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Abstract

In this work we analyze in detail the modal properties of a graphene-
based planar waveguide (GPW) in the THz frequency range. The struc-
ture consists of a graphene sheet placed on top of a grounded dielectric
slab. As is known, the surface conductivity of the graphene sheet can eas-
ily be tuned with a bias voltage via electric-field effect; we show here how
such a bias affects the propagation features of both TM and TE modes
supported by the GPW. An extensive dispersion analysis is performed for
complex modes in both guided and radiative (leaky) regimes, considering
also dielectric and metal losses as well as nonlocal effects in graphene. In
particular, we focus on the behavior of the fundamental leaky modes since
they exhibit quite interesting radiation features for suitable values of the
bias. These results are very promising for the development of reconfig-
urable leaky-wave Fabry-Perot cavity antennas based on graphene at THz
frequencies.

1 Introduction

The pioneering experiments on graphene led by A. K. Geim and K. S. Novoselov
[1] have paved the way to the application of this promising material in a multi-
tude of scenarios including integrated technologies, especially at terahertz (THz)
frequencies, i.e., that part of the spectrum that nominally goes from 300 GHz
to 3 THz [2]. In this frequency range graphene shows interesting properties,
because its surface conductivity (which completely characterizes its electromag-
netic properties, due to the mono-atomic layer structure) becomes mostly re-
active [3] and hence can support plasmonic propagation. Moreover, surface
plasmon polariton (SPP) waves supported by graphene may have a guided
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wavelength much shorter than the wavelength of plane waves in free space,
thus resulting in a tight transverse confinement of the SPP field [4], especially
if compared to SPP propagation along ordinary metal surfaces. However, the
most intriguing feature of graphene is perhaps the possibility of dynamically
tuning its conductivity through the application of an electrostatic bias field,
which lays the ground for the development of reconfigurable THz devices.

Despite all these excellent properties graphene was initially considered mainly
as an alternative to post-silicon transistors [5] rather than as a material for an-
tennas and other passive devices. Specifically in antenna applications, graphene
was first employed as a parasitic layer of a THz dipole antenna array radiating
around 1 THz [6]. Also the propagation of SPPs along an infinite graphene
sheet was theoretically derived [3], [7] and the first study on graphene used
as an actual antenna radiator was presented in [8]. There, it was shown that
graphene allows for the realization of miniaturized resonant and reconfigurable
THz antennas with good efficiency, compared to the small electrical size, and
good direct matching, as required by most of the present THz communication
and sensing devices. Over the years, other works [9], [10] have further investi-
gated the possibilities of graphene in antenna design.

All these works consider the radiation mechanism through the excitation of
a transverse-magnetic (TM) SPP; to our knowledge only two very recent works
[11], [12] show the possibility of designing a graphene-based waveguide through
the excitation of leaky modes [13], [14]. In [11], a sheet of graphene is sinusoidally
modulated by applying a DC bias to a polysilicon layer located beneath it, in
order to control its surface reactance; the pointing angle and the leakage rate
can thus be dynamically varied by modifying the bias, allowing for electronic
beam scanning at a fixed operating frequency. In [12], a 2D-periodic graphene-
based high-impedance surface is used to design a 2D leaky-wave antenna with
reconfigurable radiation pattern; however, no information is provided on the
dispersion properties of the involved leaky modes.

