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Abstract.  

Mapping vegetation formations at a fine scale is crucial for assessing wetland functions and 

for better landscape management. Identification and characterization of vegetation formations 

is generally conducted at a fine scale using ecological ground surveys, which are limited to 

small areas. While optical remotely sensed imagery is limited to cloud-free periods, SAR 

time-series are used more extensively for wetland mapping and characterization using the 

relationship between distribution of vegetation formations and flood duration. The aim of this 

study was to determine the optimal number and key dates of SAR images to be classified to 

map wetland vegetation formations at a 1:10,000 scale. A series of eight dual-polarization 

TerraSAR-X images (HH/VV) was acquired in 2013 during dry and wet seasons in temperate 

climate conditions. One polarimetric parameter was extracted first, the Shannon entropy, 

which varies with wetland flooding status and vegetation roughness. Classification runs of all 

the possible combinations of SAR images using different k (number of images) subsets were 

performed to determine the best combinations of the Shannon entropy images to identify 

wetland vegetation formations. The classification runs were performed using Support Vector 

Machine techniques and were then analyzed using the McNemar test to investigate significant 
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differences in the accuracy of all classification runs based on the different image subsets. The 

results highlight the relevant periods (i.e. late winter, spring and beginning of summer) for 

mapping vegetation formations, in accordance with ecological studies. They also indicate that 

a relationship can be established between vegetation formations and hydrodynamic processes 

with a short time-series of satellite images (i.e. 5 dates). This study introduces a new approach 

for herbaceous wetland monitoring using SAR polarimetric imagery. This approach estimates 

the number and key dates required for wetland management (e.g. restoration) and biodiversity 

studies using remote sensing data. 

Keywords. SAR imagery, vegetation formations, change detection, multitemporal image 

analysis, SVM. 

1 Introduction 

Wetlands provide an abundance of ecological services that are valuable to society (Gren et 

al., 1994). They play a key role in flood and water-pollution control, carbon sequestration, and 

biodiversity conservation (Keddy et al., 2009; Mitsch and Gosselink, 2007). Spatially explicit 

wetland inventories are an instructive source of information for planners to determine wetland 

status, monitor these environments and identify important habitats for wildlife, economic 

interests and other functions (Clement et al., 1996).  

Functional assessment of wetlands requires characterizing vegetation formations at a 

fine scale (1:10,000 or greater) (Maltby and Barker, 2009). Since wetlands are spatially and 

temporally dynamic, the distribution of vegetation formations in these environments is mainly 

controlled by hydrological processes. Identification and mapping of wetland plant species is 

generally performed at a fine scale using ecological ground surveys (Duncan et al., 1999; 

Bouzillé et al., 2001; Loucougaray et al., 2004; Sawtschuk and Bioret, 2012; Dumont et al., 

2012), but are limited to small areas of a few hectares.  

 While remotely sensed data are often used to monitor ecosystems and biodiversity 

(Lang et al., 2013), their potential to support monitoring of protected areas remains 

underexploited (Nagendra et al., 2013). Most studies use aerial photographs and optical data 

to map wetland vegetation (Chidley and Drayton, 1986; Alexandridis et al., 2009; Davranche 

et al., 2010; Rapinel et al., 2014). For example, some studies showed the potential of optical 

data time-series such as SPOT-5 (Davranche et al., 2010) or Landsat (Civco et al., 2006) 

images for wetland vegetation mapping. Other studies highlight the high potential of the 
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combined use of LIDAR data and multispectral imagery to map wetland habitats (Ecker et al., 

2010; Rapinel et al., in press). Optical image time-series are generally more reliable for 

identifying wetland vegetation types with a similar physiognomy (e.g. grasslands) since they 

include the dynamic nature of wetlands (Schuster et al., 2015). However, for operational 

mapping, optical data are unsuitable for monitoring wetland dynamics as they are limited to 

cloud-free periods (Claverie et al., 2012). Consequently, acquisition of optical intra-annual 

time-series is unpredictable and not constant over time (Verbesselt et al., 2010). Conversely, 

Synthetic Aperture Radar (SAR) time-series are not sensitive to visibility conditions and can 

be acquired day or night (Schuster et al., 2015).  

