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ABSTRACT 

Pyrethroid insecticides are widely used in agriculture and in homes. Despite the neurotoxicity of 

these insecticides at high doses, few studies have examined whether lower-level exposures could 

adversely affect children's neurodevelopment.  

The PELAGIE cohort included 3421 pregnant women from Brittany, France between 2002 and 2006. 

When their children reached their sixth birthday, 428 mothers from the cohort were randomly 

selected, successfully contacted and found eligible. A total of 287 (67%) mothers agreed to 

participate with their children in the neuropsychological follow-up. Two cognitive domains were 

assessed by the Wechsler Intelligence Scale for Children: verbal comprehension and working 

memory. Five pyrethroid and two organophosphate insecticide metabolites were measured in 

maternal and child first-void urine samples collected between 6-19 gestational weeks and at 6 years 

of age, respectively. Linear regression models were used to estimate associations between 

cognitive scores and urinary pyrethroid metabolite concentrations, adjusting for organophosphate 

metabolite concentrations and potential confounders.  

Maternal prenatal pyrethroid metabolite concentrations were not consistently associated with any 

children's cognitive scores. By contrast, childhood 3-PBA and cis-DBCA concentrations were both 

negatively associated with verbal comprehension scores (P-trend=0.04 and P-trend<0.01, 

respectively) and with working memory scores (P-trend=0.05 and P-trend<0.01, respectively). No 

associations were observed for the three other childhood pyrethroid metabolite concentrations (4-

F-3-PBA, cis-DCCA, and trans-DCCA).  

Low-level childhood exposures to deltamethrin (as cis-DBCA is its principal and selective 

metabolite), in particular, and to pyrethroid insecticides, in general (as reflected in levels of the 

3-PBA metabolite) may negatively affect neurocognitive development by 6 years of age. Whatever 

their etiology, these cognitive deficits may be of importance educationally, because cognitive 

impairments in children interfere with learning and social development. Potential causes that can 

be prevented are of paramount public health importance. 
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1. Introduction 

The use of pyrethroid insecticides has increased substantially throughout the world over the past 

several decades, replacing organophosphate and carbamate insecticides, because of their chemical 

potency against many pests, their relatively low mammalian toxicity and their favorable 

environmental profiles (Schleier and Peterson, 2011). Pyrethroid insecticides are neurotoxic agents 

that disrupt the normal function of the peripheral nervous system by altering the permeability of 

excited nerve cells to sodium ions. Repetitive nerve impulses cause incoordination, convulsions, 

and paralysis in insects and other pests (Soderlund and Bloomquist, 1989). 

It is commonly assumed that the major exposure pathway for pyrethroid insecticides in the 

general population is diet (Schettgen et al., 2002). However, their use in common household 

products, such as household and garden insecticides, pet sprays and shampoos, lice treatments, 

and mosquito repellents applied to clothing, may also lead to short episodes of exposure. Young 

children may receive greater exposure because they are closer to the floor and surfaces where 

insecticides may settle, have extensive hand-to-mouth contact, and are more likely to receive head 

lice treatments, as suggested by their higher urinary concentrations of pyrethroid insecticide 

metabolites compared with adolescents and adults (Barr et al., 2005). The major exposure routes 

for children are dietary ingestion of solid foods, followed by nondietary ingestion of dust, except in 

homes with frequent insecticide applications, in which case dermal absorption is more important 

than dietary ingestion (Morgan 2012). 

In humans, pyrethroids are rapidly metabolized by ester hydrolysis and hydroxylation, primarily 

in the liver. The detoxified metabolites are eliminated by the kidneys for several days after 

exposure. Because pyrethroids are metabolized so rapidly, the concentrations of intact pyrethroids 

in serum or plasma are much lower than those of urinary metabolites, which are considered to 

reflect short-term exposures in low-exposure scenarios with the potential for misclassification 

(Bradman et al., 2005; Koureas et al., 2012). The major metabolites of pyrethroid insecticides 

detected in the urine are 3-PBA (a common metabolite of up to 20 synthetic pyrethroid 

insecticides), 4-F-3-PBA (a metabolite of the fluorine-substituted pyrethroid insecticide cyfluthrin), 

cis-DCCA and trans-DCCA (geometric isomeric metabolites of the chlorinated pyrethroid 

insecticides permethrin, cypermethrin, and cyfluthrin), and cis-DBCA (a selective metabolite of 

deltamethrin).  
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The mode of action of pyrethroid insecticides raises concerns for human health. The potential 

effects of low-level chronic exposure to pyrethroid insecticides on neurobehavioral functioning are 

particularly relevant for fetuses and young children, who may be especially vulnerable to 

neurotoxic agents because of their immature nervous systems and their rapid rates of brain growth 

and development. A limited number of epidemiologic studies have examined the associations 

between maternal prenatal pyrethroid exposure and effects on neurodevelopment (Horton et al., 

2011; Shelton et al., 2014). Recently, however, Oulhote and Bouchard (2013) reported a significant 

association between childhood concentration of cis-DCCA in urine and behavioral difficulties. 