To the best of our knowledge, in the literature a detailed dispersion analysis
is not yet available which considers the propagation of all the possible modes
existing in a multilayer structure comprising a graphene layer, both in bound
regimes (surface waves, SWs, and in particular SPPs) and in radiative regimes
(leaky waves, LWs). Such an investigation would be extremely helpful to clarify
how the frequency-dependent behavior of graphene surface conductivity affects
modal propagation, especially at THz frequencies where its variation is not neg-
ligible, and even more when a voltage bias is applied in order to modify the
graphene chemical potential. With reference to guidance phenomena, a com-
plete modal analysis would furnish fundamental information for the development
of graphene-based planar waveguides (GPWs). In particular, structures that are
constituted by a dielectric substrate entirely covered at the bottom by a metal
ground plane opaque to radiation and on top by a graphene sheet whose re-
flectance may be controlled through a bias voltage can be considered as reference
structures for the design of novel graphene-based Fabry-Perot cavity antennas
(FPCAs) [15]. In this framework, the waveguide can be fed by a simple, non-
directive source (e.g., a slot etched in the ground plane and back-illuminated
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by a coherent THz source) in order to excite a pair of weakly attenuated leaky
modes that propagate along the structure and mainly determine its radiation
features through their complex propagation constants [13]-[15].

In this work we deal with a complete dispersion analysis of a GPW within
the band of 0.25-2.0 THz. For the sake of simplicity we start from an ideal struc-
ture [3] consisting of a dielectric-filled parallel-plate waveguide (PPW) whose
upper plate is made of graphene. A detailed dispersion analysis is performed
by numerically solving the relevant dispersion equation obtained through the
transverse-resonance technique [16]-[19]. The main result of this analysis is rep-
resented by the fact that for suitably high values of the chemical potential the
first higher-order modes exhibit leaky regimes with low attenuation constant,
hence they may be employed to achieve scannable directive beams in graphene-
based tunable FPCAs [20].

2 Graphene-based Planar Waveguides and their
Dispersion Analysis

The structure of the GPW considered here is shown in Fig. 1 along with the
relevant transverse equivalent network (TEN) [16]-[19]. It consists of a dielectric-
filled PPW where the lower plate is assumed first a perfectly electric conducting
(PEC) plane, whereas the upper plate is a graphene plane that acts as a par-
tially reflecting sheet (PRS) in order to allow for radiation and exhibit recon-
figurability properties. A polysilicon layer is used as a gate electrode to control
graphene conductivity, but it is safely neglected in the equivalent transmission-
line model due to its extremely thin profile [11]. In this idealized structure we
have assumed several simplifying hypotheses. In particular, we have considered
a two-dimensional structure independent of y and laterally infinite, in which the
ground plane is treated as an ideal conductor characterized by an infinite value
of the conductivity and the substrate has no dielectric losses. A more realistic
model will be treated in Section 4, where it will be shown that the introduction
of realistic losses does not affect significantly the results of our analysis.

Figure 1: 2D-section of the structure under analysis and its transverse equivalent
network (TEN). The polysilicon layer has been safely excluded from the TEN
due to its extreme thinness.
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2.1 Graphene conductivity and biasing

As is known, graphene conductivity depends on several parameters and it can be
derived in scalar form (i.e., neglecting nonlocal effects) through Kubo formula
[21]. In the low THz band and at room temeperature it is usually sufficient to
take into account only the intraband contributions, which give rise to a Drude-
like dispersion behavior:

σ = − jq2ekBT

πh̄2(ω − jτ−1)2

(
µc
kBT

+ 2 ln

{
exp [−µc/(kBT )] + 1

})
(1)

where kB is the Boltzmann constant, h̄ is the reduced Planck constant, −qe is
the electron charge, µc is the chemical potential, T is the temperature, and τ
is the relaxation time (for all numerical results we have used T = 300 K, and
τ = 3 ps).

Clearly, σ is strongly affected by the values of µc (see Fig. 2) which is in
turn related to the electrostatic bias E0 through [22]

E0 =
qe

πε0h̄
2v2F

∫ ∞
0

E [fd(E)− fd(E + 2µc)]dE (2a)

fd(E) = (1 + exp [(E − µc)/(kBT )])−1 (2b)

where ε0 is the vacuum permittivity, vF is the Fermi velocity (for graphene
vF ' 106 m/s), and E is the energy. E0 has been calculated for different
discrete values of µc in the range 0-1 eV by numerically solving the integral
on the right-hand side of the equation; as shown in [11] and depending on the
biasing scheme, it results that the maximum absolute value of the chemical
potential that can be obtained with practical values of the DC bias voltage is
around 1 eV, which corresponds through Eq. (2a) to E0 ' 7.5 V/m.

