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Abstract 24 

Vegetation is a major environmental factor influencing habitat selection in bird species. High 25 

resolution mapping of vegetation cover is essential to model the distribution of populations and 26 

improve the management of breeding habitats. However, the task is challenging for grassland birds 27 

because microhabitat variations relevant at the territory scale cannot be measured continuously over 28 

large areas to delineate areas of higher suitability. Remote sensing may help to circumvent this 29 

problem. We addressed this issue by using SPOT 5 imagery and phytosociological data. We mapped 30 

grassland vegetation in a floodplain using two methods. We (i) mapped the continuous Ellenberg 31 

index of moisture and (ii) identified 5 vegetation classes distributed across the wetness gradient. 32 

These two methods produced consistent output maps, but they also provided complementary 33 

results. Ellenberg index is a valuable proxy for soil moisture while the class approach provided more 34 

information about vegetation structure, and possibly trophic resources. In spite of the apparent 35 

uniformity of meadows, our data show that birds do not settle randomly along the moisture and 36 

vegetation gradients. Overall birds tend to avoid the driest vegetation classes, i.e. the highest 37 

grounds. Thus, vegetation maps based on remote sensing could be valuable tools to study habitat 38 

selection and niche partition in grassland bird communities. It is also a valuable tool for conservation 39 

and habitat management. 40 

 41 

Highlights 42 

 We mapped grassland vegetation in a floodplain using two methods  43 

 The Ellenberg index proves to be a valuable proxy for soil moisture  44 

 Vegetation classes provided more information about vegetation structure  45 
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 Grassland birds do not settle randomly along the vegetation gradient 46 

 Vegetation maps based on remote sensing are useful tools to study habitat selection47 
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 48 

1. Introduction 49 

Delimiting zones of protection is a major issue of conservation programs (McNeely, 1994; 50 

Moilanen et al., 2009). In order to identify core protection areas and optimize management, policy 51 

makers need robust background information like precise ecological requirements for target species. 52 

Grasslands present an interesting case in that respect because they often appear to human eyes as 53 

large expanses of uniform vegetation. For this reason, designing efficient protection areas in 54 

grasslands may seem challenging but this objective needs to be met. Due to anthropogenic changes, 55 

grassland birds are threatened in several part of the World (Azpiroz et al., 2012; Brennan and 56 

Kuvlesky, 2005; Tryjanowski et al., 2011; Tucker et al., 1994). Agri-Environmental Schemes (AES) were 57 

implemented in the 1990’s within the European Union to subsidize grassland management 58 

compatible with breeding but many species have continued to decline (Kleijn et al., 2006). Precise 59 

knowledge of habitat selection for target species is therefore crucial to design new and more 60 

ecologically oriented AES measures in areas where conservation objectives partly failed. 61 

Although their breeding habitat may seem homogeneous, grassland species do not settle at 62 

random in meadows. Spatial variations in density are frequently observed. For instance, many 63 

species are area-sensitive and avoid small fragments of habitats (Besnard and Secondi, 2014; Davis 64 

and Brittingham, 2004; Helzer and Jelinski, 1999). Even in larger patches, they tend to avoid 65 

landscape features like hedges because of higher predation risk (Morris and Gilroy, 2008). Vegetation 66 

itself offers various level of suitability for nesting. Vegetation structure is a major feature that 67 

influences the settlement of grassland birds (Fisher and Davis, 2010; Jacobs et al., 2012). Plant 68 

community largely determines arthropod assemblages (Schaffers et al., 2008) and therefore the 69 

quantity and quality of available trophic resources (Britschgi et al., 2006). Grassland birds tend to 70 
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prefer areas with higher densities of flowers during the breeding season (Fischer et al., 2012). This 71 

preference may reflect higher prey availability to feed the young (Oppermann, 1990). Vegetation 72 

cover also determines predation risk (Ejsmond, 2008), particularly the ability of birds to hide their 73 

nests under the canopy (Whittingam and Evans, 2004). Therefore, grassland birds tend to select nest 74 

site with taller swards and denser vegetation (Davis, 2005). In addition, some species need 75 

herbaceous perches for foraging and territorial defence (Fischer et al., 2012; Oppermann, 1990).  76 