Because pyrethroid and organophosphate (OP) insecticides are frequently encountered in the same 

environments, and because recent studies have provided compelling evidence for an association 

between prenatal OP insecticide exposure and neurodevelopmental dysfunction (Rauh et al., 2006; 

Eskenazi et al., 2007; Marks et al., 2010; Bouchard et al., 2011), potential confounding by OP 

exposure must be considered.  

Using a longitudinal design, the aim of this study was to investigate associations between 

prenatal or childhood exposure to pyrethroid insecticides, as measured by urine pyrethroid 

metabolite concentrations, and cognitive abilities of 6-year-olds, after adjusting for OP insecticide 

metabolite levels during the corresponding measurement period.  

 

2. Methods 

2.1. Study setting and design 

The PELAGIE cohort has been described previously (Petit et al., 2010; Chevrier et al., 2011). 

Briefly, 3,421 pregnant women from Brittany, France were included from January 2002 to February 

2006. Women were enrolled before the 19th week of gestation after completing a questionnaire at 

home concerning family, social and demographic characteristics, diet, and lifestyle. Midwives and 

pediatricians at the maternity units provided the study staff with medical information about the 

pregnancy, delivery, birth weight and neonatal health for 3,399 women and their newborns.  

A random subcohort of 591 mothers was selected for pesticide determination in urine samples 

from the mothers who delivered live-born singleton infants, to obtain a final sample of size similar 

to those used in previous OP insecticide exposure studies (Rauh et al., 2006; Eskenazi et al., 2007). 

For the cognitive assessments at age 6, exclusion criteria were length of pregnancy <35 weeks of 

amenorrhea, neonatal abnormalities (e.g., severe hypoglycemia, low Apgar score), neonatal 

hospitalization, and Down syndrome. Among the 571 eligible families, 446 were successfully 
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contacted by phone and 18 were further excluded because of previous child neuropsychological or 

behavioral tests (to avoid bias due to the learning effect). A total of 287 (67%) mothers agreed to 

participate with their child in the neuropsychological follow-up. Home visits were organized by two 

psychologists who were blinded to exposure status and supervised by four pediatric 

neuropsychologists in meetings held every two months. One of the psychologists completed child 

neurodevelopmental assessments, and the other psychologist was in charge of maternal interviews, 

maternal intelligence scoring, home environment assessments, child urine collections and dust 

sampling.  

 

2.2. Cognitive assessments at age 6  

The Wechsler Intelligence Scale for Children, 4th edition (WISC-IV) was used to assess cognitive 

abilities (Wechsler, 2003). Scores were calculated for two domains: the Verbal Comprehension 

Index (WISC-VCI), which measures verbal concept formation and is a good predictor of school 

readiness, and the Working Memory Index (WISC-WMI), which assesses child ability to memorize 

new information, hold it in short-term memory, concentrate and manipulate information. Higher 

scores indicate better neurocognitive abilities.  

 

2.3. Maternal interviews and assessments at child age 6 

Mothers completed a self-administered questionnaire to provide information on 

sociodemographic characteristics, lifestyle factors, their child’s health, and their child's 

environmental exposures. Mothers were also administered the Wechsler Adult Intelligence Scale - 

3th revision (WAIS-III) (Wechsler, 1997). The Verbal Intelligence Quotient (VIQ) score was used to 

assess general knowledge, language, reasoning, and memory skills. To evaluate the quality and 

extent of stimulation available to the child in the home environment, the HOME (Home 

Observation for Measurement of the Environment) inventory was used as in many studies of 

neurotoxicity (Caldwell and Bradley, 1979). Higher HOME scores indicate a more supportive and 

stimulating home environment. We adapted the scale for today's French environments. Double-

blind scoring was performed on a random sample (39 homes) to monitor the accuracy of HOME 

inventory; 98% concordance was observed among all dichotomous items. 

 

2.4. Laboratory methods 
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To measure the highest possible concentrations, first-morning-void urine samples were 

collected, during early pregnancy (6-19 gestational weeks) for mothers and at the visit at 6 years of 

age for children (Barr et al., 2010). Upon arrival at the LABOCEA laboratory (Plouzané, France), 

urine samples were frozen at -20°C until analysis. To minimize analytic heterogeneity, both the 

mother's and the child's pyrethroid concentrations were measured in the same batch of samples.  