It should be mentioned that in recent years more sophisticated models for
graphene conductivity have been derived, which take into account its non-local
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Figure 2: (a) Graphene surface conductivity vs. chemical potential in the range
-1 to 1 eV at the frequency of 1 THz. (b) Graphene surface conductivity vs.
frequency in the band 0.3-3 THz for chemical potential raising from 0 to 1 eV.
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(i.e., spatially dispersive) nature and thus require a dyadic description [23], [24].
These have also been considered in this investigation; however, it will be shown
that, for the considered ranges of parameters, non-local effects have a negligible
impact on dispersion and radiation properties.

2.2 Dispersion analysis

The dispersion equation for modes propagating along the considered GPW is
obtained by enforcing the condition of resonance on the relevant transverse
equivalent network (see Fig. 1), where Yg = σ and the equivalent admittances
in air Yc1 and inside the slab Yc2 for TE and TM modes have the following
expressions:

Y TM
c1 =

ωε0
kx1

Y TM
c2 =

ωε0εr
kx2

(3)

Y TE
c1 =

kx1
ωµ0

Y TE
c2 =

kx2
ωµ0

(4)

where kx1 =
√
k20 − k2z and kx2 =

√
k20εr − k2z are the transverse wavenumbers

in air and in the dielectric, respectively, k0 is the free-space wavenumber, and
kz = βz − jαz is the complex longitudinal wavenumber, with βz and αz the
relevant phase and attenuation (or leakage) constants, respectively.

The resulting dispersion equation for TE modes is√
1− k̂2z + ση0 − j

√
εr − k̂2z cot

(
k0h

√
εr − k̂2z

)
= 0 (5)

whereas for TM modes is(√
1− k̂2z

)−1
+ ση0 − jεr

(√
εr − k̂2z

)−1
cot

(
k0h

√
εr − k̂2z

)
= 0 (6)

where η0 is the free-space impedance and k̂z = kz/k0 is the normalized lon-
gitudinal wavenumber. A key point in the numerical solution of Eq. (5) and
Eq. (6) is the choice of the determination of the square root that defines the
vertical wavenumber kx1 [13], [25]. In fact, whereas the corresponding choice
for the square root that defines the wavenumber in the slab kx2 is immaterial
(because the dispersion equations are even functions of kx2) the two determi-
nations of kx1 provide different dispersion equations. As is customary in the
study of leaky modes, we distinguish between proper modes with Im[kx1] <0
(hence modal fields that tend exponentially to zero at infinity in the transverse
direction) and improper modes, with Im[kx1] >0 (whose modal fields instead
increase exponentially at infinity in the transverse direction) [13], [25].

2.3 Complex mode dispersion

In this section numerical results will be reported that illustrate the modal spec-
trum of the GPW shown in Fig. 1 in the range 0.25-2 THz and for different
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bias conditions. The waveguide is assumed to be filled with a dielectric medium
with εr = 3.8 (quartz) and thickness h ≈ 77µm ≈ (λ/2

√
εr) at f = 1 THz.

The obtained dispersion behaviors are then compared with those of the relevant
grounded dielectric slab (GDS), where the graphene sheet has been removed,
and with those of a standard PPW, where the graphene sheet has been substi-
tuted by a perfectly conducting metal plate.