Soil moisture is a major factor of grassland ecology (Price, 2002; Suzuki et al., 2006). It is 77 

considered as the main driver of vegetation patterns in most regions (Moeslund et al., 2013),. Flood 78 

is a recurrent phenomenon that generates a wetness gradient and structures vegetation 79 

communities (Martinez and Letoan, 2007). However, wetness is also influenced by local 80 

environmental conditions like altitude, microtopography, or soil. Fortunately, vegetation has the 81 

property to integrate all the components of wetness (Goward et al., 1991). Mapping vegetation in 82 

relation to its affinity for moisture is expected to provide informative predictors to analyse habitat 83 

selection in grassland birds and improve the management of these habitats. Satellite remote sensing 84 

techniques are promising tools in this regard. They provide vegetation data with a spatial resolution 85 

high enough to analyse habitat selection in birds across ecological gradients. Furthermore, satellite 86 

images often cover geographical ranges large enough to delineate areas with different levels of 87 

conservation priority (Guo, 2004; Poulin et al., 2010). 88 

We assessed two methodological approaches to describe the variation of grassland vegetation 89 

across the wetness gradient in floodplains. We used the Ellenberg moisture index that attributes a 90 

value to each vegetal species, corresponding to its affinity for soil moisture (Ellenberg et al., 1992). 91 

We computed a continuous wetness gradient based on the mean Ellenberg index of the local 92 

vegetation community to map the wetness gradient across a floodplain. In addition, we tested a 93 
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discrete method to map vegetation classes as defined by the phytosociological approach (Tichý, 94 

2002). A vegetation class is “a system of vegetal organisms with a floristic composition that is 95 

statistically repetitive” (Biondi, 2011). Each class may offer a specific level of suitability for birds 96 

depending on its physical properties and the various resources it provides. In grasslands, these 97 

vegetation classes may therefore be an informative proxy to describe habitat requirements of bird 98 

species. This approach may be easier to apply for managers since habitats are determined and their 99 

conservation prioritized according to vegetation associations, for instance in the European Union 100 

(Davies et al., 2004). Finally, AES are implemented in our study area to protect grassland and birds. 101 

We tested if AES types were related to vegetation community, i.e. the hydrological functioning of the 102 

floodplain, and if the spatial distribution of AES matched habitat selection of birds as described by 103 

vegetation.104 
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 105 

2. Methods 106 

2.1 Study area 107 

The study area covers the floodplains of the Loire River and its main tributaries around Angers 108 

city in France (47.48, -0.56) (Fig. 1). Hydrological flow is relatively undisturbed by anthropogenic 109 

developments in contrast to other floodplains of similar size in Western Europe (Hesselink et al., 110 

2003). Due to frequent floods, extensively managed grasslands still represent the main land cover 111 

type. Agricultural practices consist in mowing meadows once a year in June-July and in allowing low 112 

intensity grazing by cattle during vegetation regrowth. Considering the shallow slope of the ground, 113 

plant community mainly depends on soil wetness and submersibility. Owing to their management, 114 

these grasslands still host several patrimonial bird species, like the Corncrake (Crex crex), known to 115 

be highly sensitive to intensive agriculture (Green et al., 1997a). Many grassland bird species 116 

collapsed in the second part of 20th century, mainly due to the intensification of practices (more 117 

efficient machinery, fertilisation, advanced mowing schedule). Agri-environmental schemes (AES) 118 

that were implemented locally mainly consisted in delaying hay mowing. The proportion of grassland 119 

under AES is quite high in the study area (45% in 2011). Several levels of AES measures are present in 120 

the study area, differing mainly by the earliest mowing date. For clarity, we aggregated parcels in two 121 

sets:  those mown in June (3 540 ha) and those mown in July (1 571 ha). Mowing before July causes 122 

high mortality in broods (Broyer, 2007; Green et al., 1997b). Therefore, we considered that meadows 123 

mown in June were not suitable for the sustainable breeding of grassland birds. 124 

 125 

 126 
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Figure 1: Map of grassland distribution in the study area. The inset shows the location in Europe. 127 
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 129 

2.2 Vegetation relevés and phytosociological classification 130 

We conducted phytosociological relevés on 107 plots to describe vegetation community across 131 

the whole study area. Survey was carried out from May 16th to June 10th 2011 to ensure the reliable 132 

identification of plant species. A plot was defined by the standard 16m² quadrat method (Chytrý and 133 

