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Abstract 

The indentation test consists in pressing an indenter on the surface of a tested material and in 
measuring continually the load F in function of the displacement h of the indenter. In order to analyse the 
indentation curve F(h) and extract material properties, one method among others uses the notion of the 
representative strain. The first aim of this paper is to investigate a new concept of a representative plastic 
strain as well as a new concept of a representative plastic strain rate. The second aim is to couple the effect of 
work hardening and strain rate to define the corresponding representative plastic strain and the corresponding 
representative plastic strain rate. We show that there are respectively two representative plastic strains and a 
plastic strain rate: the former obtained using the hardness of indentation and the latter obtained using the 
loading curve. Then, it is shown that the values of the representative strain and of the strain rate depend on 
the material behavior and its constitutive parameters. 

Keywords: Conical indentation, representative strain, representative strain rate, finite elements 

1 Introduction 
Mechanical characterization became an important industrial challenge because of the increase of specific 
materials used. The instrumented indentation test (Figure 1) has been developed during the last decades and 
appears to be a good alternative to the classic mechanical tests to determine the mechanical properties of 
studied materials[1]–[4]. The indentation test is a local and quasi-non-destructive test which allows the 
characterization of the local and global mechanical properties when classical tests can not be used, such as in 
the case of a small available volume of material or in the case of a thin layer. 

However, evaluating the intrinsic mechanical properties of the materials from indentation data remains a 
major challenge because the strain field around the indenter is heterogeneous. Then, some approaches have 
been proposed in order to define a ‘representative strain’ depending on the geometrical characteristic of the 
indenter and on the loading conditions [5]–[17]. In the case of a self-similar indentation of an elastic-plastic 
material, e.g. with a conical indenter, the geometrical similarity leads to a representative strain which does not 
depend on the indentation penetration degree [18]. As a consequence, by using a dimensional analysis, it is 
shown that during a conical indentation test both the contact hardness H Equation (1) and the loading 
curvature CL Equation (2) are constant [8], [14], [18], [19]: 

𝐻 =
𝐹

𝜋𝑎𝐶
2            (1) 

𝐶𝐿 =
𝐹

ℎ2            (2) 

Where F is the applied load, ac is the contact radius and h is the penetration depth of the indenter into the 

material. This is one of the reasons explaining why one indentation curve obtained from a conical indenter 

cannot lead to a unique solution in the determination of the material’s mechanical properties[19]. For each set 

of identified parameters, which gives the same indentation loading curves, the identified stress-strain curves 

cross each other at a single point that corresponds to the representative strain and a representative stress, 

thus one point in the hardening curve can be assessed. Moreover using two kinds of indentation data, the 

Hardness H and the curvature CL, two separate representative strains can be assessed. They can both be used 

in order to identify the hardening parameters of an elastic plastic material.  
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One the one hand, Tabor [5] was the first to introduce the notion of the representative strain εRP obtained 

from the hardness estimation. He stated that the flow stress σR is related to hardness H by a confined factor CF 

defined by the following expression: 

𝐻 = 𝐶𝐹𝜎𝑅            (3) 

It has been shown that the hardness H of a work-hardening material increases with the angle θ of the indenter. 
It has also been shown that it is possible to determine the stress-strain curve of copper and mild steel metals 
using several angles of the cone. In his experimental study, Tabor has suggested, for a Vickers indenter, that 
CF=3 and εRP=0.08.  Using an algebraic approach similar to that used by Tabor, Chaudri [7] has proposed 
εRP=0.20 and CF=3.1. The two authors have proposed very close values of CF, however we can see that the 
proposed values of εRP are very different [5], [7], [9].  

On the other hand, many authors [8], [10], [11] have shown that during a conical indentation test of an elastic 
plastic material the curvature CL in equation (2) remains constant. According to the  [18], a 

function of k variables can be reduced on k-p dimensionless variables, where p is the number of fundamental 
units, the loading curvature CL can also be related to σR with Equation (4) which leads to the determination of 
another representative strain [8]: 

𝐶𝐿 = 𝜎𝑅Π1 (
𝐸∗

𝜎𝑅
)           (4) 

Where Π1 is a dimensionless function. This is the reason why the first purpose of this paper is to show that, 
according to the considered indentation data, the value of the representative strain is different. Moreover, this 
work will explain the reason of these differences.  

