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ABSTRACT 

Recently, diel vertical migration (DVM) was observed in European silver eels (Anguilla anguilla) 

migrating towards the Sargasso Sea. However, because European silver eels do not feed during this 

migration, their energy consumption requires accurate optimization due to their limited fat reserves. 

In this study, changes in water temperature were experimentally induced to simulate those 

experienced by silver eels during DVMs to estimate their effect on oxygen consumption (MO2). 

Therefore, the oxygen consumption of eels at 8°C (deep waters) and 14°C (surface waters) was 

measured, and the effect of rapid thermal changes (shocks) from 8°C to 14°C, simulating ascent, and 

from 14°C to 8°C, simulating descent, both movements mimicking DVMs, were assessed. 

 Firstly, a single thermal shock induced an increase in MO2 in both sexes at both temperatures.  
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Secondly, the cumulative effect of these two factors (single temperature and thermal shock) was 

analysed to mimic natural DVMs, and showed that an increase in MO2 was linked to DVMs in females 

(+16% at ascent, and 17.9% at descent) and for males during DVM ascents (+73.9%). These data are 

used to discuss the effect of DVMs on the cost of transport in European eels during their breeding 

migration across the Atlantic Ocean. 

 

KEY WORDS 

Swimming tunnels; oxygen consumption; Anguilla anguilla; swimming respirometry; conservation 

physiology  
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1. INTRODUCTION 

The European eel (Anguilla anguilla) has a particular life cycle; they hatch in the Sargasso Sea and 

migrate to European coasts during the larval stage. After a growth stage in inland waters lasting 5–30 

yr, the silver eels undertake a spawning migration of approximately 5000 km from Europe back to the 

Sargasso Sea (Tesch, 1977).  

 

Aarestrup et al. (2009) showed that the European eel travels up to 50 km per day, and that they 

exhibit a consistent diel vertical migration (DVM), ascending to warmer shallower waters at dusk and 

descending into deeper, colder water at dawn, from 200 to 900 m and 14 to 8°C every day over a 

short time period (i.e. 30 min). This behaviour was confirmed in European eels by Wahlberg et al. 

(2014) who studied predation risks experienced by marine mammals using data collected during the 

Eeliad project. First described in Tesch (1989), no clear reasons were suggested for this behaviour, 

and the reasons of these DVMs remain unknown. Aarestrup et al. (2009) hypothesized that the DVMs 

reflect thermoregulation, and stated that the daily ascent into shallower warm water may serve to 

maintain sufficiently high metabolism (respiratory metabolism being considered as a proxy of the 

global metabolism) and swimming activity, whereas descent to deeper waters may permit the eels to 

keep their average temperature below 11°C, delaying gonadal development until reaching the 

Sargasso Sea. Righton et al (2012) stated that it was unlikely that a single reason is responsible for 

DVMs. This strategy is more likely to involve trade-offs between temperature preference, the need to 

avoid predators, the need to control the onset of maturity, and energy conservation.  

 

Whatever the reason driving DVM, this phenomenon should be considered when estimating the total 

energy required during silver eel migration. Firstly, DVM increases the distance of migration between 

coastal European inlands and the presumed Sargasso Sea spawning sites, even if it is seems negligible 

(about 1200 m per day, far below the daily swim distance, estimated to be 14 km.day-1). More 

importantly, rapid changes in water temperature may be costly in terms of energy expenditure, and 
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as far as is known, the cost of transport (COT) has only been assessed at fixed temperatures (i.e. 