Otýpková, 2003). Quadrats were selected in a larger zone of homogeneous vegetation to limit the 134 

environmental effects of other land cover bordering the pixel of the relevé during the remote sensing 135 
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process. We sampled as many contrasting situations along the flooding gradient as possible basing 136 

on our knowledge of the study area. Sampling plots were positioned using a Differential Global 137 

Positioning System (DGPS), through a Trimble© Juno© SB. The estimated georeferencing error after 138 

post-processing was 6 m maximum. However it was lower than 4m for 93% of plots. All species in the 139 

quadrat were identified using either a local specific flora (Corillon, 1981) or a vegetative flora 140 

(Eggenberg and Möhl, 2013) when necessary. Area covered by each species was evaluated using a 141 

Braun-Blanquet coefficient (Braun-Blanquet, 1964). We then classified relevés with JUICE software 142 

(Tichý, 2002), using the TWINSPAN method (Hill, 1979), including standard relevés from a previous 143 

study conducted in the same area (Foucault, 1984) as referentials for the classification. This method 144 

classifies relevés according to their similarity in order to identify phytosociological taxa. We identified 145 

five taxa along the wetness gradient in the area: 1. Phalaridion arundinaceae, Kopecky 1961; 2. 146 

Gratiolo officinalis-Oenanthetum fistulosae inferior, De Foucault, 1984 nom. Ined; 3. Gratiolo 147 

officinalis-Oenanthetum fistulosae superior, De Foucault 1984 nom. Ined; 4. Senecio aquatici-148 

Oenanthetum mediae, Bournerias et al. 1978; 5. Arrhenaterion elatioris, Hoch, 1926. The wettest 149 

and the driest have been considered at the alliance level owing to the diversity of associations 150 

encountered in the field for these two taxa. The three intermediate classes (2-4) have been specified 151 

to the association level because their observed compositions matched the original descriptions. 152 

However, the Gratiolo officinalis-Oenanthetum fistulosae was split in two due to the wide area it 153 

covered and named in accordance with the type relevés described by De Foucault (1984). We tested 154 

the significance of those partitions with a non-parametric multivariate analysis of variance 155 

(Anderson, 2001) using adonis from the vegan R-package (Oksanen, 2013). 156 

 157 

2.3 Wetness Ellenberg index 158 
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In order to quantify the wetness gradient, we used the wetness Ellenberg index. Ellenberg 159 

indexes determine the affinity of each species for environmental parameters like light, temperature, 160 

or nitrogen in soil (Ellenberg et al., 1992). We used here moisture affinity scores which are available 161 

for each species (Hill et al., 1999). A value of 1 is given to a specialist of the driest habitats and a 162 

value of 12 for a specialist of the wettest habitats. The indicator value of Ellenberg scores has been 163 

evaluated by a field study that concluded that they were very good descriptors of the local 164 

environment (Schaffers and Sýkora, 2000). For each plot, we averaged Ellenberg values of all species, 165 

regardless of their cover, to obtain a single value. We considered this value as a proxy of soil wetness 166 

at the plot scale. We computed average Ellenberg scores weighted by species cover and unweighted. 167 

The unweighted method gave more realistic outputs. This is because cover depends mainly on the 168 

sociability, for example the cover of grasses species is often high whereas sparse species like 169 

Fritillaria meleagris can have a more informative value In addition, weighted average penalize rare 170 

species that often display narrow niches and are informative indicators.  171 

 172 

2.4 Mapping 173 

A SPOT 5© satellite image 2.5m colour, correction level 2B (allocation accuracy less than 10m), 174 

was acquired on May 5th 2011. These scenes are provided with three bands: B1 (green: 0.50 to 0.59 175 

μm), B2 (red: 0.61 to 0.68 μm), B3 (near-infrared NIR: 0.79 to 0.89 μm). A mask of all the meadows 176 

within the floodplains was applied on this scene (60 km long x 60 km wide) to delineate the whole 177 

study area using in ARCGIS version 10 (Environmental Systems Research Institute, Meudon France). 178 

All analyses were conducted with this mask. Conditions of image acquisition were optimal with a low 179 

incidence angle (4.77°) and cloud cover less than 10%. Spring 2011 was relatively dry so all the study 180 

area was emerged but a small 41-ha zone that is kept flooded to provide spawning sites for fishes. A 181 
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vector layer of vegetation plots (quadrats) was created using their GPS coordinates. Circular buffers 182 