Contrary to elastic plastic materials which were widely investigated, time dependent materials have not been 
investigated thoroughly. However as for the elastic plastic material, a representative strain rate 𝜀𝑅̇ was 
proposed for conical indentation of a power law creep solids[20], [21],  in the aim to apply the same philosophy 

for a polymer[22]–[25]. According to a dimensional analysis, using a constant ratio 
ℎ̇

ℎ
, the geometrical similarity 

also occurs and both H and CL are constant [18]. The representative strain rate 𝜀𝑅̇ 
is thus defined as 

proportional to the 
ℎ̇

ℎ 
ratio according to every author, but each gives a different formulation of this 

representative strain rate. For a Berkovich indenter, most of authors [26]–[28] have proposed that the 
representative strain rate is defined by: 

𝜀𝑅̇ =
1

ℎ

𝑑ℎ

𝑑𝑡
=

ℎ̇

ℎ
           (5) 

Based on this previous work, Bucaille [29] has shown that the representative strain rate increases with θ and he 
has proposed the following relationship: 

𝜀𝑅̇ = 0,6 𝑐𝑜𝑡𝑎𝑛𝜃 
ℎ̇

ℎ
          (6) 

where θ is the half-angle of a conical indenter. Later, Kermouche [30] pointed out the influence of the strain 
rate sensitivity on the representative strain rate and stated that this latter can be approximated by: 

𝜀𝑅̇ ≈ 0,44 𝑒𝑥𝑝 (
0,2

𝑚
) 𝑐𝑜𝑡𝑎𝑛𝜃 

ℎ̇

ℎ
         (7) 

Regarding equation (5)-(7), different expressions of the representative strain rate, using the hardness H, are 
proposed. However, the calculation of the hardness remains another problem due to the experimental 
measurement of the contact area for these material. Then, an alternative methodology is using the curvature 
CL of indentation for the calculation of the representative strain rate. 

In this paper, we first investigated the behavior of a rigid plastic material under a conical indentation in order 
to define the two representative plastic strains for both H and CL. Secondly, we considered a power law creep 
material in order to study the influence of the strain rate parameter m for both H and CL and to suggest an 
explanation for the different expression of the representative strain rate.  Finally, we combined the hardening 
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and the sensitivity to the strain rate in order to define a representative plastic strain and a representative 
plastic strain rate for a rigid-viscoplastic material. 

2 Representative plastic strain and representative plastic strain rate 

2.1 Studied materials and Finite element model 

In this section we study the concept of representative strain for a rigid plastic material, as defined by Equation 

8. The concept of representative strain rate is also studied by considering, for the equivalent stress  a simple 

power law function defined by Equation 9. 

𝜎 = 𝐾𝜀𝑃
𝑛           (8) 

 𝜎 = 𝐾𝜀𝑃̇
𝑚           (9) 

A numerical analysis was realized using the commercial finite element code ABAQUS in order to investigate the 
concepts of the representative strain and representative strain rate. A convergence investigation was 
performed in order to determine the optimal mesh. Moreover, the mesh near the contact zone was refined to 
increase the accuracy of the FE model. This latter had 6996 elements with 7158 nodes (Fig. 2). The indenter 
was considered as a perfectly rigid solid with θ=70.3° (Fig. 1). The contact between the surface of the indenter 
and the specimen was modeled using a friction Coulomb model with μ = 0.1. The kinematic condition of the 

penetration was performed respecting 
ℎ̇

ℎ
= 5.585 𝑠−1, which corresponds to the value used by Kermouche 

[30]. The rheological parameters used in this study are presented in Table 1. The high values of the Young’s 
modulus E and the consistency K were chosen to simulate rigid plastic properties. The material behavior was 
considered as an isotropic hardening flow defined by the Von Mises criteria. 

2.2 Representative plastic strain 

In order to introduce the concept of representative plastic strain, a rigid plastic material governed by Equation 

8 is considered. As stated in the introduction, two indentation data, with two indenters, can be used in order to 

determine two different representative strains.  