3-PBA and 4-F-3-PBA metabolites in 1-ml urine samples were extracted using an online solid-

phase extraction system Waters 2777C and Waters Oasis HLB Direct Connect cartridges with elution 

during the chromatography mobile phase. Separation was achieved by ultra-performance liquid 

chromatography (Acquity UPLC, Waters), using a Waters BEH C18 column (150 x 2.1 mm, 1.7 μm) 

and an elution gradient consisting of acetonitrile/formic acid 0.05% and water/formic acid 0.05%. 

Detection relied on ultra-performance liquid chromatography and triple quadrupole mass 

spectrometry (UPLC/MS-MS) (Xevo TQ-S, Waters). Reference standards were provided by Sigma-

Aldrich and Dr. Ehrenstorfer. Concentration range linearity was observed from 0.02 µg/L to 2 µg/L 

for 3-PBA and from 0.01 to 0.20 µg/L for 4-F-PBA. The coefficients of variation ranged from 19% to 

20%. Regarding cis-DCCA, trans-DCCA and cis-DBCA metabolites, a simultaneous extraction and 

derivatization was performed in 2-ml urine samples with Pentafluorobenzyl bromide (PFBBr) as 

alkylation reagent (Aldrich) and 1 ml dichloromethane (Carlo Erba). DCCA-D9 (Dr Ehrenstorfer) was 

added as an internal standard. The organic phase was extracted and evaporated to 250 ml using a 

Turbovap II system (Zymarck). The samples were analyzed by gas chromatography (7890 A, Agilent) 

and triple quadrupole spectrometry (7000 C, Agilent), using a Varian FactorFour VF-1 ms column 

(15m x 0.25 mm, 0.1 µm). Concentration range linearity was observed from 0.011 to 1.08 µg/L for 

cis-DCCA, from 0.022 to 2.15 µg/L for trans-DCCA, and from 0.023 to 2.26 µg/L for cis-DBCA. The 

coefficients of variation ranged from 13% to 22%. 

Six nonspecific OP dialkylphosphate metabolites were measured in child urine using the same 

UPLC/MS-MS method. Three diethyl (DE) phosphate metabolite (diethylphosphate, 

diethylthiophosphate, diethyldithiophosphate) concentrations were summed, as well as three 

dimethyl (DM) phosphate metabolite (dimethylphosphate, dimethylthiophosphate, 

dimethyldithiophosphate) concentrations. Diethyl-thiophosphate-d10 and dimethylthiophosphate-

d6 served as internal standards for non-specific organophosphate metabolites. Maternal OP 

metabolite levels were measured during pregnancy in 10 ml-urine samples with liquid 

chromatography and triple quadrupole mass spectrometry (LC/MS-MS) after solid-phase extraction, 

as previously described (Chevrier et al., 2011). The coefficients of variation ranged from 13% to 

20%. 
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Eighty-two mothers were missing measures for all pyrethroid metabolites, and 55 mothers were 

missing measures for DM and DE phosphate metabolites, mostly because of samples entirely used 

for other urine assays. Three children were missing 3-PBA, 4-F-3PBA, DM and DE phosphate levels, 

and four were missing trans-DCCA, cis-DCCA and cis-DBCA measures.  

Lead, which we considered to be a potential confounder (because of its neurotoxicity and the 

frequent lead-pesticide co-exposure in the home environment), was measured in wipe samples of 

floor dust collected in the living room using a standard protocol (ASTM E1792-03 - Standard 

Specification for Wipe Sampling Materials for Lead in Surface Dust). Samples were analyzed using 

an inductively-coupled plasma mass spectrometer (ICP/MS, Agilent Technology 7500ce) equipped 

with a quadrupole mass filter and an octopole reaction cell, with a limit of quantification of 2 µg/m² 

for acid-leachable lead. 

 

2.5. Data analysis 

To preserve the size of the analytic sample, missing values for covariates were replaced by the 

modal value from participants with non-missing values. Imputation was required for 6 mothers (for 

a total of 6 values) and 14 children (for a total of 40 values). In addition, missing values for the 

neuropsychological scores were replaced by the values predicted from the subdomain scores when 

available (WISC-VCI=4, WISC-WMI=12, WAIS-III=2). As a result, the number of children with 

available neurocognitive scores was 287 for WISC-VCI and 283 for WISC-WMI.  

Non parametric Spearman correlation coefficients were calculated between metabolite levels. 