without DVMs). COT ranged from 37 to 50 mg O2.kg-1.km-1 for female European eels ranging in size 

from 64 to 82 cm (Palstra, et al., 2008), and from 21 to 32 mg O2.kg-1.km-1 for schooling and isolated 

male European eels (mean length: 38.4 +/- 0.2 cm) (Burgerhout, et al., 2013). According to Aarestrup 

et al. (2009), DVMs involve daily variations in pressure and temperature, which, together with an 

increase in the total migration distance, are likely to affect the COT and the total energy required for 

migration. The effects of pressure and temperature variations were experimentally studied by Sébert 

et al. (1995), but only during the non-migrating yellow stage of the European eel. It was found that 

concomitant increases in temperature and pressure increased oxygen consumption to a lesser extent 

than did pressure alone. Degani et al. (1989) showed a positive linear relationship between the 

temperature (from 18 to 27°C) and oxygen consumption in European eels, but the strength of these 

correlations decreased according to the size of eels. Based on these preliminary observations, the 

present study was designed to investigate the effects of rapid changes in temperature, as observed 

in DVMs, on oxygen consumption in European eels.  

  

This question appears relevant considering that silver eels stop feeding, and that their energy 

requirements (travel fuel and gonad maturation) during breeding migration depend exclusively on fat 

stored during their continental growth phase as yellow eels. Consequently, conserving energy is 

apparently essential and seems to contradict DVM behaviour, which is likely to increase energy 

requirements both to cope with temperature and pressure changes as well as to cover the extra 

distance. 

 

The aim of the present study was to evaluate variations in oxygen consumption (MO2) according to 

temperature variations experienced by silver eels during DVM. A DVM can be summarised by two 

main components that are performed simultaneously, making interpretation difficult. Firstly, a DVM 

indicates a ample temperature change (6°C). This single temperature change could have an effect on 



5 
 

 
 

MO2. Secondly, a DVM suggests the occurrence of thermal shock because the temperature change is 

very abrupt (30 min). This could also affect the MO2. 

 

Next, the MO2 was compared at two different temperatures, 8 and 14°C, in male and female eels. 

DVMs were simulated by performing an abrupt (30 min) and ample (6°C) change in temperature, 

hereafter called “thermal shock”. Finally, the following were compared: 

- The MO2 of eels at 8 and 14°C, with or without thermal shock. These temperatures mimic the 

surface and deeper water temperatures, respectively, as observed by Aarestrup et al. (2009). 

- The MO2 of eels, before and after mimicked DVMs.  

Experimental mimicry of thermal shocks induced by DVMs was performed for both vertical migration 

movements, from surface to the bottom (mimicked by negative thermic shock from 8 to 14°C) and 

vice versa (positive thermic shock from 14 to 8°C). These data are used to discuss the impact of 

thermal shock on energy stores of migrating eels, and to specify the trade-off between increased 

energy demand and the possible benefits of DVMs during their spawning migration. 

 

2. MATERIALS AND METHODS 

2.1. Statistical determination of design 

The number of animals was limited as much as possible to meet both statistical and ethical 

requirements. Consequently, we performed a preliminary power test using previous data, showing 

that a minimum of 18 eels (9 males and 9 females) allows the significant highlight of a 15% difference 

of respiratory metabolism between two paired-populations with a p-value < 0.05.  

 

2.2. Fish collection and acclimation 

Eighteen silver eels (9 females and 9 males) were captured by traps in the Oir and Loire Rivers 

(Northwestern France) during their downstream migration in November 2013. Prior to measuring 

and tagging, fish were anaesthetized using 40 mg.L-1 solution of Metomidate. The average eye 
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diameter (ED, to the nearest mm) and the pectoral fin length (FL, to the nearest mm) were measured 

to determine their silvering stage as described by Durif et al. (2005). On this basis, all individuals were 

classified as active migrants (stage-5 according to Durif et al. (2005)). The total length (TL) of females 

ranged from 510 to 604 mm (mean = 559, sd = 29) and body weight (BW) ranged from 286 to 455 g 

(mean = 352, sd = 54). The TL of males ranged from 346 to 409 mm (mean = 382, sd = 21) and their 

BW from 72 to 115 g (mean = 93, sd = 15). The fish were transported to our research centre where 

they were acclimatised in well-aerated tanks (15°C, 100 % air saturation). The design of the 

acclimatisation room was set to mimic the natural conditions that occur at the exit of estuaries, just 

before the beginning of the oceanic migration: 15°C water and an 8 h light:14 h dark photoperiod. 