2.2.1 Representative plastic strain obtained using the contact Hardness 
Combining the Tabor Equation 3 and the considered behavior law Equation 8 leads to the following 
relationships: 

𝐻

𝐾
= 𝐶𝐹𝜀𝑅𝑃

𝑛            (10) 

Then 

𝑙𝑛 (
𝐻

𝐾
) = 𝑛 𝑙𝑛𝜀𝑅𝑃 + 𝑙𝑛𝐶𝐹           (11) 

According to Equation 11, 𝑙𝑛 (
𝐻

𝐾
) linearly depends on n if the 𝜀𝑅𝑃 and CF are constant. Figure 3 illustrates that 

concerning the Tabor results, the linearity is verified which leads to a constant value of representative plastic 

strain during a conical indentation test. In the present study, it is shown that the linearity is not verified for 

every value of the hardening parameter n. However, we assume local linearities, which leads to a new 

expression of a representative plastic strain as a function of the hardening parameter and defined by the slope 

of the  𝑙𝑛 (
𝐻

𝐾
) to n: 

𝜕

𝜕𝑛
𝑙𝑛 (

𝐻

𝐾
) = 𝑙𝑛𝜀𝑅𝑃          (12) 

Then, 
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𝜀𝑅𝑃 = 𝑒𝑥𝑝 [
𝜕

𝜕𝑛
(𝑙𝑛 (

𝐻

𝐾
))] = 𝑒𝑥𝑝 (

𝜕

𝜕𝑛
(𝑙𝑛(𝐻)))      (13) 

In Figure 3, it is shown that for n with a value lower than 0.15, the slope of these  numerical results are in good 

correlation to the slope of the experimental results found by Chaudri [7] and for a value of n higher than 0.2 it 

is equal to the experimental results found by Tabor [5]. Moreover, Figure 4 shows the representative plastic 

strain calculated by using the mean pressure for each value of the hardening parameter n. This result was 

obtained for a rigid plastic material and it illustrates that the value of representative plastic strain depends on 

the material properties contrary to the philosophy introduced by Tabor and Chaudri. According to this result, 

the representative strain assessed by Chaudri corresponds to the low values of n and that of Tabor’s 

corresponds to the values of n which are between 0.28 and 0.38. Fig (3) illustrates that the present model 

allows the determination of the changes of the plastic representative strain for all the values of n. Moreover, 

this result is in accordance with the literature, the plastic representative strain varies between the Tabor value 

for low values of n and decreases to the Chaudri values for high values of n.  

2.2.2 Representative plastic strain obtained using the loading curve 
The determination of the contact area and then the hardness is still an important challenge for experimental 

indentation studies. This is the reason why the most common used data is the load-depth curve. As explained 

previously, during a conical indention test of a rigid-plastic material the curvature of the loading curve is 

constant. According to Equation 4 and by following the same approach as in the former section, we obtain: 

𝑙𝑛 (
𝐶𝐿

𝐾
) = 𝑛 𝑙𝑛𝜀𝑅𝑃 + 𝑙𝑛Π1 (

𝐸∗

𝜎𝑅
, 𝜃)        (14) 

Thus, we can also define the representative plastic strain by using the curvature of a loading curve: 

 𝜀𝑅𝑃 = 𝑒𝑥𝑝 [
𝜕

𝜕𝑛
(𝑙𝑛 (

𝐶𝐿

𝐾
))] = 𝑒𝑥𝑝 [

𝜕

𝜕𝑛
(𝑙𝑛(𝐶𝐿))]       (15) 

2.3 Representative plastic strain rate 

For an isotropic solid during the steady-state creep regime, the stress can be defined by using the power law 

function of strain rate described in Equation 9. 

