sp³–sp³ carbon–carbon bonds formation using 2-alkylazoles and a bromoacrylate as the reaction partners

Liqin Zhao, Fazia Derridj, Saffia Djebbar, Christian Bruneau, Henri Doucet

To cite this version:

Liqin Zhao, Fazia Derridj, Saffia Djebbar, Christian Bruneau, Henri Doucet. sp³–sp³ carbon–carbon bonds formation using 2-alkylazoles and a bromoacrylate as the reaction partners. Tetrahedron Letters, 2015, 56 (29), pp.4354-4358. 10.1016/j.tetlet.2015.05.082. hal-01158450

HAL Id: hal-01158450
https://univ-rennes.hal.science/hal-01158450
Submitted on 12 Nov 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Graphical Abstract

Graphical Abstract

sp\(^3\) - **sp**\(^3\) Carbon-Carbon Bonds Formation using 2-Alkylazoles and a Bromoacrylate as the Reaction Partners

Liqin Zhao,\(^a\) Fazia Derridj,\(^b\) Saffia Djebbar,\(^b\) Christian Bruneau,\(^a\) Henri Doucet,\(^a^*\)

\(^a\) Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes "Organométalliques, Matériaux et Catalyse", Campus de Beaulieu, 35042 Rennes, France. Fax: +33-(0)2-23-23-69-39; Tel: +33-(0)2-23-23-63-84; E-mail: henri.doucet@univ-rennes1.fr

\(^b\) Laboratoire d’Hydrométallurgie et chimie inorganique moléculaire, Faculté de Chimie, U.S.T.H.B. Bab-Ezzouar, Alger, Algeria.

\(^*\) Département de chimie, UMMTO, BP 17 RP, 15000 Tizi-Ouzou, Algeria.
sp\(^3\)-sp\(^3\) Carbon-Carbon Bonds Formation using 2-Alkylazoles and a Bromoacrylate as the Reaction Partners

Liqin Zhao,a Fazia Derridj,b,c Saffia Djebbar,b Christian Bruneau,a Henri Doucet,a*

a Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes "Organométalliques, Matériaux et Catalyse", Campus de Beaulieu, 35042 Rennes, France. Fax: +33-(0)2-23-23-69-39; Tel: +33-(0)2-23-23-63-84; E-mail:henri.doucet@univ-rennes1.fr
c Département de chimie, UMMTO, BP 17 RP, 15000 Tizi-Ouzou, Algeria

1. Introduction

Several bioactive compounds contain a 2-alkylheteroaryl motif. For example, Isavuconazole is an antifungal, Oxaprozin is a non-steroidal anti-inflammatory drug, Phenoxan is a HIV-1 inhibitor, Bendamustine is used in the treatment of lymphocytic leukemia, and Mipitroban has antithrombotic properties (Fig. 1). Therefore, the discovery of general simple routes to functionalize 2-alkyl-substituted azoles has potential for medicinal chemistry.

![Figure 1 Examples of bioactive 2-Alkylazoles derivatives.](image_url)

The palladium-catalysed direct functionalization of several (hetero)aromatics via direct sp\(^3\) and sp\(^3\)-C–H bond activation using aryl halides has brought a synthesis revolution in recent years (Scheme 1, top). Keeping in mind the results previously obtained for the direct arylation of heteroaromatics, we envisioned the assistance of a palladium catalyst for the functionalization of 2-alkylazoles with a 2-bromomethylacrylate as the coupling partner. The arylation of 2-benzylbenzimidazoles, 2-benzylbenzothiazoles or 2-benzylbenzoxazoles using aryl iodides or aryl chlorides as the coupling partners, assisted by Pd-catalysts has been reported by Oshima and co-workers (Scheme 1, top). Recently, Obora et al. reported the iridium-catalysed coupling of 2-methylbenzoxazole with benzyl alcohol for formation of sp\(^3\)-sp\(^3\) carbon-carbon bonds. The functionalization of a 2-methylbenzimidazole, deprotonated with a zinc-pivalate derivative, with ethyl 2-bromomethylacrylate as the coupling partner, catalysed by CuCN to afford the 2-[2-(benzimidazol-2-yl)-ethyl]-acrylate derivative has also been described by Knochel et al. (Scheme 1, middle). Catalyst-free reactions have attracted less attention for the functionalization of 2-alkylazoles. The reactivity of 2-alkylpyridines with 2-bromomethylacrylate in the presence of K\(_2\)CO\(_3\) as base, but without catalyst has also been described by Kim and co-workers (Scheme 1, bottom). On the other hand, to our knowledge, for 2-alkylazoles, only activated methylene...
groups, such as a 2-benzylbenzoxazole, have been functionalised without catalyst.1b,6c

As the methods for the construction of sp3-sp3 carbon-carbon bonds from unactivated sp3 C-H bonds of 2-alkylazoles remain scarce, the reactivity of such alkyl groups needed to be investigated. We now report conditions for the functionalization of a 2-ethyl substituent on a thiazole derivative with ethyl 2-bromomethylacrylate as the reaction partner, and show the scope of the sp3 functionalization of 2-alkyl-substituted thiazoles, imidazoles, oxazoles and pyridines.