Next, a second acclimatisation was performed by changing the water salinity from 0 to 35 PSU over 

12 h in individual tanks connected to an open water system with water pumped directly from the sea 

(15°C, 100 % air saturation). Eels were held for 7 days until they secreted white pellets indicating 

their final acclimation to marine waters (Tudorache, Personal communication). In acclimation room, 

light was adjusted to 10 lux, using red light, which is few visible to eels (Pankhurst, Lythgoe, 1983), to 

limit stress. 

 

2.3. Swim-tunnel set-up and O2 consumption 

Three Blazka-type 127-l swim-tunnels designed and loaned by Leiden University (The Netherlands) 

and described by van den Thillart et al. (2004) were used for this experiment. The tunnels were 

placed in a temperature and light controlled room. An 80 m3 aerated water tank (mean water 

temperature 15°C +/- 0.5 °C) was used to provide oxygenated seawater (100 % air saturation) in the 

swimming tunnels. Two additional water tanks (1 m3) were used to supply warm (25°C +/- 0.5 °C) and 

cold (3°C +/- 0.5 °C) water into the swimming tunnels. Using the closed respirometry principle (the 

water in the tunnels was not replaced during the oxygen decline measure), the decline in O2 level in 

each tunnel was measured continuously by an O2 electrode (Loligo Systems, Tjele, Denmark) when 

the water circuit was closed. In closed respirometry, measurements are made in a sealed chamber of 
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known volume. The O2 concentration of the water is measured initially, then the chamber is closed 

and at the end of the experiment the O2 content is measured again. A disadvantage is that 

measurements are not made at a constant oxygen level due to the continuous use of oxygen by the 

animal inside the respirometer. To remove this bias, the allowed O2 decline was only 30% (from 

100% to 70% air saturation). Below this value, the water was re-oxygenated. Because the re-

oxygenation seemed to be very disturbing for eels, the decline of O2 was not measured thereafter 

and the experiment was stopped. A temperature probe in the swimming tunnels was linked to the 

Loligo software (WitroxView) to ensure automatic temperature adjustment. Atmospheric pressure 

and water salinity were set at the beginning of the recording using the acquisition software. The O2 

consumption rate was calculated from the O2-concentration decline during closure. From this 

decline, the MO2, in mg of O2.kg-1.h-1 was calculated according to the formula: 

𝑀𝑂2  =  
𝑉 ×  ∆[𝑂2]

𝐵𝑊 × ∆𝑡
 

where ∆[𝑂2] is the observed O2 concentration change (in mg O2.l-1), V is the volume in the swim-

tunnel (in l), BW is the body weight of the experimented eel (in kg), and ∆𝑡 is the duration spent in 

the closure (in h). To remove the technical bias associated with the electrodes (precision: +/- 0.1%), a 

high acquisition frequency (1 Hz) and moving average (5 min, i.e. 300 observations by mean) of O2-

concentration was used to calculate the changes.  

 

2.4. Experimental protocols simulating up and down DVMs  

Experiments were conducted from 4th November 2013 to 20th December 2013. Prior to the start of all 

experiments, O2 electrodes underwent daily calibration with sodium sulphite (0 % air saturation) and 

oxygenated water (100 % air saturation). To mimic the descent to deeper cold waters and ascent to 

warmer waters, one experiment with two modalities was carried out: a decreasing thermal shock 

(from 14 to 8°C, Figure 1 -a) and an increasing thermal shock (from 8 to 14°C, Figure 1 -b). The 

eighteen silver eels (9 females and 9 males) were tested individually in both modalities (DVMs up and 

down). 
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Modality 1 (Figure 1-a):  