2.3.1 Geometrical similarity on the time-dependent material during a conical indentation 

By applying the , Cheng and Cheng [18], have proposed the following relationships: 

𝐹 = 𝐾 (
ℎ̇

ℎ
)

𝑚

Π𝛼(𝑚, 𝜃)ℎ2         (16) 

𝐴𝐶 = ℎ2Π𝛽(𝑚, 𝜃)          (17) 

where Π𝛼 and Π𝛽 are dimensionless functions, ℎ̇ is the penetration rate of indenter. The mean pressure is 

defined by: 

𝐻 = 𝐾 (
ℎ̇

ℎ
)

𝑚

Π𝛾(𝑚, 𝜃)          (18) 

where Π𝛾 =
Π𝛼

Π𝛽
 is a dimensionless function. Equations 16 and 18 show that if the ratio 

ℎ̇

ℎ
 is constant during the 

indentation test, both the proportionality of the load to the square of the displacement and the constant 

hardness are verified. In Figure 5, a numerical simulation of the indentation test controlled by a constant 

displacement rate shows that the mean pressure is different during penetration. However for the kinematic 

condition 
ℎ̇

ℎ
 constant, the distribution of the mean pressure is the same for all values of h. Then the similarity of 



5/21 
 

indentation is still correct.  Consequently, the relationships proposed in the previous section can be applied. 

The representative strain can be respectively related to the mean pressure and to the curvature of the loading 

curve. In the following sections, the representative strain rate is obtained from these two pieces of data.   

2.3.2 Representative plastic strain rate obtained using the contact hardness 

Respecting Tabor’s suggestion, who states that the representative stress can be related to the hardness by the 

constrain factor, and combining Equations 9 and 18, we can write: 

𝐻 = 𝐾𝐶𝐹𝜀𝑃̇
𝑚           (19) 

Then 

𝑙𝑛 (
𝐻

𝐾(
ℎ̇

ℎ
)

𝑚) = 𝑚 𝑙𝑛𝜒 + 𝑙𝑛𝐶𝐹         (20) 

where  𝜒 =
𝜀̇𝑅𝑃

(
ℎ̇

ℎ
)
 . According to Equation 20, the logarithm of the mean pressure linearly depends on the strain 

rate sensitivity m if 𝜒 is constant. However, Figure 6 illustrates that this is not verified for the high values of m. 

In similitude to the previous reasoning we can assume a local linearity. We can thus define the first expression 

of the representative plastic strain rate obtained by using the mean pressure: 

𝜀𝑅̇𝑃 =
ℎ̇

ℎ
𝑒𝑥𝑝 {

𝜕

𝜕𝑚
𝑙𝑛 [

𝐻

𝐾(
ℎ̇

ℎ
)

𝑚]}         (21) 

The above expression shows that the representative plastic strain rate is proportional to the ratio of the 

indenter’s displacement speed and the displacement. This relationship has been also confirmed by Bucaille [29] 

and Kermouche [30] in their work that stated that the representative strain rate was strongly related to the 

half angle of the indenter.  

The results obtained by considering a creep power law is presented in Figure 7 and it illustrates that the 

representative strain rate depends on the value of the strain rate sensitivity m which was previously observed 

by Kermouche [30] . For m higher than 0.12, the ratio of the representative plastic strain rate to 
ℎ̇

ℎ
 correlates 

with the results obtained by Kermouche, however for the lower values of m the present model allows us to 

determine a representative strain rate even if m is equal to 0. We can also notice that the value proposed by 

Bucaille [29] is correct for a value of m close to 0.08. As a conclusion, as for the representative strain, the 

representative strain rate proposed in this paper is in accordance with the literature results. The proposed 

formulation allows having a changes of the representative strain rate for the whole n values. The values are 

very close to the one proposed by Kermouche [30] for the high values of n and the results of Bucaille [29] 

represent a middle constant value of this representative strain rate whatever n.  

2.3.3 Representative plastic strain rate obtained using the loading curve 

Concerning the use of the curvature, Equations 2, 9 and 16 lead to 

𝑙𝑛 [
𝐶𝐿

𝐾(
ℎ̇

ℎ
)

𝑚] = 𝑚 𝑙𝑛𝜒 + 𝑙𝑛(Π𝛼)        (22) 

Then the representative plastic strain rate obtained by using the loading curve can be expressed as: 
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𝜀𝑅̇𝑃 =
ℎ̇

ℎ
𝑒𝑥𝑝 {

𝜕

𝜕𝑚
𝑙𝑛 [

𝐶𝐿

𝐾(
ℎ̇

ℎ
)

𝑚]}         (23) 

3 Study of a rigid visco-plastic material 

3.1 Combining hardening and strain rate sensitivity effect 

In this section, we will consider a rigid visco-plastic material governed by a power law, defined as 

𝜎 = 𝐾𝜀𝑃
𝑛𝜀𝑃̇

𝑚           (25) 

The load during indentation test can be expressed as a function of material parameters, the penetration of 

indenter h, the rate of penetration ℎ̇, the Poisson's ratio ν, the friction's coefficient µ and the half angle of the 

indenter θ. 