 In recent years, SAR images have been used more extensively for wetland mapping 

and characterization (Hess et al., 2003; Corcoran et al., 2011; Schmitt et al., 2012; Betbeder et 

al., 2014 a; Betbeder et al., 2014 b) using the relationship between distribution of vegetation 

formations and flood duration. SAR data are well-known for their ability to detect open water 

(Marechal et al., 2012), water below forest canopy (Frappart et al., 2005) and emergent 

vegetation (Betbeder et al., 2014 b). These characteristics are directly linked to the 

backscattering mechanisms that occur between the radar signal and natural surfaces (i.e. 

single bounce for open water and double bounce for water below forest canopy and emergent 

vegetation). SAR images are often used to classify forested wetland vegetation in tropical 

areas (Touzi et al., 2004; Evans and Costa 2013; Betbeder et al., 2014 a). For example, Hess 

et al. (2003) used two JERS-1 images acquired during dry and wet seasons to map flooded 

forests in the Amazon basin. SAR sensors such as JERS-1 and ALOS PALSAR L-bands are 

well suited to map flooded forests since they can penetrate forest canopy and detect the water 

below. 

However, few studies have focused on the evaluation of SAR and optical time-series 

to identify vegetation formations in herbaceous wetlands at a fine scale under temperate 

climate conditions. Semi-natural grassland habitats defined by a floristic composition gradient 

are difficult to identify using Earth observation techniques, since they have similar spectral 

signatures (Feilhauer et al., 2013). Several studies have shown the benefit of remotely sensed 

data to characterize such ecosystems. For example, Buck et al. (2013) used multispectral 

time-series and ancillary layers (e.g. soil types, slope) to map Natura 2000 grassland habitats. 

Franke et al. (2012) showed the potential of multispectral time-series for mapping use 

intensity of grasslands and consequently their conservation status. However, problems 

encountered using multispectral time-series for semi-natural habitat mapping include intra-

class spectral variability due to different phenological stages and continuous transitions 
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between habitats, which decrease classification accuracy (Stenzel et al., 2014). With the 

emergence of very-high-resolution SAR sensors such as TerraSAR-X and RADARSAT-2, 

new studies emerged that characterized dry grasslands (Hill et al., 2005; Dusseux et al., 2012; 

Schuster et al., 2015) and wet grasslands (Betbeder et al., 2014 b). Farghaly et al. (2014) 

showed that multi-temporal dual-pol TerraSAR-X images improve classification accuracy in 

discriminating grasslands from crops compared to single polarization TSX images. Bargiel 

(2013) demonstrated that multi-temporal TerraSAR-X data, particularly backscattering 

coefficients in HH and VV, are relevant for identifying semi-natural grasslands. Schuster et 

al. (2015) showed that TerraSAR-X time-series are relevant for mapping herbaceous wetland 

vegetation. While herbaceous wetland vegetation types can be similar, they can be 

discriminated by monitoring their intra-annual phenology using temporal profiles derived 

from SAR images (Betbeder et al., 2014 b, Shuster et al., 2015). In most studies, the 

backscattering coefficients of radar signals are used to discriminate heterogeneous grassland 

patterns. Polarimetric parameters have been poorly explored for this purpose (Dusseux et al., 

2014; Betbeder et al., 2014 b). However, Betbeder et al. (2014 b) evaluated several 

parameters (backscattering coefficients and polarimetric parameters) derived from six dual-

pol TerraSAR-X images to precisely map the distribution of vegetation formations in wetland 

areas by considering annual flood duration, since the distribution of vegetation formations 

depends strongly on past and present hydrodynamic conditions. They show that vegetation 

formations can be accurately identified from the classification of Shannon Entropy (SE) 

temporal profiles derived from TerraSAR-X images. They demonstrate the importance of 

using polarimetric parameters instead of backscattering coefficients alone or combined. 

 While SAR data takes less time to pre-process than optical data, e.g. no atmospheric 

corrections or cloud masking with SAR data (Schuster et al., 2015), habitat mapping using 

remote sensing data remains more expensive than field surveys (Vanden Borre et al., 2011). 

Consequently, it is necessary to determine the optimal number and key dates of SAR images 

necessary to classify wetland vegetation formations with high accuracy and reasonable cost. 