In order to obtain the sought modal spectra, the roots of Eq. (5) and Eq.
(6) have been found by means of a numerical technique using a Padé-based root-
finding algorithm [26], that is an exponentially convergent procedure that allows
for an efficient computation of the complex propagation wavenumbers for lay-
ered structures. One of the key aspects of the algorithm lies in a correct choice
of the initial points. Since graphene at low THz frequencies is a rather bad
conductor, the unbiased graphene-based PW (henceforth referred to as GPW)
can be seen as a perturbation of the GDS, and the proper real solutions of the
GDS dispersion relation can be used as good initial guess points for the rel-
evant proper complex solutions in the (lossy) GPW. In fact, proper complex
solutions corresponding to surface waves of the GPW are characterized by very
low values of the attenuation constant. Results shown in Fig. 3 confirm how the
dispersion curves of the GPW are only slightly different from those of the GDS.
As can be seen, in both the TE and TM cases the propagating modes exhibit
the well-known transition regions between bound and leaky regimes typical of
dielectric-based open guiding structures [27], [28]. Unfortunately, LWs of the
GPW are not suitable for efficient radiation here, because they exhibit a very
high leakage rate [13] especially at low frequency, where the leaky-wave cutoff

condition (β̂z = α̂z) is met [20]. One way to obtain reasonable values of the
leakage rate is to increase the surface susceptance. As stated in section 2.1, this
can be achieved by increasing the chemical potential of graphene (see Fig. 2(b)).
Since the most interesting results have been obtained for µc = 1 eV we will re-
fer to this value when we consider the biased graphene-based PW (BGPW). As
expected, in both TE and TM cases the dispersion curves of BGPW in Fig. 3
are shifted closer to the PPW ones.

Dispersion curves of TE and TM fundamental modes for three different val-
ues of µc = 0, 0.2, 1 eV are shown in Fig. 4 in order to describe in more detail the
nature of improper and proper complex solutions in lossy GPW and to highlight
the effect of increasing the bias. As concerns improper leaky modes, we note
that the introduction of a (lossy) graphene sheet causes the generation of an
improper complex pair of solutions, the leaky-wave solution, i.e., with αx < 0
and αz > 0 (see red dashed lines in Fig. 4), and one with no physical meaning,
i.e., αx < 0 and αz < 0 (see blue dashed lines in Fig. 4) [13]. The leaky-wave

solution is physical when 0 < β̂z < 1 and can hence contribute to radiation,
if properly excited. We remind that the leaky-wave solution corresponds to a
pole of the Green’s function of the waveguide: the LW is physical when the pole
is captured by the relevant steepest-descent path (SDP) [13]. Furthermore, as
concerns the nonphysical improper complex solution, by increasing frequency it
becomes proper complex and reaches the cutoff condition of the corresponding
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Figure 3: Dispersion curves of SWs and LWs within the band 0.25-2 THz for a
GDS (blue lines), a GPW (red lines), a BGPW (green lines), and a PPW (gray

lines). In dashed lines improper waves, in solid lines proper waves. In (a) β̂z,

in (b) α̂z for TE modes, and in (c) β̂z, in (d) α̂z for TM modes.

surface waves (see blue solid lines in Fig. 4). This kind of evolution of the com-
plex wavenumbers below cutoff is common to all the SW higher-order modes in
both TE and TM cases. Finally, specific attention is devoted to the behavior of
the fundamental TE improper complex solution of the GPW (the TE1 mode)
as µc increases. As is well known, for the fundamental TE mode of the GDS
(blue dashed line in Fig. 3), there exists only a real improper pole below cutoff
(whereas for the high-order modes a complex pair exists). However, we observe
in Fig. 4 that as µc increases up to 1 eV the fundamental TE improper complex
solution with αz < 0 gradually joins that with αz > 0 (a solution that never
exists in a GDS and that is of no interest in a GPW). Furthermore, the latter
becomes a fast (and physical) leaky mode in the frequency range 0.5−0.75 THz.