𝐹 = 𝑓(𝐾, 𝑚, 𝑛, ℎ, ℎ̇, 𝜐, 𝜇, 𝜃)         (26) 

According to dimensional analysis, assuming that the Poisson's ratio ν and the friction's coefficient µ are 

known, we can write: 

𝐹 = 𝐾 (
ℎ̇

ℎ
)

𝑚

Π𝛼(𝑚, 𝑛, 𝜃)ℎ2         (27) 

𝐴𝐶 = ℎ2Π𝛽(𝑚, 𝑛, 𝜃)          (28) 

 Then, the hardness can be defined by: 

  𝐻 = 𝐾 (
ℎ̇

ℎ
)

𝑚

Π𝛾(𝑚, 𝑛, 𝜃)         (29) 

Combining Equation 3, 4, 27 and 29 leads to: 

𝑙𝑛 [
(𝐻 𝑜𝑟 𝐶𝐿)

𝐾(
ℎ̇

ℎ
)

𝑚 ] = 𝑚 𝑙𝑛(𝜒) + 𝑛 𝑙𝑛(𝜀𝑃) + 𝑙𝑛(𝐶𝐹 𝑜𝑟 Π1)      (30) 

According to Equation 30 we can notice that if both the representative plastic strain and  are constant, 

isovalues of the logarithm of the mean pressure or the curvature depend linearly on the hardening parameter n 

and the strain rate sensitivity m. However, the results of the numerical analysis show that the linear 

distribution is not verified (Figure 8).  

Then for a first approximation, we will consider a set of parallelogram where the linearity is locally verified and 

the following relationship is valid at each apex of this parallelogram:  

𝑙𝑛 [
𝐻𝑖 𝑜𝑟 𝐶𝐿𝑖

𝐾𝑖(
ℎ̇

ℎ
)

𝑚𝑖
] = 𝑚𝑖𝛼 + 𝑛𝑖𝛽 +  𝛾        (31) 

where i = 1 to 4, this represents the index of the parallelogram’s apex. 

Thus, the representative plastic strain and the representative plastic strain rate can be deduced by determining 

for each element the value of coefficients α, β and γ. 
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3.2 Results obtained using the mean pressure  

The value of the representative plastic strain and 𝜒 functions depending on n and m, obtained by considering 

the mean pressure, are represented in Figure 9. It is shown that, for each set of (m, n) there exist well-defined 

values of representative plastic strain and representative plastic strain rate. According to these numerical 

results, several observations can be made. First of all, for values of m and n higher than 0.15 the representative 

plastic strain and 𝜒 remain almost constant and very low. We can thus conclude that, in this domain, the 

representative strains proposed by Tabor [5] and Chaudri [7] are verified. This observation can also be 

extended to the representative strain rate. However, for values of m and n smaller than 0.15, the 

representative plastic strain increases from 12 % to 25 % and 𝜒 increases from 0.2 to 0.8.  This illustrates that 

there is not a single value for the representative strain and the representative strain rate for all values of m and 

n. The fact that the representative strain and the representative strain rate are not constant in the n-m space 

demonstrates that using one conical indenter and one value of 
ℎ̇

ℎ
  cannot lead to a unique point of the stress 

strain curve. Moreover, it is important to notice that when m is close to 0, which corresponds to a large class of 

materials, a representative plastic strain rate can be determined from the present method. This was not 

possible using the previous model proposed by Kermouche [30]. As illustrated before, the present paper 

propose formulations in accordance with the literature results but allowing to have access to the changes of 

the representative strain and strain rate in the whole m and n space.  

3.3 Results obtained by using the curvature of the loading curve 

The curvature of the loading curve can easily be obtained experimentally, contrary to the mean pressure. 