2. Results and discussion

We initially compared the reaction of 2-ethyl-4-methylthiazole and ethyl 2-bromomethylacrylate with and without Pd-catalyst in DMA at 150 °C (Table 1). The presence of methylthiazole and ethyl 2-bromomethylacrylate with and without Pd-catalyst in DMA at 150 °C (Table 1, entry 1). The use of 2.5 equiv. of 2-bromomethylacrylate allowed to obtained 1b in 48% selectivity and in 33% yield (Table 1, entry 16). Finally, a lower reaction temperature of 110 °C affords 1a in high selectivity but in very low yield (Table 1, entry 17).

Table 1. Influence of the reaction conditions for the coupling of 2-ethyl-4-methylthiazole with ethyl 2-bromomethylacrylate.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Base (equiv.)</th>
<th>Solvent</th>
<th>Ratio</th>
<th>Yield in 1a (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>K\textsubscript{2}CO\textsubscript{3}(1.5)</td>
<td>DMA</td>
<td>92:8</td>
<td>80</td>
</tr>
<tr>
<td>2</td>
<td>K\textsubscript{2}CO\textsubscript{3}(1.5)</td>
<td>DMA</td>
<td>90:10</td>
<td>79a</td>
</tr>
<tr>
<td>3</td>
<td>K\textsubscript{2}CO\textsubscript{3}(1.5)</td>
<td>DMF</td>
<td>76:24</td>
<td>nd</td>
</tr>
<tr>
<td>4</td>
<td>K\textsubscript{2}CO\textsubscript{3}(1.5)</td>
<td>NMP</td>
<td>87:13</td>
<td>61</td>
</tr>
<tr>
<td>5</td>
<td>K\textsubscript{2}CO\textsubscript{3}(1.5)</td>
<td>CPMEb</td>
<td>-</td>
<td>0c</td>
</tr>
<tr>
<td>6</td>
<td>K\textsubscript{2}CO\textsubscript{3}(1.5)</td>
<td>o-xylene</td>
<td>-</td>
<td>0d</td>
</tr>
<tr>
<td>7</td>
<td>K\textsubscript{2}CO\textsubscript{3}(1.5)</td>
<td>ethylbenzene</td>
<td>-</td>
<td>0d</td>
</tr>
<tr>
<td>8</td>
<td>K\textsubscript{2}CO\textsubscript{3}(1.5)</td>
<td>1,4-dioxane</td>
<td>-</td>
<td>0c</td>
</tr>
<tr>
<td>9</td>
<td>K\textsubscript{2}CO\textsubscript{3}(1.5)</td>
<td>1,4-dioxane</td>
<td>-</td>
<td>0c</td>
</tr>
<tr>
<td>10</td>
<td>K\textsubscript{2}CO\textsubscript{3}(1.5)</td>
<td>DMA</td>
<td>52:48</td>
<td>33 of 1be</td>
</tr>
<tr>
<td>11</td>
<td>Cs\textsubscript{2}CO\textsubscript{3}(1.5)</td>
<td>DMA</td>
<td>97:3</td>
<td><10f</td>
</tr>
</tbody>
</table>

Conditions: 2-ethyl-4-methylthiazole (1.5 mmol), ethyl 2-bromomethylacrylate (1 mmol), under argon, 16 h, 150 °C, isolated yields. a 1 mol% PdCl(C\textsubscript{5}H\textsubscript{5})(dpbb). b CPME: cyclopentyl methyl ether. c 110 °C. d 130 °C. e 2-ethyl-4-methylthiazole (1 mmol), ethyl 2-bromomethylacrylate (2.5 mmol), K\textsubscript{2}CO\textsubscript{3} (3 mmol).

The first step of the reaction is certainly the addition of the carbonate cation has an important influence on this reaction (Table 1, entries 5-7, 9). No reaction also occurred in ethylbenzene or 1,4-dioxane in the presence of 1 mol% PdCl(C\textsubscript{5}H\textsubscript{5})(dpbb) (Table 1, entries 8 and 10). The nature of the carbonate cation has an important influence on this reaction, as both Cs\textsubscript{2}CO\textsubscript{3} and Na\textsubscript{2}CO\textsubscript{3} gave low yields of 1a (Table 1, entries 11 and 12). The low yield obtained with Na\textsubscript{2}CO\textsubscript{3} might be due to its poor solubility in DMA; whereas the higher basicity of Cs\textsubscript{2}CO\textsubscript{3} might be harmful for the reaction.