(diameter 4 m) centred on each point were drawn to get a vector layer of polygons of the vegetation 183 

plots. Then, we used the Spatial Analyst module to extract the mean radiance values of every 184 

sampling plot for each spectral band. We then calculated for each plot multispectral indices (Table 1) 185 

adapted for SPOT bands (see the method from Davranche et al. (2010 and 2013)). 186 

 187 

Table 1 Multispectral indices used in this study.  188 

ID index 

 

Multispectral index 

 

References 

 

1 Differential Vegetation Index (DVI) Richardson & Everitt, 1992 

2 Index of free water (IFW) Adell & Puech, 2003  

3 Normalized Difference Vegetation Index (NDVI) Rouse et al., 1973 

4 Normalized difference water index (NDWI) Mc Feeters, 1996 

5 Optimized Soil Adjusted Vegetation Index (OSAVI) Rondeaux et al., 1996 

6 B3 Spot image 

7 B2 Spot image 

8 B2/B1 This study 

9 Soil Adjusted Vegetation Index (SAVI) Huete, 1988 

10 Brightness index (BI) Kauth and Thomas, 1976 

11 Simple ratio (SR) Pearson & Miller, 1972  

12 B1 Spot image 

13 B1-B2 This study 

14 (B1-B2)/(B1+B2) This study 

15 B1²/B2 This study 

16 Vegetation indice (VI) Lillesand & Kiefer, 1987 

17 Water index (WI) Davranche et al, 2013 

18 Water impoundment index (WII) Caillaud et al., 1987 

 189 

 190 
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Classification of the 5 vegetation classes was performed using a decision tree with a dichotomous 191 

partitioning (Breiman et al., 1984). It was performed for each class using a binary coding: presence or 192 

absence. We also tested a multiple-class classification, where we attempted to identify all classes in 193 

the same analysis, but this method gave poor results.  The Rpart package (Recursive PARTitioning, 194 

Therneau and Atkinson, 1997) in the R software version 2.15.2 software (Rdevelopment core team, 195 

2012) was used. This method is based on the cost complexity parameter (cp) for pruning. As 196 

described in Davranche et al. (2010) for unbalanced samples, we used the cross-validation procedure 197 

called CV-1SE (Esposito et al., 1999) for pruning with 10 subsets and iterative runs of the algorithm 198 

(Breiman et al., 1984) to select the cp and the prior parameter. Cross-validation is well suited to small 199 

samples (Breiman et al., 1984).,  so it can be recommended when no additional independent sample 200 

is available. 201 

The distribution of wetness Ellenberg index was checked for normality. We used linear models to 202 

test whether index values obtained from field relevés could be predicted from remote sensing 203 

variables). Models with all combinations of predictors were computed with the ‘lm’ function from 204 

the R-package ’stats’. Model selection was carried out using the ‘dredge’ function of the R-package 205 

‘MuMIn’ (Barton, 2013). The best model was selected according to the lowest AICc value (Burnham 206 

and Anderson, 2002) (Appendix 1 in Supplementary material). As advised by Symonds and Moussali 207 

(2011), we assessed the goodness-of-fit of this best AICc model, by calculating the coefficient of 208 

determination (R²) and the normalized root-mean-square error (NRMSE) between the predicted and 209 

observed values. 210 

 211 

2.5 Bird census 212 
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The study area host several breeding grassland species, some of which have been declining for 213 

several decades in Western Europe (Tucker et al., 1994). We sampled the 4 dominant passerine 214 

species in this small avian community: the Whinchat Saxicola rubetra, the Yellow Wagtail Motacilla 215 

flava, the Corn Bunting Emberiza calandra and the Reed Bunting Emberiza schoeniclus (Noël, 2003). 216 

We scanned every hay meadows of the study area during the 2011 breeding season to locate birds. 217 

We used binoculars (10x42) and a spotting scope (20x-60x, 66mm) to detect and identify species. 218 

Fieldwork was performed from April 13th to June 17th 2011 in good weather conditions (no 219 

precipitation and low wind) to optimize bird detection and avoid the recording of migrating birds. 220 

The time of day was not considered to maximize the area surveyed during the breeding season. 221 

However, the detection rate of these species remains relatively high throughout the day, even in the 222 

late afternoon when males rest on the top of vegetation.  All occurrences were located on a map 223 