The main results introduced by the application of the bias are better shown
in Fig. 5 where the dispersion curves for the fundamental TE and TM LWs have
been reported in (a) for three significant values of the chemical potential as fre-
quency varies from 0.75 to 1.1 THz, and in (b) for a fixed frequency (f = 0.92
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Figure 4: Dispersion curves of SWs and LWs within the band 0.25-1.5 THz for
three different values of the chemical potential. In dashed red line improper
leaky poles, in dashed blue line improper non-physical poles, in solid red line
SWs for the fundamental TM mode and in solid blue line the remaining SWs.
In (a) β̂z, in (b) α̂z for TE modes, and in (c) β̂z, in (d) α̂z for TM modes.

THz) as chemical potential varies from 0.2 to 1 eV. We recall here that the main
features of the field radiated by a LW are simply related to the normalized LW
wavenumber k̂z = β̂z − jα̂z. In particular, above the LW cutoff where βz = αz,

the angle of maximum radiation θM is given by sin θM '
√
β̂2
z − α̂2

z, which takes

the customary form sin θM ' β̂z when βz � αz, hence the variation of the phase
constant with frequency or other parameters is associated with beam scanning;
on the other hand, the half-power beam width ∆θ of the main radiated lobe is
proportional to the normalized attenuation constant α̂z [13], [14].

Considering now Fig. 5(a), it is clear that the radiative behavior over fre-
quency associated with the fundamental LWs improves for higher values of µc
since the leakage rate reaches lower values for both the TE and TM cases. Con-
sidering Fig. 5(b), we remark that the frequency of f = 0.92 THz corresponds
to the leaky-wave cutoff condition for both TE and TM LWs when a bias of
1 eV is applied (as can be seen by inspection of Fig. 5(a)). Here, the beam
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Figure 5: Dispersion curves of the TE1, TM2 fundamental LWs (a) within the
band 0.75-1.1 THz for µc = 0.5, 0.75, 1 eV, and (b) within the range µc = 0.2÷1

eV for f = 0.92 THz. In (a) β̂z and α̂z are both represented in dashed lines for

the TE1 mode and in solid lines for the TM2. In (b) β̂z and α̂z are represented
in solid lines and dashed lines, respectively, for both modes.

scanning over chemical potential follows an optimal quasi-linear behavior for
both TE and TM modes, thus corroborating once more the tunable features of
such kind of LW radiation.

As concerns plasmonic propagation, it is worth mentioning that in the TM
case a SPP mode propagates in both the unbiased and the biased PW, as it
always occurs between a dielectric, non-absorbing half space with Re[ε] > 0 and
an adjacent conducting interface with Re[ε] < 0 [29]. The dispersion curves of
this mode are shown in Fig. 6 for the GPW with a chemical potential that
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0

10
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f [THz]

α̂z

 

 
µc= 0 [eV]
µc= 1 [eV]

(b)

Figure 6: Dispersion curves of (a) β̂z, (b) α̂z for the plasmonic mode SPP. Lines
become brighter (red to yellow, and blue to cyan) as µc increases from 0 to 1
eV. Note that as µc approaches 1 eV the SPP mode approaches the PPW TEM
mode.
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Figure 7: (a) 2D-section of the structure and its transverse equivalent networks,
(b) using the approximate Leontovich boundary condition, and (c) using the
transition boundary condition.

varies almost continuously from 0 to 1 eV.

2.4 Loss Effects

A remark about ohmic and dielectric losses at THz frequencies is useful. In fact,
in all the results shown above, the effects of losses have been always neglected in
both the dielectric substrate and the metalization. We have then computed the
dispersion curves of the fundamental LWs considering a more realistic model of
quartz, with a complex permittivity characterized by a real part Re[εr] = 3.852
and a loss tangent tan δ = 0.0141 at f = 1 THz [30]. On the other hand,
ohmic losses have also taken into account for a metalization of gold (see Fig.
7(a)) using two different models. The first model is related to the approximate
Leontovich boundary condition [31], assuming a thick layer of gold with respect
to the skin depth (see Fig. 7(b)). The equivalent admittance is then given by
the formula