Associations between cognitive scores (WISC-VCI or WISC-WMI as dependent variable) and 

maternal prenatal urinary pyrethroid metabolite concentrations were examined using multiple 

linear regression models. Prenatal metabolite levels were categorized into two groups for 3-BPA 

and 4-F-3-PBA (< limit of detection [LOD], ≥LOD) and into three groups for cis-DCCA and cis-DBCA 

(<LOD, and for those with a detectable level, subdivided below and above the median). Trans-DCCA 

levels were divided into tertiles. Maternal factors that were considered were the following: age 

(continuous), place of residence (rural, urban), parity (0, ≥1), pre-pregnancy body mass index (≤25, 

>25 kg/m²), education (≤12, >12 years), WAIS-III VIQ (continuous), tobacco smoking at the 

beginning of pregnancy (no, yes), usual fish consumption before pregnancy (<2, ≥2 times a week), 

length of pregnancy (continuous) and non-exclusive breastfeeding (none, ≤16, >16 weeks). For the 

6-year-old children, the following variables were considered: sex, birth weight (continuous), 

education (nursery school, primary school), number of siblings at age 6 (continuous), sleep duration 
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(<10.5, 10.5-11, >11 hours per day), duration of television watching (<2.5, 2.5-4.5, >4.5 hours per 

week), duration of video gaming (0, 0-1.5, ≥1.5 hours per week), extra-curricular sport activities 

(no, yes), and urinary cotinine concentration measured in the same urine samples as the pesticides 

(<6, ≥6 µg/L). Finally, several environmental factors and exposures were also examined: HOME 

score when the child was 6 years of age (continuous), acid-leachable lead in the living room (≤1, 1-

3, >3 µg/m2), number of smokers at home (0, 1, ≥2), and cigarettes smoked at home (0, 0-10, >10 

per day). The psychologist who administered the psychological tests was also investigated as a 

potential source of measurement errors. We included a priori maternal education, WAIS-III VIQ 

score and HOME score in models because they are important determinants of children's cognitive 

development (Bouchard et al., 2011). DE and DM phosphate metabolites in maternal urine samples 

were forced into the models, to disentangle the potential neurotoxic effects of pyrethroid 

insecticides from that of organophosphate insecticides, as well as the childhood concentration of 

the pyrethroid metabolite under study, to account for its potential competing influence. In 

addition, we included urinary creatinine concentrations (for mothers and children) to account for 

urinary dilution. The remaining variables that predicted both the cognitive scores and the 

pyrethroid metabolite level with p < 0.2 were retained as model covariates. Separate models were 

used to estimate associations with the five pyrethroid metabolites. Positive β coefficients indicate 

better neurocognitive performance. 

Tests for monotonic trend between metabolite levels and cognitive scores were performed using 

a reverse-scale Cox regression model recently proposed by Dinse et al. (2014) to handle non-

detected values. In this method, the measured metabolite is treated as the modelled outcome, 

switching the roles of exposure and health effect. The method begins by reversing the 

concentration scale and then applying Cox regression analysis with non-detected values as right-

censored data. The same confounding variables as were used in the first approach were introduced 

into the Cox regression models. 

The same confounder selection strategy was used to study associations between cognitive 

scores and childhood pyrethroid concentrations. Metabolite concentration categories differed 

slightly because the limits were based on childhood metabolite distributions. Childhood DE and DM 

concentrations were forced into the models. As with maternal prenatal concentrations, childhood 

pyrethroid metabolite concentrations were treated as categorical and as continuous (to carry out 

trend tests). 
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P Values < 0.05 were considered statistically significant. Regression model diagnostics were 

performed and found to be acceptable. All statistical analyses were performed using R software (R 

Development Core Team 2014).  

 

2.6. Ethics Statement 

This study was approved by the French Consulting Committee for the Treatment of Information 

in Medical Research (no. 09.485) and by the French National Commission for the Confidentiality of 

Computerized Data (no. 909347). Written informed consent was obtained from each mother. 

Children provided verbal and witnessed assent. 

 

3. Results 

3.1. Description of the population 

Demographic characteristics and lifestyle factors for the 287 mother-child pairs studied are 

reported in Table 1. At the beginning of their pregnancies, most mothers were >27 years of age, 

multiparous, and of healthy weight, had completed college and did not smoke. Children were 

predominantly attending a nursery school, slept at least 10.5 hours per day, had extra-curricular 

sport activities, and lived in a non-smoking environment. 