In recent years, the utility of multiple images for increasing classification accuracy has 

been analyzed in remote sensing studies. One common way to determine the optimal number 

of images necessary to classify land use or land cover in remotely sensed time-series is to 

compare accuracy measures (i.e. Kappa index, overall accuracy (OAA)) of classification runs 

using different numbers of images (Van Niel and McVicar 2004; Corgne et al., 2014). Some 

studies performed a z-test to include a measure of significance in comparing classification 
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runs (Sader et al., 1995; Murakami et al. 2001). However, this test assumes that samples are 

independent, which is not the case when using the same set of samples to validate several 

classifications (Eliasziw and Donner 1991). More robust tests are necessary when considering 

related pairs of validation samples. One interesting study evaluated the optimal number of 

multispectral time-series for mapping grassland vegetation types based on the McNemar test 

(Schmidt et al., 2014). This test, based on a binary 2 × 2 contingency matrix, shows the 

proportion of pixels correctly and incorrectly classified with two classification runs (Foody 

2004) and allows the use of dependent samples. To the best of our knowledge, this method 

has never been applied to determine the optimal number of SAR polarimetric data necessary 

for mapping herbaceous wetland vegetation types. 

 The aim of this study was to determine the optimal number and key dates of SAR 

images to be classified to map wetland vegetation formations at a 1:10,000 scale. For this 

purpose, we processed a time-series of eight TerraSAR-X images acquired under temperate 

climate conditions during the same hydrological year. We first extracted one polarimetric 

parameter from the images, SE, which varies with wetland flooding status and vegetation 

roughness. This indicator is known to efficiently map vegetation formations in herbaceous 

wetlands (Betbeder et al., 2014). Following Schmidt et al. (2014), we performed several 

classification runs to test all possible image combinations to determine the best combinations 

of the SE images derived from the TerraSAR-X data to identify wetland vegetation 

formations. The classification runs were performed using Support Vector Machine (SVM) 

techniques (Zhang, 2001; Foody and Mathur, 2004; Mountrakis et al., 2011) and were 

analyzed using the McNemar test to investigate significant differences in the accuracy of all 

classification runs based on the image subsets. 

  

2 Materials and methods 

2.1 Study site 

The investigated area is part of a Long-Term Ecological Research (LTER) site named “Pleine 

Fougères,” located on the southern portion of the Bay of Mont-Saint-Michel, France, and 

referenced in the LTER-Europe (lterEurope.net) and ILTER networks (Fig. 1). This 670 ha 

site contains a broad river floodplain that is a Natura 2000 and RAMSAR protected area 

(http://osur.univ-rennes1.fr/za-armorique/page.php?107).  
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Research in the wetland area is devoted to studying variations in flooding and their 

impacts on wetland functions. This area forms a homogeneous alluvial deposit with low 

elevation (± 7 m). Local authorities manage water levels to provide a suitable habitat for 

many aquatic bird species and to facilitate pike reproduction.  

The wetland area is mainly composed of low herbaceous vegetation. The plant 

communities are structured according to flood duration and are conditioned by water 

management and micro-topography. The area that floods the longest (at least 3 months/year) 

in the wetland is covered with grasslands where Glyceria fluitans, Carex hirta and Eleocharis 

palustris grow. Two-thirds of the marsh area is flooded less than 3 months/year and is 

composed of hygrophilic and meso-hygrophilic grasslands dominated by Eleocharis palustris 

and Alopecurus geniculatus. The elevated areas associated with the alluvial ridge at the foot 

of the slope along the main river channel are composed of mesophilic grasslands dominated 

by Lolium perenne. 

 

Figure 1. Location of the study site and locations of training and validation samples 

 

2.2 Data 

A series of eight dual-polarization TerraSAR-X images was acquired in 2013 during dry and 

wet seasons in High Resolution Spotlight mode with HH and VV polarizations (Table 1). An 
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incidence angle of 37° was chosen to maximize vegetation penetration and water detection. 

Radar images were collected during the hydrological period from February to September. 

Table 1. Characteristics of the TerraSAR-X images acquired 

 

 

 

 

 

 

 

 

 

 

 

 

 

Field observations were conducted in 262 plots to calibrate and validate the image 

classification (around 40 per vegetation formation) (Fig. 1). Plant species composition was 

recorded in square plots (4 × 4 m) randomly distributed throughout the study site and located 

using GPS with an accuracy of ±5 m. Half of the plots were used as training samples and the 

other half as validation samples. 