Ym =
1

1 + j

√
σm
πµ0f

(7)

where σm ' 44 [µΩm]
−1

is the bulk conductivity of gold at 1 THz [32]. This
value is used in place of the short circuit of the transverse equivalent network of
Fig. 1. The second model does not assume a metal thickness t much larger than
the skin depth; however, since in any case t� λ, the metal layer can be modeled
through a transition boundary condition (see Fig. 7(c)). The admittance is
given by the formula

Ymt = σmt (8)

where t = 150 nm is the thickness of the layer, and σm ' 30 [µΩm]−1 is now a
thin-film conductivity which is accordingly reduced of a factor 0.69 [32]. Since
the skin depth of gold at f = 1 THz, δgold ' 127.4 nm is slightly shorter than
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Figure 8: Effects of the introduction of losses and spatial dispersion in the curves
of the fundamental LWs in the band 0.9 ÷ 0.95 THz for (a) TE and (b) TM
modes. The red and green-blue lines consider the effect of dielectric losses and
ohmic losses, respectively. The yellow ones consider the effect of a spatially
dispersive model in addition to dielectric and ohmic losses.

the thickness of the layer, the short circuit represented in Fig. 1 is now replaced
by an equivalent admittance given by Eq. (8) connected to a semi-infinite
transmission line of Fig. 7(c). In Figs. 8(a) and 8(b) it is clearly shown that
the effect of losses is quite negligible in both TE and TM cases, and hence the
ideal model previously investigated can be considered as a good approximation
of more realistic conditions.

2.5 Effects of spatial dispersion

Furthermore, a spatially dispersive conductivity model of biased graphene [23]
has been considered in order to assess the accuracy of Kubo formula. As is
known [22], in the low THz band and for sufficiently low values of the longi-
tudinal wavenumber kz, spatial-dispersion effects can generally be neglected.
Nevertheless, the dispersion curves of the fundamental leaky waves have been
recalculated considering a non-local dyadic conductivity of graphene, that in
spectral domain and in polar coordinates assumes the following form:

σ =

[
σρ 0
0 σφ

]
(9)

where σρ and σφ are functions of the radial wavenumber kρ only (hence graphene
is isotropic) and are given by

σφ = γ
2πα

v2F k
2
ρ

(1− χ) (10)

σρ =
vF

2πγD(1− χ) + vFχ
σφ (11)
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Figure 9: Radiation patterns of the fundamental TE (blue solid line) and TM
(red solid line) leaky modes. Graphene conductivity is calculated with the
spatially dispersive model. In (a) frequency-scanning behavior is shown for
broadside (f = 0.92 THz) and θ = π/4 rad (f = 0.99 THz) at µ = 1 eV. In
(b) bias-scanning behavior is shown for broadside (µ = 1 eV) and θ = π/4 rad
(µ = 0.52 eV) at f = 0.92 THz.

where

γ =
jq2ekBT

π2h̄2
ln

{
2

[
1 + cosh

(
µc
kBT

)]}
γD = −j vF

2πωτ
(12)

χ =

√
1−

v2F k
2
ρ

α2
α = ω + jτ−1 (13)

again with electron Fermi velocity vF ' 106 m/s. The transverse (σφ) con-
ductivity affects TE fields, whereas the longitudinal one (σρ) affects TM fields.
Therefore the value of σ in the dispersion equations (5), (6) is respectively re-
placed by σφ and σρ, where we have used kρ = kz. The resulting dispersion
curves are shown in Fig. 8(a) and Fig. 8(b) where they are compared with
those obtained by using the Kubo formula for both the lossless and lossy case.
As it can be seen, spatial dispersion has a negligible impact on the modal prop-
erties of the leaky modes (physical leaky waves are characterized by βz < k0
and αz ≤ βz, hence |kz| is of the order of k0 and therefore spatial dispersion
can be ignored [24]). As a consequence, the beam scanning over frequency and
over chemical potential is almost the same, thus confirming the effectiveness of
Kubo formula for a first qualitative description of the radiating properties of
this kind of structures.

