. 

<Figure 4.>

<Figure 5.>

3.3. Calculations.  

The HOMO and LUMO levels, their differences as well as the ground state dipole 

moments of target compounds 2a-e and 3 were studied by semi-empirical calculations. Initial 

geometries were calculated by PM3 implemented in ArgusLab [ 17 ] and subsequently 

optimized by PM7 in MOPAC [18]. The calculated values are summarized in Table 4. Figure 

6 shows the optimized geometries and the HOMO and LUMO localizations for each 

particular derivative [19].   

Table 4. PM7 calculated parameters of molecules 2a-e and 3 

 Compd� EHOMO

[eV] 

ELUMO

[eV] 
∆E

[eV] 
µ 

[D] 

λabs 

[eV]
a 

2a -8.25 -0.98 7.27 6.82 3.29 

2b -8.16 -0.98 7.18 2.59 3.08 

2c -8.22 -1.00 7.22 4.66 3.29 

2d -8.20 -1.11 7.09 4.27 3.02 

2e -8.23 -0.98 7.25 7.67 3.41 

3 -8.17 -0.79 7.38 6.34 3.13 
a
 Experimental longest-wavelength absorption maxima 

measured in acetonitrile (1240/λabs).  

The calculated energies of the HOMO and LUMO range from -8.25 to -8.16 and -1.11 to -

0.79 eV, respectively. Although these values are generally overestimated and should be 

treated with precaution, the calculated HOMO-LUMO gaps (∆E) for 2a-e correlates well with 

the position of the experimentally obtained longest-wavelength absorption maxima (R
2
 = 0.8). 

Hence, the PM7 calculations are capable to describe the trends within this series of molecules. 
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Although the changes in ∆E are relatively small, some structure-property relationships can be 

elucidated. When going from 2a to 2b, the gap has decreased by 0.09 eV as a result of 

attaching two pyridine-2-yl rings to the pyrimidine acceptor. The replacement by a pyrazine 

ring (2a to 2c) lowered the gap negligibly by 0.05 eV. However, its further extension by a 

fused benzene ring as in 2d resulted in the lowest gap of 7.09 eV. Pyridazin-3-yl acceptor in 

2e delivered very similar HOMO-LUMO gap (∆E = 7.25 eV) as pyrimidin-4-yl (2a; ∆E = 

7.27 eV) and pyrazine-3-yl (2c; ∆E = 7.22 eV).     

<Figure 6.>

The HOMO and LUMO visualizations shown in Figure 6 clearly show charge separation and 

thus further confirms ICT character of molecules 2a-e and 3. As expected, the HOMO is 

predominantly localized on the amino donor and the adjacent π-system, whereas the LUMO is 

spread over the diazine acceptors.   

4. Conclusions 

A series of push-pull dipicolylamine styryldiazine derivatives has been efficiently synthesized 

by aldol condensation between 4-(di-2-picolylamino)benzaldehyde and the appropriate 

methyldiazine. The new compounds were fully characterized. All of the molecules presented 

absorption wavelengths in the UV or visible region and emit light with significant Stokes 

shifts. The presence of both a donor and an acceptor group coupled by a π-conjugated spacer 

enables intramolecular charge transfer processes that lead to highly polarized singlet excited 

states. This situation is reflected by large red shifts in the fluorescence emission maxima upon 

increasing the solvent polarity and supported by semi-empirical calculations. As in other 

related diazines, 2d and 3 undergo significant color change upon addition of acid and this 

property highlights their potential as colorimetric pH sensors. Moreover, the addition of 
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different metal cations resulted in blue or red shifts in the fluorescence spectra and this effect 

may become a powerful tool for the development of multicolor emitters. 
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Scheme 1. Synthesis of Dipicolylamine Styryldiazine Derivatives 2 and 3

Figure 1. Normalized UV/vis (solid lines) and emission (dashed lines) spectra of compounds 

2c (red) and 2d (blue). See Supporting Information for spectra of all compounds. 

Figure 2. Normalized emission of compound 2b in different aprotic solvents. 

Figure 3. Color change of acetonitrile solutions of 2d and 3 after treatment with TFA.

Figure 4. Normalized emission spectra of 2c in acetonitrile with excess metal cations (as 

chloride salts). 

Figure 5. Fluorescence colors of an acetonitrile solution of 2c in the presence of excess metal 

cations. Photographs were taken in the dark upon irradiation with a hand-held UV lamp (�em = 

366 nm). 

Figure 6. Optimized geometries and HOMO (red) and LUMO (blue) localizations in 2a-e and 

3.   
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D-π-A molecules with dipicolylamine group and diazines rings were synthesized. 

All the compounds showed yellow-green light emission. 

All the compounds exhibit significant emission solvatochromism. 

Coordination of metal cations leads to blue or red shift in the fluorescence spectra 
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Figure S8. Normalized UV/vis (top) and emission spectra (bottom) of compounds 2a-e and 3

in acetonitrile solution. 
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Figure S9. Normalized emission of compound 2a in different aprotic solvents. 

Figure S10. Normalized emission of compound 2c in different aprotic solvents. 
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Figure S10. Normalized emission of compound 2d in different aprotic solvents. 

Figure S11. Normalized emission of compound 2e in different aprotic solvents. 
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Figure S12. Normalized emission of compound 3 in different aprotic solvents. 

Figure S12. Normalized absorption spectra of compound 2d and 3 in MeCN+TFA . 