2.3 Image pre-processing 

A 2 × 2 covariance (C2) matrix was first extracted from the scattering matrix images using 

PolSARpro v4.0 software (Pottier and Ferro-Famil, 2012). A refined Lee filter was applied 

using a window of 7 × 7 pixels to reduce speckle noise (Lee, 1981). The geocoding process 

was directly applied to the elements of the 2 × 2 C2 matrix, which are independent of the 

polarimetric absolute phase (Lee and Pottier, 2009) (Fig. 2). 

SE, which corresponds to the sum of two contributions related to the intensity and the 

degree of polarization (Lee and Pottier, 2009), was then calculated from the C2 matrix. SE 

Ground resolution 1.50 m 

Azimuth resolution 2.2 m 

Polarization  Dual (HH-VV) 

Mode High Resolution Spotlight 

Incidence angle 37° (right ascending) 

Coverage 5 km × 10 km 

Dates (M-D-Y) 
 

02-16-2013 

03-10-2013 

04-15-2013 

05-04-2013 

05-15-2013 

06-17-2013 

07-20-2013 

09-20-2013 
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measures the disorder encountered in polarimetric SAR images. Each pixel in the TerraSAR-

X images is defined as a complex 2D target vector k that follows a 2D circular Gaussian 

process with a mean of zero and a covariance matrix C2: 

  

𝑃𝐶2
(𝑘) =  

1

π2|𝐶2|
exp(𝑘T∗ ∗  𝐶2

−1 k)  
(1) 

where T* stands for transpose-conjugate. 

The intensity (IC) and degree of polarization (PC) are defined from the C2 averaged using 

the following formulas: 

 𝐼𝐶 = 𝑇r(𝐶2) 𝑎𝑛𝑑 𝑃𝐶 = √1 − 4
|𝐶2|

𝑇r(𝐶2)2
  (2) 

where Tr(.) and |.| stand for the trace and determinant of the matrix, respectively. 

Shannon Entropy SE is defined for a general density function by: 

 

𝑆|𝑃𝐶(𝑘)| = ∫ 𝑃𝐶 (𝑘) log[𝑃𝐶(𝑘)]𝑑𝑘  
(3) 

where ∫( . ) 𝑑𝑘 stands for complex 2D integration. In the case of a circular Gaussian process, 

SE is decomposed as the sum of two terms: intensity contribution (SEI), which depends on 

total backscattered power, and polarimetric contribution (SEP), which depends on the Barakat 

degree of polarization PC (Réfrégier and Morio, 2006). In other words, SE measures the 

randomness of scattering of a pixel, which can be due to variation in backscattering power or  

polarization. 

𝑆𝐸 = log(𝜋2𝑒2|𝐶2|) = 𝑆𝐸𝐼 + 𝑆𝐸𝑃  (4) 

𝑆𝐸𝐼 = 2 log (
𝜋𝑒𝐼𝐶

2
) = 2log (

𝜋𝑒𝑇𝑟(𝐶2)

2
)  (5) 

SEP = log(1 − PC
2) = log (4

|C2|

Tr(C2)2)  (6) 

2.4 Image processing  

 We aimed to test all possible image combinations to determine the best combinations 

of the SE images derived from the TerraSAR-X data to identify six wetland vegetation 
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formations (i.e. wooded areas, ponds, long-flooded grasslands, hygrophilic grasslands, meso-

hygrophilic grasslands, and mesophilic grasslands). In other words, we evaluated all possible 

combinations of dates for wetland vegetation mapping for each k number of images (1-8 

dates) (Fig. 2). We tested 255 combinations using 8 SE images. Each subset of SE images was 

classified using the SVM technique (Zhang, 2001; Foody and Mathur, 2004; Mountrakis, 

2011) with a Gaussian kernel. SVM techniques are commonly used and are known to 

efficiently classify remotely sensed time-series (Zheng et al., 2004; Tigges et al., 2013; 

Schuster et al., 2015). A Gaussian kernel was used because it is classifies multi-temporal 

TerraSAR-X data more effectively than other methods for wetland vegetation mapping 

(Betbeder et al. 2014 b). Classification accuracy was defined using overall accuracy (OAA). 