The WISC-VCI scores ranged from 72 to 155 (n=287, mean=106.76, 95% confidence interval [CI] = 

76.51-137.01), and the WISC-WMI scores ranged from 62 to 140 (n=283, mean=106.77 [78.65-

134.89]). 

Table 1  
Socio-demographic and lifestyle factors of the study's mother-child 
pairs (n=287, PELAGIE cohort, France). 

Characteristics No. % 

Maternal factors   

Age (years)a   

    ≤ 27 62 21.6 

   28 - 31 131 45.6 

   ≥ 32 94 32.8 

Place of residence   

    rural 158 55.1 

    urban 129 44.9 

Parity   

    0 122 42.5 
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    ≥ 1 165 57.5 

Body mass index (kg/m²)   

    ≤ 25 236 82.2 

    > 25 51 17.8 

Education (years)   

   ≤12 91 31.7 

   >12  196 68.3 

Tobacco smoking at the beginning of pregnancy 

   No 216 75.3 

   Yes 71 24.7 

Child  factors   

Sex   

   Boys 139 48.4 

   Girls 149 51.6 

Birth weight (grams)a   

   < 3380 143 49.8 

   ≥ 3380 144 50.2 

Education   

   Nursery school 214 74.6 

   Primary school 73 24.4 

Sleep duration (hours per day)  

    < 10.5 74 25.8 

    10.5 - 11 129 44.9 

    > 11 84 29.3 

Extra-curricular sport 

activities 

  

   No 81 28.2 

   Yes 206 71.8 
a For the sake of clarity, this variable is categorized in the table, but 

it was introduced into regression models as a continuous variable. 
 

3.2. Levels of urinary pyrethroid metabolites 

Table 2  
Concentrations of pyrethroid insecticide urinary metabolites (µg/L) (PELAGIE cohort, France). 

Exposure No. LOD 
Percent 

<LOD 
Median 

Median 
>LOD 

Maximum 

Prenatal (before the 19th week of gestation)    

3-PBA 205 0.008 69.8 < LOD 0.051 0.518 

4-F-3-PBA 205 0.003 91.2 < LOD 0.079 0.722 

cis-DCCA 205 0.067 35.1 0.090 0.138 3.660 

trans-DCCA 205 0.010 2.0 0.140 0.141 2.390 

cis-DBCA 205 0.067 31.7 0.105 0.150 2.450 
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Childhood (at 6 years of age)     

3-PBA 284 0.008 36.3 0.018 0.038 0.816 

4-F-3-PBA 284 0.003 84.2 < LOD 0.012 0.154 

cis-DCCA 283 0.067 35.3 0.099 0.159 2.114 

trans-DCCA 283 0.010 3.5 0.222 0.231 6.251 

cis-DBCA 283 0.067 14.8 0.220 0.253 5.066 

LOD: limit of detection. 

 Table 2 presents the detection frequencies and distributions of the five pyrethroid metabolites 

measured in the maternal and child first-morning-void urine samples. Trans-DCCA, cis-DBCA and 

cis-DCCA metabolites were the most frequently detected species in both the mothers (99.9%, 

68.3% and 64.9%, respectively) and the children (96.5%, 85.2% and 64.7%, respectively). Median 

concentrations followed broadly similar patterns. 

Spearman correlation coefficients between the concentrations of different pyrethroid 

metabolites in maternal urine were high for the two DCCA isomers (rs=0.61) and moderate for 

DCCA isomers and cis-DBCA (rs=0.35 with cis-DCCA, and rs=0.39 with trans-DCCA) and 3-PBA/trans-

DCCA (rs=0.34). All other Spearman coefficients were ≤0.21. A similar pattern was observed in the 

children at 6 years of age: DCCA isomers (rs=0.74), cis-DCCA/cis-DBCA (rs=0.35) and trans-DCCA/cis-

DBCA (rs=0.39). All other Spearman coefficients were ≤0.18. 

Four mother pyrethroid metabolite concentrations were uncorrelated with their child 

counterparts (3-PBA: rs=0.02; 4-F-3-PBA: rs=0.04; cis-DCCA: rs=-0.02; cis-DBCA: rs=0.01), whereas 

trans-DCCA concentrations were moderately correlated (rs=0.24) with their child counterparts. 