(IGN© 1:25 000), and reported on a GIS software (ArcGIS© 10) by the same observer. We also used 224 

the Corncrake database from LPO France (French official BirdLife partner). These data were collected 225 

in 2011 by volunteer ornithologists who located singing males at night. Like for passerines, Corncrake 226 

data were compiled in a GIS dataset. Overall, we observed 451 Whinchats, 151 Yellow Wagtails, 114 227 

Corn Buntings, 174 Reed Buntings, and we used 479 occurrences of Corncrake across the study area. 228 

 229 

2.6 Statistical analyses 230 

In order to compare Ellenberg index values on bird locations with background values, we defined 231 

1 501 background plots distributed across a 250m-grid. We created a buffer zone of 100m around 232 

each bird location and background plot. We extracted the average wetness index for all pixels 233 

included in the buffer area. For each bird species,  we then compared mean wetness values on 234 

location buffers and background plots using a Wilcoxon test based on bootstrap (1000 iterations of 235 
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background values with n≥114 corresponding to the sample size of each species) with the R software 236 

(version 3.0.2).  237 

Similarly, we extracted the mean area covered by each vegetation class within 100m-buffers 238 

around each bird location. Knowing that each class was calculated independently, a pixel can be 239 

assigned to several classes. We compared values for each class to the area covered by the same class 240 

in the whole study area, and tested the differences between the two variables using a Wilcoxon test. 241 

We measured selection or avoidance by birds for each class by calculating the difference in the 242 

distributions of vegetation classes between bird and random location using background plots 243 

described above (n=1 501).  244 

In order to compare the two methods (Ellenberg wetness index and vegetation classes), we used 245 

44 transects of 500m long surrounded with a 100m-buffer (i.e. 13.1 ha). These transects were 246 

distributed across the floodplain in open meadows selected for their suitable landscape for grassland 247 

birds.  These were previously used with success to investigate the interest of the topographic 248 

wetness index as a predictor of grassland bird distribution (Besnard et al., 2013).  For the two 249 

vegetation maps, we extracted mean values (Ellenberg index and vegetation class) on these transects 250 

and we fitted a linear model between these two datasets. We also used Chi-squared tests to test 251 

whether vegetation classes and bird distributions were randomly distributed across mowing dates. 252 

All tests were carried out using R software (version 3.0.2).  Finally, we could determine the pattern of 253 

flooding susceptibility in 35 plots spread across the study area during a spring flood (April-June) in 254 

2013. We sampled these plots twice a week before, during and after the flood, and derived a flood 255 

index which corresponds to the number of times the plots were flooded. To determine whether 256 

Ellenberg index was related to submersibility, we fitted a linear model between flood index and 257 

mean Ellenberg index on plots. 258 
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 259 

3. Results 260 

Using remote sensing method we could map the wetness gradient based on Ellenberg moisture 261 

index across the hay meadows of the study area (Fig. 2; Best model : df = 7, LogLik= 110.97, AICc= 262 

237.08, weight = 0,00048, R² = 0.41, NRMSE = 19%;  Y= 114,10 + 0,19*DVI + 49,73*NDWI + 1,65*B2 + 263 

164,96*B2/B1 + 0,65*B1²/B2  (More details on model selection in Table S2 in Supplementary 264 

material). The map was consistent with the observed flood susceptibility pattern (F1,33 =25.09; 265 

p<0.001, adjusted R² = 0.43) (Fig. 3a). The resulting trees for the classification of vegetation classes 266 

provided the following error rates C1: 9%, C2: 14%, C3: 16%, C4: 16%, C5: 10%. Plant species 267 

composition was significantly different between classes as defined by Twinspan (F1,106 = 5.62 ; 268 

p=0.001). Using transect data, we found that average vegetation class was strongly correlated with 269 

Ellenberg moisture index (F1,42 = 116.1; p<0.001; adjusted R² =  0.73) (Fig. 3b) confirming the value of 270 

these two methods to map wetness gradients. We noticed that the cover of class 5 is probably 271 

overestimated on a part of the wettest area. This area was submerged by water several weeks before 272 

the image capture and vegetation reflectance was modified by alluvium deposits. It was classified as 273 

belonging both to the wettest classes (1-3) and class 5 but field data confirm that this latter class was 274 

not observed there. This classification error causes an underestimation of avoidance of class 5 by 275 

birds because this area exhibit high bird densities. Nevertheless, we detected an avoidance of this 276 

class for 4 species. Thus, this limit does not alter the conclusion of this study.  277 