All classification runs were then analyzed using the McNemar test (Agresti 2007). This test is 

known for its efficiency in comparing classification accuracies to determine the best 

acquisition date combinations (Alcantara et al., 2012; Schmidt et al., 2014). The McNemar 

test enables using the same set of samples to validate several classifications (Agresti, 2007). It 

is based on the proportion of correctly and incorrectly allocated pixels in a binary 2 × 2 

contingency matrix (Foody, 2004). Following Schmidt et al. (2014), this test was used to 

investigate significant differences in the accuracy of classification runs based on the different 

image subsets. For each k subset (1-8 acquisition dates), the classification selected an OAA 

close to the mean OAA. Each classification was performed using different combinations for 

each k subset and tested to see if it was significantly higher or lower than the mean OAA. A 

significant difference was assumed if χ² exceeded the critical value of 3.14 (one degree of 

freedom and significance level of α=0.05). Thus, we classified each classification run as (i) 

significantly higher, (ii) insignificantly or (iii) significantly lower than mean OAA.  

A “ratio of saturation” was used to distinguish the best tradeoff between the number of image 

acquisitions and OAA. According to Schmidt at al. (2014), the ratio of saturation includes 

“for each k the mean OAA of all significantly improved classification runs and the mean 

OAA on all insignificantly influenced classification runs”.  

 

                                         𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =
𝑂𝐴𝐴̅̅ ̅̅ ̅̅  𝑛𝑜 𝑠𝑖𝑔

𝑂𝐴𝐴̅̅ ̅̅ ̅̅  𝑝𝑜𝑠 𝑠𝑖𝑔
                                                       (7) 

 

                                                  𝑂𝐴𝐴̅̅ ̅̅ ̅̅ ̅ =
1

𝑝
 ∑ 𝑂𝐴𝐴 𝑝𝑜𝑠 𝑠𝑖𝑔 𝑖𝑝

𝑖=1                                           (8) 
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                                                           𝑂𝐴𝐴̅̅ ̅̅ ̅̅ ̅ =
1

𝑞
 ∑ 𝑂𝐴𝐴 𝑛𝑜 𝑠𝑖𝑔 𝑖𝑞

𝑖=1                                            (9) 

 

 

Where p is the number of all significantly improved classification runs and q is the number of 

all insignificantly influenced classification runs. 

If the ratio of saturation exceeds 0.95, the addition of acquisition dates does not significantly 

improve OAA. All analyses were performed using the R 2.9.0 software package (R 

Development Core Team, 2010). 

Once the best tradeoff between the number of acquisition dates and OAA was selected, we 

analyzed the number of occurrences of the “best dates” for all classification runs with an 

OAA above the saturation ratio for the best k classifications. For the best classification 

combination, we calculated the kappa index which expresses the proportional reduction in 

error generated by a classification process compared with the error of a completely random 

classification (Congalton, 1991). The kappa index is commonly used to assess prediction 

errors in conservation presence/absence models (Fielding and Bell, 1997). 

 

 

Figure 2 : Workflow of image pre-processing and processing 
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3 Results  

 

The more acquisition dates, the higher the mean OAA is (Fig. 3). Moreover, variability in 

OAA decreases as the number of acquisition dates increases. The maximum mean OAA is 

around 95% with 8 dates, decreasing to 45% with 1 date. The ratio of saturation is reached 

with 5 acquisition dates, with a mean OAA of 95%. Thus, 5 images correspond to the best 

tradeoff between the number of acquisition dates and the OAA. Very good results are also 

achieved with 6-8 images. Good results are achieved with only 2-4 images, but with few 

image combinations. The best combination of dates using 5 dates is February, April, May, 

June, and July. The McNemar test showed no significant differences in OAA when using 

more than 4 dates. 

 

Figure 3: Boxplots of overall accuracy of all classification runs (date combinations of 8 TerraSAR-X 

images) as a function of the number of acquisition dates (k subsets). Gray areas represent classification 

accuracies significantly higher or lower than the mean according to the McNemar test. The horizontal dotted line 

represents the ratio of saturation. 

Figure 4 presents the number of occurrences of the “best dates” for all the classification runs 

with an OAA above a saturation ratio level of 0.95, for 4 k-subsets (k=2, k=3, k=4 and k=5 

images). Spring images are always included in the best image combinations (Fig. 4). The best 

images to identify vegetation formations in wetlands are those acquired at the beginning of 

the year and in late winter and spring. SAR images acquired at the beginning and end of 

summer are included in the best combination dates of 3, 4 and 5 images. 
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Figure 4: Number of occurrences of the “best dates” for classification runs with an overall accuracy above 

a saturation ratio ≥ 0.95 for four k-subsets (k=2-5 images). 