 

3.3. Associations between maternal prenatal urinary levels of pyrethroid metabolites and child 

neurocognitive scores 

Table 3 presents the relations between maternal prenatal pyrethroid metabolite concentrations 

and neurocognitive scores, after adjusting for potential confounders of the associations, urinary 

creatinine levels, DM and DE prenatal concentrations, and the corresponding childhood pyrethroid 

metabolite concentrations. No consistent association was found, although some evidence 

suggested a potentially negative trend between trans-DCCA concentrations and WISC-WMI (P-

trend=0.18). 
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Table 3 

Associations between maternal prenatal concentrations of pyrethroid urinary metabolites and Wechsler 
Intelligence Scale for Children (WISC-IV) scores (PELAGIE cohort, France).a

 

Pyrethroid metabolite Verbal comprehension index Working memory index 

 No. β coefficient [95% CI] P-trendb No. β coefficient [95% CI] P-trendb 

3-PBA (µg/L)       

   <0.008c 106 - 0.32 105 - 0.79 

   ≥0.008 49 3.40 [-1.83, 8.62]  48 -0.11 [-5.09, 4.88]  

4-F-3-PBA (µg/L)       

   <0.003c 146 - 0.91 144 - 0.84 

   ≥0.003 9 -0.15 [-10.38, 10.07]  9 -1.47 [-11.10, 8.15]  

cis-DCCA (µg/L)       

   <0.067c
 61 - 0.18 61 - 0.41 

   0.067-0.137 50 0.88 [-5.10, 6.86]d  48 0.17 [-5.51, 5.85]d  

   ≥0.138 44 4.30 [-2.26, 10.85]d  44 -3.56 [-9.70, 2.58]d  

trans-DCCA (µg/L)       

   <0.086 53 - 0.24 53 - 0.18 

   0.086-0.209 48 -2.27 [-8.38, 3.83]e  48 -4.86 [-10.48, 0.76]  

   ≥0.210 54 0.26 [-5.68, 6.20]e  52 -6.44 [-11.92, -0.97]  

cis-DBCA (µg/L)       

   <0.067c
 51 - 0.81 51 - 0.64 

   0.067-0.154 52 0.12 [-5.98, 6.21]  51 -2.73 [-8.58, 3.13]  

   ≥0.155 52 -0.41 [-6.63, 5.82]  51 -3.27 [-9.31, 2.77]  

a Maternal education, maternal Wechsler Adult Intelligence Scale score, Home Observation for Measurement of the 

Environment score, corresponding childhood pyrethroid metabolite concentration, urinary creatinine 

concentrations (mother and child), and detection of dimethyl (DM) and diethyl (DE) phosphates in maternal urine 

samples were forced into all models. 
b Provided by reverse-scale Cox regression models. 
c Limit of detection. 
d Adjusted for presence of acid-leachable lead in the living room. 
e Adjusted for maternal fish consumption. 
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3.4. Associations between childhood urinary levels of pyrethroid metabolites and child 

neurocognitive scores 

 

Table 4 

Associations between childhood concentrations of pyrethroid urinary metabolites and Wechsler Intelligence Scale 
for Children (WISC-IV) scores (PELAGIE cohort, France).a 

Pyrethroid metabolite Verbal comprehension index Working memory index 

 No. β coefficient [95% CI] P-trendb No. β coefficient [95% CI] P-trendb 

3-PBA (µg/L)       

   <0.008c 
103 - 0.04 103 - 0.05 

   0.008-0.037 
90 -1.84 [-5.89, 2.22]d  89 -1.56 [-5.51, 2.40]e  

   ≥0.038 
91 -5.18 [-9.25, -1.11]d  88 -3.90 [-7.89, 0.08]e  

4-F-3-PBA (µg/L) 
      

   <0.003c 
239 - 0.70 235 - 0.54 

   ≥0.003 
45 -0.50 [-5.19, 4.18]f  45 1.66 [-3.03, 6.34]g  

cis-DCCA (µg/L) 
      

   <0.067c
 

100 - 0.82 100 - 0.28 

   0.067-0.158 
91 0.26 [-3.96, 4.48]e  89 1.39 [-2.66, 5.44]h  

   ≥0.159 
92 1.08 [-3.27, 5.44]e  90 1.43 [-2.80, 5.66]h  

trans-DCCA (µg/L) 
      

   <0.136 
94 - 0.76 92 - 0.91 

   0.136-0.409 
94 -0.14 [-4.41, 4.13]i  93 2.25 [-1.77, 6.26]j  

   ≥0.410 
95 -0.27 [-4.74, 4.19]i  94 1.41 [-2.86, 5.67]j  

cis-DBCA (µg/L) 
      