Figure 10 shows the representative plastic strain and the representative plastic strain rate as functions of the 

material parameters m and n. This result reveals that the representative strain is lower than that obtained from 

the mean pressure. When m is equal to 0, which is the case of a material insensitive to the strain rate, the 

representative strain varies between 2.8% and 4.5%.  

4 Conclusions 

In this paper we used a conical indenter in order to propose new formulations of the representative plastic 

strain and the representative plastic strain rate for a rigid viscoplastic material. Contrary to the theory which 

stated that the representative strain induced by a conical indenter is constant, whatever the studied material, 

it is shown in this paper that this data depends strongly on the mechanical properties. It is also shown that the 

use of the mean pressure or the loading curve of indentation give different values for the representative strain 

as well as for the representative strain rate. Concerning the representative strain rate, this investigation is in 

accordance with the literature that states that the representative strain rate induced by a conical indentation is 

proportional to the ration 
ℎ̇

ℎ
. However, the representative plastic strain and representative plastic strain rate 

assessed in this paper was obtained using an indenter with a half angle equal to 70.3°. Thus it would be 

interesting to extend this study for several different half angles of indenter but the friction effect which cannot 

be neglected must be studied for lower values of the conical indenter’s angle. 
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List of captions 

Table 1: Rheological parameters used in this study (ν represent the Poisson’s ratio) 

Figure 1: Illustration of an instrumented indentation test (a) Conical indenter where h is the penetration depth, ac is the 
contact radius and hc is the contact depth; (b) Loading curve obtained by using a conical indenter 

Figure 2: Finite element mesh with an axisymmetric model 

Figure 3: Values of 𝒍𝒏 (
𝑯

𝑲
) function of hardening parameter. (.) Results obtained by this numerical analysis; (-) 

Experimental results found by Tabor; (--) Experimental results found by Chaudri 

Figure 4: Variation of the representative plastic strain function of the hardening parameter 

Figure 5: Mean pressure function of the contact depth hC: (a) obtained for a numerical simulation of indentation test with 

penetration rate constant; (b) obtained for a numerical simulation with 
𝒉̇

𝒉
 constant (where aC is the contact radius) 

Figure 6: Values of :  (a) 𝒍𝒏 [
𝑪𝑳

𝑲(
𝒉̇

𝒉
)

𝒎] functions of the strain rate sensitivities  (.)Numerical results, (-) Linear approximation; 

(b) 𝒍𝒏 [
𝑯

𝑲(
𝒉̇

𝒉
)

𝒎] functions of the strain rate sensitivities (.)Numerical results, (-) Linear approximation obtained by 

considering constant 
𝒉̇

𝒉
 during the numerical simulation 

Figure 7: Value of the ratio  
𝜺̇𝑹𝑷

𝒉̇

𝒉

   function of the strain rate sensitivity m 

Figure 8: Relationship between: (a)  𝒍𝒏 [
𝑯

𝑲(
𝒉̇

𝒉
)

𝒎] , (b)  ln [
CL

K(
ḣ

h
)

m] to the hardening parameter n and strain rate 

sensitivities m, showing that there is no linear dependency 

Figure 9: Mapping of (a) the representative plastic strain (b) the ratio of the representative plastic strain rate and 
𝒉̇

𝒉
 both 

obtained by considering the mean pressure of indentation 

Figure 10: Mapping of (a) the representative plastic strain (b) the ratio of the representative plastic strain rate,   both 

obtained by considering the curvature of indentation loading 
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Table 2 

ν 
      0.35 

E [GPa] 
    21 000 

K [MPa.sm] 
    10 000 

m 
0 

0.0875 
0.25 

0.00625 
0.1 
0.3 

0.0125 
0.1125 

0.35 

0.025 
0.125 

0.4 

0.0375 
0.1375 

0.45 

0.05 
0.15 
0.5 

0.0625 
0.175 
0.55 

0.075 
0.2 
0.6 

n 
0 

0.0875 
0.25 

0.00625 
0.1 
0.3 

0.0125 
0.1125 

0.35 

0.025 
0.125 

0.4 

0.0375 
0.1375 

0.45 

0.05 
0.15 
0.5 

0.0625 
0.175 
0.55 

0.075 
0.2 
0.6 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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Figure 10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