 

Figure 5 and Table 4 detail the classification results obtained using five TerraSAR-X 

images acquired in February, April, May, June and July. The confusion matrix shows that all 

the vegetation-formation classes considered achieve high detection accuracy (Table 2). The 

“Ponds” class has an excellent overall accuracy detection rate (i.e. 100%). Misclassification 

errors occur between the “Meso-hygrophilic grasslands” and “Hygrophilic grasslands” classes 

because these vegetation formations are similar and spatially close in wetland areas. There is 

also confusion between the “Mesophilic grasslands” and “Wooded areas” classes, which 

could be explained by the absence of low values in the SE temporal profiles, induced by a 

flood period. 

The spatial distribution of vegetation formations mapped at 1:10,000 scale is presented in 

figure 5. Forested areas are well identified, particularly the riverine areas. One also observes a 

correspondence between the gradient detected in herbaceous wetlands (from long-flooded 

grasslands to mesophilic grasslands) and micro-topographic variations, and thus 

hydrodynamic processes. 
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Figure 5. Map of the distribution of vegetation formations in wetland areas obtained using five TerraSAR-

X images (February, April, May, June and July). The classification was performed by combining the 

Shannon Entropy index and the SVM classifier using a Gaussian kernel. 

 

Table 2. Confusion matrix between the vegetation formation classification derived from five TerraSAR-X 

multi-temporal images (lines) and the validation set (columns). The classification was performed by 

combining the Shannon Entropy index and the SVM classifier using a Gaussian kernel. 

 

 

Validation  

Classification Code 1 2 3 4 5 6 Total  Over-detection 

Wooded areas 1 261    18  279 0.9 

Ponds 2  270     270 0.00 

Hygrophilic grasslands 3   81   9 90 0.90 

Long flooded grasslands 4    180   180 0.00 

Mesophilic grasslands 5     270  270 0.00 

Meso-hygrophilic grasslands 6   9   270 279 0.90 

Total of column 

 

261 270 90 180 281 279   

Under-detection 

 

0.00 0.00 0.90 0.00 0.90 0.90   

 

         Overall accuracy 95% 

        Kappa index 0.94 

        

4 Discussion 

 

The vegetation map created at a 1:10,000 scale is based on a method that highlights 

detection of flood duration with a SE time-series, as used in previous studies (Marechal et al., 
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2012; Betbeder et al., 2014 b). The originality of this study is the determination of the optimal 

number and key dates of SAR images to classify wetland vegetation formations at a 1:10,000 

scale. 

Wetland vegetation formations were classified excellently (kappa index>0.90) using five 

TerraSAR-X images acquired in late winter and spring. The most useful images for detecting 

wetland vegetation formations are those acquired during the high dynamics of plant growth 

and hydrodynamic processes (Fig. 6). Results of this study show that spring is the key season 

for mapping vegetation formations in wetlands in temperate climate zones. SAR images 

should be acquired during this critical period, i.e. from the end of winter until the beginning of 

summer, when hydrodynamic efficiency decreases and vegetation growth increases (Clement 

and Proctor, 2009). Previous ecological studies showed that hydrology is a dominant 

environmental variable that controls inter-annual variation in plant species composition in 

wetlands (Baldwin et al., 2001; Wassen et al., 2003). The duration of individual flood events 

and their frequency are highly important in segregating the plant communities (Casanova and 

Brock, 2000). Our results are consistent with the concept that flood disturbance during the 

growing season is an important determinant of species lower distribution boundaries in river 

floodplains (Van Eck et al., 2004). 
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Figure 6. Schematic graph of two processes occurring in wetland areas under temperate climate 

conditions and acquisition dates of TerraSAR-X (Tsx) images  

 