   <0.134 
94 - < 0.01 93 - < 0.01 

   0.134-0.345 
94 -2.05 [-6.37, 2.28]i  92 -3.56 [-7.84, 0.71]d  

   ≥0.346 
95 -6.75 [-11.17, -2.32]i  94 -3.94 [-8.33, 0.45]d  
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Table 4 reports results for childhood pyrethroid metabolite concentrations. For WISC-VCI scores, 

a negative association was observed with 3-PBA and cis-DBCA concentrations (P-trend=0.04 and P-

trend<0.01, respectively). Children exposed to the highest 3-PBA or cis-DBCA concentrations were 

more likely to experience lower WISC-VCI scores (β=-5.18 [-9.25, -1.11], and β=-6.75 [-11.17, -2.32], 

respectively) than children exposed to the lowest concentrations. Two covariates were associated 

with higher scores on the WISC-VCI in both multivariate 3-PBA and cis-DBCA models: maternal 

WAIS-III VIQ score (β=0.38 [0.19, 0.56], and β=0.35 [0.17, 0.54], respectively), and child extra-

curricular sport activities (β=5.34 [1.53, 9.15], and β=5.04 [1.26, 8.81], respectively) (Tables A2 and 

A3). 

For WISC-WMI scores, a negative association was found with 3-PBA and cis-DBCA concentrations 

(P-trend=0.05 and P-trend<0.01, respectively). Children with the highest urinary levels of 3-PBA 

scored lower on the WISC-WMI (β=-3.90 [-7.89, 0.08]) than did children with the lowest levels, 

whereas the pattern was less clear for cis-DBCA levels, as β coefficients were similar for the second 

and third tertiles (β=-3.56 [-7.84, 0.71], and β=-3.94 [-8.33, 0.45], respectively). As for the WISC-VCI, 

two covariates were associated with higher scores on the WISC-WMI in both multivariate 3-PBA 

and cis-DBCA models: maternal WAIS-III VIQ score (β=0.27 [0.09, 0.45], and β=0.25 [0.07, 0.43], 

respectively) and child extra-curricular sport activities (β=5.66 [1.94, 9.38], and β=5.04 [1.26, 8.81], 

respectively) (Tables A2 and A3).  

Finally, 4-F-3-PBA, cis-DCCA and trans-DCCA levels were neither associated with WISC-VCI scores 

nor with WISC-WMI scores (Table 4).  

 

a Maternal education, maternal Wechsler Adult Intelligence Scale score, Home Observation for Measurement of 

the Environment score, corresponding childhood pyrethroid metabolite concentration, and detection of dimethyl 

(DM) and diethyl (DE) phosphates in maternal urine samples were forced into all models. 
b Provided by reverse-scale Cox regression models. 
c Limit of detection. 
d Adjusted for  child duration of television watching and child extra-curricular sport activities. 
e Adjusted for child extra-curricular sport activities. 
f Adjusted for presence of acid-leachable lead in the living room. 
g Adjusted for maternal age and child sex, and presence of acid-leachable lead in the living room. 
h Adjusted for maternal age, tobacco smoking at the beginning of pregnancy, number of siblings at age 6,  child 

extra-curricular sport activities and research psychologist. 
i Adjusted for length of pregnancy,  child duration of television watching  and child extra-curricular sport activities. 
j Adjusted for maternal age, number of siblings at age 6, child education, child duration of television watching, and 

child extra-curricular sport activities. 
k Adjusted for length of pregnancy. 
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4. Discussion 

The results of this study show that childhood exposure to pyrethroid insecticides, as measured 

by urinary 3-PBA and cis-DBCA metabolite concentrations, was associated with poorer 

neurocognitive abilities in children at 6 years of age, after adjusting for various potential 

confounders and childhood DM and DE concentrations. No consistent associations were observed 

with maternal prenatal urinary pyrethroid metabolite concentrations.  

The present study has many strengths, including its longitudinal design with pyrethroid exposure 

assessments both prenatally and during childhood. As outcomes, we used two domains from the 

WISC-IV known to be sensitive to low-dose insecticide exposure, providing targeted measures of 

possible neurotoxic effects on brain function (Bouchard et al., 2011; Rauh et al., 2011). Participants 

were representative of the PELAGIE cohort, although high-educated mothers were slightly more 

numerous (68% vs. 62%) (Petit et al., 2010). Moreover, their homogeneous socioeconomic profile 

(rather wealthy families, as in the whole cohort) may be seen as a strength, reducing the potential 

for uncontrolled confounding, as WISC-IV scores may be influenced by socioeconomic background 

(Wechsler, 2003). We used a sound and flexible statistical technique to handle biomarker values 

falling below LODs. The reverse-scale Cox regression model allows full use of the available data, is 

valid even with extreme LOD censoring, and does not assume any parametric distribution (Dinse et 

al., 2014). To minimize residual confounding we deliberately examined or adjusted for numerous 

risk factors, including known predictors of neurodevelopment factors. We also considered 

information about additional environmental neurotoxic exposures from substances such as 

organophosphate insecticides and lead. To provide robust results, no further backward selection 

was performed after entering some of these covariates into multivariate models. Finally, cognitively 

stimulating environments (as assessed by maternal WAIS-III VIQ score and child extra-curricular 

sport activities) that enhance intellectual development and skill acquisition in children (Weiss et al., 

2006; Magnuson et al., 2009; Alloway and Alloway, 2010) were found significant in the multivariate 

models, in further support of our results.  