Finally, in Fig. 9 the far-field patterns of the fundamental TE, TM leaky-
wave modes are calculated through a standard application of the reciprocity
theorem [33], considering for simplicity a 2D case in which the excitation is
an ideal electric line source placed in the middle of the substrate (TE), or a
magnetic line source placed on the ground plane (TM). In Fig. 9(a) the beam-
scanning behavior is obtained by varying the frequency while keeping µc = 1
eV, whereas in Fig. 9(b) the beam-scanning behavior is obtained by varying
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the chemical potential at the fixed frequency f = 0.92 THz. In both figures
a comparison between TE, TM patterns is shown for two different pointing
elevation angles (θ = 0, π/4 rad). As expected, the pointing angle is reached at
almost the same frequencies (see Fig. 9(a)) or bias (see Fig. 9(b)), since both
the phase and the attenuation constants are equally affected. It is worth here to
notice that the equalization of the TM, TE leaky-wave phase constants allows
for both frequency- and bias-scanning for a considerable range of the elevation
angle with a nearly circular conical scanned beam [34].

2.6 Technological device implementation

In this subsection we aim to provide some technological details about the practi-
cal realization of a GPW. The proposed structure is depicted in Fig. 1 where the
antenna feed excitation can be achieved through a finite-size slot etched in the
ground plane. The structure must be electrically large in the transverse direc-
tions, in order to minimize edge effects on the shape of the radiation patterns.
In particular, considering a circular substrate with radius ρap and assuming, as
is customary, that the relevant leaky modes have radiated 90% of their power
before reaching the structure edges, it can readily be shown that

ρap
λ0
' 0.18

α̂z
(14)

where λ0 is the free-space wavelength at f = 1 THz. With reference to the
case illustrated in Fig. 5, where α̂z ' 0.2, this implies a substrate having linear
dimensions of the order of 500 µm. However, such dimensions are nowadays
well within the state of the art for the production of high-quality graphene
sheets, thanks to the recent advances in chemical vapor deposition (CVD) [35].
Just recently, a large-size and high-quality single-layer graphene film has been
synthesized on copper foils by chemical vapor deposition using methane [36].

Once the graphene film is produced, it can be transferred onto a back-
metalized SiO2 substrate (already comprising the polysilicon layer) using the
polymethyl methacrylate (PMMA) based wet chemical process [35]. Ultimately,
a coherent THz source, such as a QCL beam, can be used to illuminate a slot
etched in the metalized back plane of the antenna in order to suitably excite the
fundamental leaky modes. The tunable features of graphene are then exploited
by varying the DC voltage between the graphene sheet and the polysilicon layer,
used here as a gate electrode.

3 Conclusion

We have reported a detailed dispersion analysis of a graphene-based planar
waveguide (PW) over the frequency range 0.25-2 THz considering also the ap-
plication of a chemical potential µc in the range from 0 to 1 eV. We have
compared the modal spectrum of this structure to the grounded dielectric slab
(GDS) and to the parallel-plate waveguide (PPW) ones, finding that the modes
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of the unbiased graphene are much closer to the GDS modes and approach the
PPW modes as the chemical potential approaches 1 eV. As a consequence the
tunability of graphene allows for switching the graphene-based PW from GDS
to PPW. However, the main result emerging from our dispersion analysis is rep-
resented by the presence of the fundamental leaky modes for both the TE and
TM polarizations. It is seen that for µc = 1 eV these modes exhibit suitable
leakage rates, opening very interesting perspectives for antenna applications. In
particular, the tunability of graphene allows for beam scanning functionalities
at a fixed frequency, a feature that could be of great interest in the context of
reconfigurable THz antennas. Future work can be devoted to deepen the study
of the radiation properties of our graphene-based PW taking also into account
a more realistic dipole-like source and a suitable biasing scheme.
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