All bird species except the Corn bunting settled in meadows with Ellenberg values higher than 278 

random locations in the study area (Bootstrap based on Wilcoxon test; p<0.001) (Fig. 4 and Table 2). 279 

Yet, this species also tended to select plots with high Ellenberg values (p=0.10 ± 0.16). Generally, 280 

birds selected wetter hay meadows than available in the study area (Fig. 4 and Table 2). The analysis 281 
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of vegetation classes provided supplementary information (Fig. 5). Except for the Corn Bunting, the 282 

three wettest vegetation classes represented a larger proportion of the buffers around bird locations 283 

than available (Table 3). For all species but the Whinchat, the driest vegetal class (5) represented a 284 

smaller proportion of the buffer area around bird locations than expected by chance. For all species, 285 

vegetation class 3 was more represented around bird location than available. Results were more 286 

contrasting for vegetation class 4. It was more represented around bird locations for the Corn 287 

Bunting and the Whinchat, whereas it was less represented for the Reed Bunting and the Corncrake. 288 

More globally, the pattern of habitat selection for vegetation classes was different between species 289 

The proportion of area covered by each vegetation class differed between AES contract types 290 

(Chi² = 350.75, df = 4, p<0.001) (Fig.5). The driest vegetal classes (5) covered a larger proportion of 291 

the meadows available for mowing in June (47 %) than in July (23%). Logically, we observed the 292 

reverse pattern for the wettest vegetal classes 1, 2 and 3 which represented a lower proportion of 293 

the meadows mown in June (31%) than in July (55%). The proportion of the area covered by 294 

vegetation class 4 was constant between both periods (22 %). Regarding mowing date, birds of all 295 

species settled more frequently in parcels available for mowing in July than expected by chance (Chi² 296 

= 521.10, df=4, p<0.001). In the study area only 22 % of meadow area was mown in July whereas 297 

between 45 % and 66 % of birds settled in this parcels (Fig.5). 298 

 299 

Figure 2: Maps extract of the study area representing with the wetness gradient as determined 300 

by Ellenberg moisture index and vegetation classes (1 the wettest and 5 the driest). Grassland areas 301 

were used as a mask prior to mapping.  302 

 303 
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Figure 3:  a. Linear relationship between Ellenberg moisture index and flood susceptibility index 305 

as measured on 35 plots during a flood event in 2013. b. Linear relationship between 306 

Ellenberg moisture index and average vegetation class (1 is the driest, 5 the wettest class) in hay 307 

meadows (n=44). 308 
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Figure 4: Boxplots of distribution of Ellenberg moisture index calculated for 100m buffers around 310 

species occurrences and in the study area (available). * indicates that a species did not settle at 311 

random across the wetness gradient and significantly preferred wetter meadows (Wilcoxon signed-312 

rank test). 313 
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Figure 5: Distribution of bird occurrences across vegetation classes in floodplain grasslands. The 317 

first histogram represents the proportion of each class in the study area. All other histograms 318 

represent the differences between the proportion of each vegetation class available in the study area 319 

and the proportion of these classes in a 100m-buffer around bird occurrences. Filled symbols indicate 320 

whether birds significantly selected or avoided this class (Wilcoxon signed-rank tests). Open symbols 321 

indicate that no selection or avoidance was detected (see values in Table 2). Vegetation classes were 322 

ranked from the wettest (1) to the driest (5). 323 
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 326 

Figure 6: (left panel) Comparison between the distribution of the five vegetation classes (from C1 327 

the wettest to C5 the driest) observed across the grasslands of the study area and in the parcels 328 

under AES contracts. Mowing dates were allowed either in June or in July. (right panel) Comparison 329 

between the proportion of area available for mowing in June and July, and the proportion of the 330 

population for each bird species on these two management options. 331 
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Table 2: Test of habitat selection comparing Ellenberg index in 100m buffers around bird 336 
occurrences and random background locations, and using bootstrap results of Wilcoxon 337 
tests. Selection is considered to occur when p-value < 0.05, in this case the value is in bold. 338 
 339 
  340 