Several limitations of this study should be noted. Assessing pyrethroid exposures in urine 

samples is challenging because of their fast clearance from the body, with complete excretion in 

the urine within a few days; thus, sample measurements reflect only acute or short-term 

exposures. Substantial within-subject variability has recently been observed in children (Attfield et 

al., 2014). Consequently, pyrethroid metabolites from spot urine samples may not represent a 

child's average exposure over time and may result in misclassification, reducing statistical power to 

detect associations. An additional concern about urinary biomarkers is that the metabolites in urine 
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may reflect exposure to the metabolites themselves in the environment rather than to the parent 

compound (Morgan, 2012; Bradman and Whyatt, 2005). As both maternal and child pyrethroid 

metabolite levels were measured in one batch, we cannot rule out the possibility that a 

degradation of pyrethroid metabolites may have occurred during the 6 years in which the maternal 

urine samples were stored at -20°C. Moreover, as some child characteristics were not collected 

(e.g., history of head lice, history of pica), the possibility of residual confounding cannot be entirely 

dismissed. Finally, in the absence of firm mechanistic evidence linking brain anomalies to more 

refined neuropsychological testing, the observed functional deficits at 6 years of age should be 

interpreted with caution (Rauh et al., 2011). 

In French PELAGIE children, 3-PBA concentrations were much lower (median value of 0.018 µg/L) 

than in USA and German children (median values around 0.300 µg/L) (Barr et al., 2010; Becker et 

al., 2006). This finding suggests a lower general usage of pyrethroid insecticides, as 3-PBA is 

considered a good overall nonspecific indicator of pyrethroid exposures. French children in the 

present study are likely predominantly exposed to pyrethroids that primarily metabolize to trans-

DCCA (permethrin and cypermethrin, but not cyfluthrin because of the low frequency of detection 

of 4-F-3-PBA) and cis-DBCA (deltamethrin). Comparison of levels of urinary pyrethroid metabolites 

in children from the PELAGIE cohort and from the Canadian Health Measures Survey confirms these 

contrasting results (Oulhote and bouchard, 2013). In France, the median concentration is lower for 

3-PBA (0.018 µg/L vs. 0.200 µg/L) but higher for cis-DBCA (0.220 µg/L vs. <0.006 µg/L) compared to 

Canadian children.  

Information regarding the potential developmental neurotoxicity of pyrethroid insecticides is 

limited, as acknowledged in the review by Shafer et al. (2005). Moreover, direct comparison with 

existing studies is complicated by differences in the exposure scenario, measurement methods and 

neurodevelopmental assessment methods. Shelton et al. showed that children of mothers residing 

near pyrethroid insecticide applications just prior to conception or during their third trimester were 

at greater risk for both autism spectrum disorders and developmental delays (Shelton et al., 2014). 

Horton et al. found no association between prenatal exposure to permethrin in personal air and/or 

plasma and neurodevelopment at 36 months (using performance scores for the Bayley Mental 

Developmental Index or the Psychomotor Developmental Index) (Horton et al., 2011). Regarding 

childhood exposures, our results are broadly in line with those of Oulhote and Bouchard (2013) 

who observed a significant association between childhood concentration of cis-DCCA in the urine 

(but not 3-PBA concentrations, whereas cis-DBCA was not considered) and high scores for total 

behavioral difficulties on the Strengths and Difficulties Questionnaire. On the other hand, Quirós-
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Alcalá et al. (2014) reported that childhood pyrethroid exposure was not associated with parental 

reports of learning disabilities or attention-deficit/hyperactivity disorder. 

In conclusion, low-level childhood exposures to deltamethrin (as cis-DBCA is its principal and 

selective metabolite), in particular, and to pyrethroid insecticides, in general (as reflected in levels 

of the 3-PBA metabolite) may negatively affect neurocognitive development by 6 years of age. 

Whatever their etiology, these cognitive deficits may be of importance educationally, because 

cognitive impairments in children interfere with learning and social development. Potential causes 

that can be prevented are of paramount public health importance. 
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