February is highly relevant for vegetation mapping as it corresponds to a peak in 

flooding. Thus, an image acquired in February detects mesophilic grasslands (i.e. non-flooded 

areas) accurately. Images from April, May and June determine the flood duration and thus 

indirectly certain vegetation formation types (i.e. long-flooded grasslands, meso-hygrophilic 

grasslands, and hygrophilic grasslands). May is generally considered as a key period for 

vegetation mapping since hydrodynamic processes remain active and vegetation growth is 

optimal (Harris and Bryant, 2009; Feilhauer et al., 2013; Rapinel et al., 2014). Open water can 

be detected accurately in July, when vegetation formations are dry. The optimal seasons for 

grassland mapping that we identified (i.e. end of winter, spring and the beginning of summer) 

differ from those of Schmidt et al. (2014) (i.e. late spring and late summer). These differences 

could have occurred because (i) we used SAR time-series, while Schmidt et al. (2014) used 

optical data; and (ii) we focused on the relationship between flood duration and vegetation 

distribution, while Schmidt et al. (2014) focused on grassland management (e.g. mowing, 

grazing) and therefore on vegetation structure. Thus, the choice of the optimal period(s) for 

image acquisition depends mainly on the dominant factors governing the spatial distribution 

of natural habitats (e.g. floods, management practices). 
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Bargiel (2013) reported a classification accuracy of 76% using 6 TerraSAR-X images 

(HH and VV) for 5 Natura 2000 classes for grassland mapping. Schuster et al. (2015) studied 

the potential of RapidEye and TerraSAR-X time-series for grassland habitat mapping. They 

showed that 15 TerraSAR-X or 5 RapidEye images are needed to reach 95% classification 

accuracy. In this study, we found a similar accuracy using only 5 TerraSAR-X images 

acquired during the end of winter and spring. These differences could be explained by (i) a 

longer acquisition period, (ii) use of a polarimetric parameter and (iii) the high level of 

concordance between acquisition dates and hydrological events. Our study corroborates the 

results of Franke et al. (2012), who demonstrated the importance of high spatial and temporal 

image resolutions during the vegetation growth period for characterizing grasslands. 

In this study, 5 TerraSAR-X images were sufficient to map wetland vegetation. 

Satisfying results could also be obtained using only 2 TerraSAR-X images, but for only one 

combination of two dates (February and April, Fig. 3). We can notice that using using images 

acquired a few days before a flood event would not provide adequate results. The optimal 

number of images for wetland vegetation mapping depends mainly on the concordance 

between hydrological events (floods, drying, etc.) and the date of image acquisition. Flood 

duration, which is controlled by wetland management, also depends on weather events that 

are, by definition, unpredictable. This is why it is important to acquire several images between 

late winter and early summer (e.g. every 15 days). However, it is difficult to definitely set the 

optimal number of images required for vegetation mapping. This optimal number depends on 

(i) sensor configuration (e.g. incidence angle, revisiting time), (ii) precision of the habitat 

typology (e.g. Natura 2000 typology, physiognomy-based typology) and (iii) intra- and inter-

annual variability in environmental factors (e.g. hydrological events, phenological status) 

(Schuster et al., 2015).  

Most remote sensing studies focus on the backscattering coefficients of SAR 

images to detect grassland vegetation formations. Betbeder et al. (2014 b) and Lee et al. 

(2001) showed the importance of using polarimetric parameters instead of backscattering 

coefficients for wetland vegetation mapping. Our study confirms the potential of polarimetric 

data (i.e. SE) for wetland vegetation mapping at a fine scale. Polarimetric data can be derived 

from quad or dual-pol modes. Quad-pol mode leads actually to a smaller footprint (lower 

spatial resolution) than the dual-pol or single-pol mode (Lee and Pottier, 2009). Conversely, 

dual-pol mode allows extracting several polarimetric parameters with very high spatial 
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resolutions (e.g. 1.5 m in our case), which is needed to map vegetation formations at a fine 

scale.  

The SAR wavelengths (e.g. X-band, C-band, L-band) are also a key issue for 

habitat mapping. Our method was applied to a treeless herbaceous wetland because the X-

band cannot penetrate a forest canopy to detect water-level changes beneath tree cover. Many 

studies have shown that only long wavelengths such as L-band or P-band can penetrate dense 

swamp forests (Hess et al., 2003; Betbeder et al. 2014 a). In contrast, we showed the potential 

of TerraSAR-X (X-band) and, more particularly, of a polarimetric parameter (SE) for 

grassland vegetation mapping in wetlands. Dusseux et al. (2014) obtained favorable results 

using polarimetric or intensity parameters derived from RADARSAT-2 C-band time-series to 

identify grasslands in an agricultural landscape (overall accuracies of 97% using Cloude-