  p average 2.50% 97.50% 

Yellow Wagtail <0.001 <0.001 <0.01 

Corn Bunting 0.10 <0.001 0.62 

Reed Bunting <0.001 <0.001 <0.001 

Corncrake <0.001 <0.001 <0.001 

Whinchat <0.001 <0.001 <0.001 

 341 

 342 

Table 2: Cover of each vegetation class within a 100m buffer around species occurrences and 343 

random background locations. A species is considered to settle more often than by chance in a given 344 

class when p-value < 0.05 (value in bold). Vegetation classes were classified for the wettest (1) to the 345 

driest (5). V is the Wilcoxon statistic and p is the corresponding p-value. 346 

 1  2  3  4  5 

  V p   V p   V p   V P   V p 

Whinchat 62531 p <0.001  72221 p <0.001  66832 
p 

<0.001  57279 p <0.05  46081 0.078 

Yellow Wagtail 6593 0.112  8265 p <0.001  9339 
p 

<0.001  5082 0.223  3786 p <0.001 

Corn Bunting 3279 0.998  3615 0.341  4744 
p 

<0.001  4404 p <0.01  1297 p <0.001 

Reed Bunting 10291 p <0.001  13992 p <0.001  14941 
p 

<0.001  6178 p <0.05  3609 p <0.001 

Corncrake 68357 p <0.001   94337 p <0.001   108846 
p 

<0.001   47725 p <0.01   10081 p <0.001 

 347 

348 
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4. Discussion 349 

Floodplain grasslands, the location the work was conducted, do not represent a uniform habitat. 350 

Soil moisture gradient generates spatial variation in the composition of plant community (Fig. 2). 351 

Using remote sensing, we characterized Ellenberg index at the pixel scale (2.5 m) so that we could 352 

map the moisture gradient at a high spatial resolution. The ability of this index to represent wetness 353 

was confirmed by the positive relationship with flooding susceptibility, a variable that we could 354 

extract from direct observations in the field during a flood event (Fig 3a.). The vegetation community 355 

showed some discontinuity across the soil moisture gradient though using the TWINSPAN method 356 

(Hill, 1979) we could define five phytosociological classes spread across the soil moisture range. 357 

Average level of association in a plot was strongly related to Ellenberg wetness index (Fig 3b.). These 358 

remote sensing data provided us with a layer of an informative predictor, the moisture gradient, to 359 

analyse fine habitat selection of birds. 360 

Basing on these data, we found that no bird species settled randomly across the grasslands of the 361 

study area. They rather selected parcels depending on vegetation composition, which itself reflected 362 

the moisture gradient. The wettest meadows (high values of Ellenberg index) hosted generally more 363 

grassland birds in 2011 (Fig. 4), a distribution pattern observed in other years (Noël, 2003, A. Besnard 364 

unpublished data). Even the Corn Bunting, which exploits a large range of open habitats (Donald and 365 

Evans, 1995) showed a tendency to select the wettest meadows. Consistently, birds did not settle 366 

randomly according to vegetation class. This approach provided additional information to the 367 

wetness index. The Reed Bunting and the Corncrake, specialists of grasslands and wetlands with tall 368 

sward (Brickle and Peach, 2004; Green et al., 1997a), settled in areas containing a higher proportion 369 

of the wettest vegetation classes (1-3) than available across the floodplain (Fig. 3b). They also 370 

avoided plots with a high proportion of the driest classes (4-5). Similarly, the Whinchat which is a 371 
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specialist of extensively managed hay meadows (Müller et al., 2005), and the Yellow Wagtail which 372 

can breed in alternative habitats like crops (Gilroy et al., 2011) preferentially selected the wettest 373 

meadows.  Finally, the Corn Bunting selected grasslands with a higher proportion of classes 3 and 4, 374 

and avoided both wettest and driest classes. Overall, no species selected areas covered by a large 375 

proportion of the driest class (5), confirming the results obtained by the method based on Ellenberg 376 

index. Interestingly, this latter class is the most represented in the study area (36%) whereas classes 377 

1, 2 and 3 cover respectively only 10%, 9% and 21%. Species’ responses to class 4 were more diverse. 378 

The Corn Bunting settled in areas offering a large cover of this class, and the Whinchat tended to 379 

slightly show the same pattern. In contrast, the Reed Bunting and the Corncrake tended to avoid 380 

areas where this type of vegetation was more abundant than observed in average in the study area. 381 