Using K\textsubscript{2}CO\textsubscript{3} as base in DMA, (Table 1, entry 1), the scope of the sp3 C-H bond functionalization using various 2-alkylthiazole derivatives was examined (Scheme 3). From 1.5 equiv. of 2,4-dimethylthiazole and 1 equiv. of ethyl 2-bromomethylacrylate, a mixture of 2a and 2b was obtained in a 19:81 ratio. The use of a...
larger excess of 2,4-dimethylthiazole (3 equiv.) did not allowed to obtain 2a in good selectivity. Again, no sp\(^3\) C-H bond functionalization at position C4-Me thiazole was observed. On the other hand, the reaction of 2-butylthiazole or 2-i-propylthiazole (1.5 equiv.) with ethyl 2-bromomethylacrylate (1 equiv.) led exclusively to mono-coupling products 3a and 4a in moderate to high yields. Then, we studied the influence of benzene substituents of 2-butyl-5-aryltiazoles for such couplings (Scheme 3). Nitro-, chloro- or cyano- substituents are tolerated to afford couplings (Scheme 3). Nitro-, chloro- or cyano- substituents are tolerated to afford mono-coupling products 5a, 6a and 8a in 51-66% yields. The highest yield was obtained from 2-i-propylthiazole (1.5 equiv.) with ethyl 2-bromomethylacrylate (1 equiv.) led exclusively to mono-coupling products.

The reactivity of a few 2-alkylpyridine derivatives using K\(_2\)CO\(_3\)/DMA as reaction conditions was also studied (Scheme 6). A mixture of 1 equiv. of ethyl 2-bromomethylacrylate and 1.5 equiv. of 2-methylpyridine gave the products 19a and 19b in a 84:16 ratio. Under similar conditions, the coupling with 2,3-dimethylpyridine only gave 19a in a very high yield. A high selectivity in favour of the formation on mono-coupling product 21a was also observed with 2,4-dimethylpyridine.

The influence of the nature of the heteroatom at position 1 of the heteroarene was also examined (Scheme 5). The reaction of 1.5 equiv. of 1,2-dimethylimidazole with 1 equiv. of ethyl 2-bromomethylacrylate only gave mono-coupling product 14a in 71% yield. Similarly, 1-benzyl-2-methylimidazole only afforded the mono-coupling product 15a in 65% yield. On the other hand, a mixture was obtained from 1-decyl-2-methylimidazole with the formation of 16a and 16b in a 82:18 ratio. However, the use of a larger excess of 1-decyl-2-methylimidazole gave 16a in 99% selectivity and 78% yield. From both 2,4,5-trimethoxyoxazole and 2-ethyl-4,5-dimethoxyoxazole (3 equiv.), again the formation of mixtures of mono- and di-alkylation products 17a:17b and 18a:18b in 47:53 and 45:55 ratios was observed.
Acknowledgments

We are grateful to the “Chinese Scholarship Council” for a grant to Z. L.

References and notes

11. For a review on thermal and palladium-catalysed aza-Cope rearrangement, see: Majumdar, K. C.; Bhattacharyya, T.; Chattopadhyay, B.; Sinha, B. Synthesis 2009, 2117-2142.

13. General procedure for the synthesis of 1a-2a: As a typical experiment, reaction of the heterocyclic (1.5 mmol) ethyl 2-bromomethylacrylate (0.193 g, 1 mmol), K₂CO₃ (0.207 g, 1.5 mmol) at 150 °C during 16 h in DME (4 mL) under argon afforded the corresponding products after extraction with dichloromethane, evaporation and filtration on silica gel. All compounds gave satisfactory 1H, 13C and elementary analysis.

14. Ethyl 2-[2-(4-methylthiazol-2-yl)-propyl]-acrylate (1a) H NMR (400 MHz, CDCl₃): δ 6.64 (s, 1H), 6.10 (s, 1H), 5.43 (s, 1H), 4.13 (q, J = 7.1 Hz, 2H), 3.45-3.30 (m, 1H), 2.77 (dd, J = 13.9, 7.1 Hz, 1H), 2.56 (dd, J = 13.9, 7.1 Hz, 1H), 2.35 (s, 3H), 1.29 (d, J = 7.1 Hz, 3H), 1.23 (t, J = 7.1 Hz, 3H). 13C NMR (100 MHz, CDCl₃): δ 175.2, 166.9, 152.0, 138.1, 127.3, 112.0, 60.7, 39.8, 37.4, 20.9, 17.0, 14.2. Ethyl 4-methyl-2,6-dimethylene-4-(4-methylthiazol-2-yl)-heptane-1,6-diol (1b) was also isolated: 1H NMR (400 MHz, CDCl₃): δ 6.63 (s, 1H), 6.04 (s, 2H), 5.19 (2H), 4.10-4.00 (m, 4H), 2.91 (d, J = 13.2 Hz, 2H), 2.78 (d, J = 13.2 Hz, 2H), 2.37 (s, 3H), 1.23 (s, 3H), 1.18 (t, J = 7.1 Hz, 6H). 13C NMR (100 MHz, CDCl₃): δ 177.0, 151.9, 137.0, 128.5, 112.5, 60.7, 45.1, 42.7, 22.7, 17.1, 14.1.