Pottier decomposition parameters and 96% using a combination of HH, VV and HV 

polarizations, respectively,). However, these same authors showed that RADARSAT-2 

polarimetric time-series are unable to characterize grassland farming practices (e.g. mowing, 

grazing) (Dusseux et al., 2012). This could be explained not only by the SAR wavelengths but 

by the coarse spatial resolution of polarimetric RADARSAT-2 images (7.0 m). The recently 

launched Sentinel 1 sensor, which acquires SAR images with high spatial and temporal 

resolutions in the C-band, appears beneficial for studying the potential of the C-band for 

grassland mapping. However, for this purpose, the sensor has some limitations. First, Sentinel 

1 provides, by default, images in the Interferometric Wide Swath (IW) mode with a spatial 

resolution of 5 m × 20 m; Stripmap-mode images with a spatial resolution of 5 m × 5 m are 

more difficult to obtain, since this mode is rarely used (e.g. only for emergency management 

actions). Second, dual co-pol HH-VV configuration is not available for IW mode images, 

only HH-HV or VV-VH polarizations, while there is a high probability that HV or VH should 

be strongly affected by the noise equivalent sigma zero (NESZ) over wetland areas, and thus 

the Shannon entropy parameter would be affected.  Instead of using only SAR data, 

combination of optical and SAR data, which has already demonstrated its ability to map 

grassland vegetation (Hill et al. 2005), could be investigated to combine the upcoming 

Sentinel 1 and Sentinel 2 data. In addition to this study, it might be interesting to investigate 

other SAR configuration modes (multi-frequency or multi-angular). With the upcoming 

BIOMASS and ALOS 2 sensors (P-band and L-band, respectively), it would be interesting to 

test this method on forested wetlands to monitor these crucial ecosystems. However, the 

BIOMASS sensor has a relatively coarse spatial resolution (100-200 m), which is suitable for 
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forested wetland mapping at broad spatial scales over large areas, but not for identifying 

vegetation formations in herbaceous grasslands at a fine scale. 

The classification nomenclature chosen in this study is more precise than those 

currently used in SAR studies for wetland mapping. Thus, many studies using SAR data, in 

particular intensity parameters (Hess et al., 2003), textural indexes (Gosselin et al., 2012) or 

polarimetric parameters (Schmitt et al., 2012), only consider main land-cover types (e.g. 

water, woods, flooded forest, non-flooded forest). Regarding the grassland classes, the 

classification obtained in this study is as accurate as those obtained in studies comparing 

vegetation and micro-topography using LIDAR data to classify wetland areas (Moeslund et 

al., 2011). Several studies indicated that vegetation species in wetlands can be identified using 

hyperspectral data (Schmidtlein et al., 2007). From the perspective of this study, this method 

could be assessed to classify wetland vegetation at the dominant-species level using 

TerraSAR-X data. However, this suggests conducting more accurate field work, for instance 

in collaboration with botanists, as recommended by Pettorelli et al. (2014), which highlights 

the need for interdisciplinary studies between remote sensing and ecology communities. 

The results of this study provide interesting information, especially for watershed and 

wetland managers who monitor wetlands and flood dynamics (Jones et al., 2009). Since the 

cost of SAR images remains expensive (140 €/km²) and the image processing is time-

consuming, our approach could help managers determine the optimal number of images 

required to achieve a precise wetland vegetation map and thus improve image acquisition 

planning. This study is a step aiming to fill the gap between methodological robustness and 

transferability when moving toward a more operational level.  

5 Conclusion 

This study explores the use of a complete monthly SAR time-series during a hydrological 

year to identify wetland vegetation formations. It highlights the periods (i.e. late winter and 

spring) relevant for mapping vegetation formations, in accordance with ecological studies that 

show that the most important season for assessing the distribution of vegetation formations is 

the spring drying period, i.e. between February and June in temperate climates. Results also 

indicate that a relationship can be established between vegetation formations and 

hydrodynamic processes with a short time-series (i.e. 5 dates). The use of high spatial 

resolution SAR images could predict spatio-temporal dynamic processes in wetlands, such as 
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vegetation colonization. This study opens interesting perspectives for wetland management 

(e.g. restoration) and biodiversity studies. 
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