These results highlight interspecific differences in habitat selection and are consistent with the 382 

ecology of these birds. Yet, differences were usually described for a larger range of ecological 383 

conditions (Jacobs et al., 2012). It is thus particularly interesting to observe that it is possible to 384 

determine species-specific habitat selection profiles within a much narrower ecological range. 385 

Furthermore, species tended to keep their relative position in the wetness gradient with the 386 

restricted ecological range of conditions encountered within the grasslands of these floodplains.  387 

Our results suggest that the wettest grasslands (high Ellenberg index and large proportion of 388 

classes 1-3) were the most suitable for birds. Intermediate class (4) were suitable for some species 389 

and avoided by others but selection or avoidance was lower. In contrast, the driest grasslands (class 390 

5) tended to be avoided by all species. We can draw hypotheses to explain this pattern. The wettest 391 

classes can be characterized by a higher forb cover than drier class. We expect trophic resources (e.g. 392 

pollinator insects) (Oppermann, 1990; Pywell et al., 2011) and vegetation structure to depend on the 393 

grass/forbs ratio (Oppermann, 1990). All bird species are mainly insectivorous during the breeding 394 

season (Brickle, 1999; Brickle and Peach, 2004; Britschgi et al., 2006; Davies, 1977; Green et al., 395 
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1997a). Therefore, the quantity or quality of trophic resources may be higher on the wet end of the 396 

moisture gradient than on its dry end. Vegetation structure may be of importance too as a higher 397 

proportion of forbs may provide better sites for building nest and more perches for foraging and 398 

social activities as well as reducing predation risk. 399 

 400 

Flood, meadow management and bird conservation 401 

Vegetation mapping based on remote sensing technique appears as a helpful tool to investigate 402 

habitat selection in grassland habitats and to guide conservation actions. In our study area, the 403 

proportion of any given vegetation class drastically differed between AES contract types (Fig. 5). Early 404 

mown parcels (June) were mostly covered by the driest vegetal classes whereas parcels mown later 405 

(July) were mostly covered by the wettest classes. This is a logical outcome of a scheme based on 406 

volunteering. Farmers tend to select the contract level which minimizes the loss of hay quality. On 407 

the driest meadows, that are mature early, farmers preferentially choose contracts with early 408 

mowing dates. It results that the spatial pattern of mowing dates matches fairly well the wetness 409 

gradient across the study area. 410 

It is possible to describe the wetness gradient of an area using only topographical data (Besnard 411 

et al., 2013; Beven and Kirkby, 1979). However, the low altitudinal variation in floodplains may not be 412 

grasped by the resolution of available many digital elevation models, that are the raw data for 413 

computing topographic methods, which limit our ability to map accurately the wetness gradient. Also 414 

pixel size of these models may not be appropriate or relevant in species with small territories for 415 

which small-scale features of the habitat may matter, for their nest site for instance. In contrast, the 416 

high resolution provided by satellite imagery (2.5 m here) allows adjusting the spatial scale of the 417 

analysis to the scale relevant for any bird species. Digital elevation models can be available with very 418 
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high altitudinal resolution in some areas, in which case it could be interesting to carry out a 419 

comparative assessment of these two methods. However, it is important to outline that unlike 420 

topographical methods the local plant community is an integrative measure of various processes 421 

generating soil moisture (topography, soil composition and climate). Vegetation mapping takes also 422 

into account anthropogenic modifications (like dams or drainages) which cannot be integrated by 423 

topographic methods, for instance in cultivated lands where vegetation depends mainly on 424 

agricultural processes. Finally, the remote sensing method is more ecologically realistic in naturally 425 

sown grasslands where environmental factors, namely flood, largely influence vegetation. This 426 

approach requires more resources for image acquisition, fieldwork, and botanical expertise than 427 

topographical approaches. However, these constraints are balanced by deeper insight into habitat 428 

selection of species, even in homogeneous landscapes, and probably the providing of more robust 429 

information to base on to delineate areas for conservation. 430 
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SUPPLEMENTARY MATERIAL 576 

Table S1.  Model selection for mapping the ewetness index using the MuMin R package. Only models with AICc <1.5 are shown. 577 

Description of variables are given in Table 1 (1-1_ refer to ID index. 578 
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