After the eel was introduced, the tunnels were filled with seawater from the main tank (15°C) and 

the light was turned off to ensure total darkness. The water temperature in the tunnels was slowly 

set to the initial target temperature (14°C). Eels started to swim at a speed of 0.4 body length.s-1, 

which was maintained for 4 h. This swimming speed is the minimal estimated speed required to 

reach the Sargasso Sea in time for spawning (Palstra, et al., 2008). The 4 h delay before starting 

experiments corresponds to the maximum duration required to remove the stress effect on MO2, 

which is potentially induced by the handling and transfer of eels into tunnels. This recovery time was 

determined in preliminary experiments using the same eels and applying identical experimental 

conditions. After the 4 h recovery time, the oxygen concentration was recorded over 1 h to give the 

baseline MO2 at 14°C (called A1) without thermal shock. The thermal shock was then carried out 

using the cold tank, over 30 min, adjusting the water temperature from 14 to 8°C. Immediately after 

the 30 min shock period, the level of oxygen saturation was recorded over 2 h to give the MO2 at 8°C 

(called A2) with thermal shocks.  

 

Modality 2 (Figure 1-b):  

This experiment was performed carefully to ensure consistency with modality 1, with the exception 

of the temperatures. In this experiment, the initial target temperature was 8°C. After the 4-h 

recovery time, the oxygen concentration was recorded over 1 h to give the MO2 at 8°C (called B1) 

without thermal shock. Thermal shock was then performed using the hot tank for 30 min, increasing 

the temperature from 8 to 14°C. Immediately after heat shock, the oxygen saturation level was again 

recorded over 2 h to give the oxygen consumption at 14°C (called B2) with thermal shock.  

 

2.5. Statistics 

Data from these two modalities were used to detect correlations at three different levels. 
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Firstly, the influence of temperature on eel metabolism was analysed by testing the difference 

between MO2 at 8°C (A1) and 14°C (B1) for each sex using a one-tailed paired Student’s t-test. 

 

Secondly, the effect of thermal shock on MO2 was analysed. To this end, the MO2 was compared at 

the same temperatures (8°C and 14°C), with and without thermal shock, using a two-tailed paired 

Student’s t-test (A1 vs B2 and A2 vs B1). 

 

Finally, the association between these two factors was analysed. A two-tailed paired Student’s t-test 

was used to assess the statistical association between the MO2 at 8°C without shock (B1) and at 14°C 

with shock (B2), mimicking an ascending vertical movement, and between the MO2 at 14°C without 

shock (A2) and the MO2 at 8°C with shock (A1), mimicking a descending vertical movement.  

 

For each paired t-test, the normality of distribution of difference between the two modalities was 

checked visually. The t-tests were fitted using the t.test function in the R language ⁄ environment (R 

Development Core Team, 2011).  

 

3. RESULTS 

Occasionally, not all of the male eels swam in the tunnels; therefore, the number of fish in each 

modality was slightly reduced. When modified, the real number of fish was included. All the results 

are presented in Table 1 for females and in Table 2 for males. 

 

3.1. Effect of temperature on silver eel metabolism without thermal shock   

There was no significant difference between MO2 at 14°C and 8°C in female silver eels (Table 1, A1 vs 

B1, p = 0.51). MO2 was 24% higher at 14°C than at 8°C for male silver eels (Table 2, A1 vs B1, p = 

0.09). 
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3.2. Effect of thermal shock on muscle O2-consumption in silver eels  

In females, the MO2 was 17.9% higher at 8°C with shock than without shock (Table 1, B1 vs A2, p = 

0.10). The MO2 was 16.0% higher at 14°C with shock than without shock (Table 1, A1 vs B2, p = 0.03).  

In males, the MO2 was 36.3% higher at 8°C with shock than without shock (Table 2, B1 vs A2, p = 

0.05). The MO2 was 39.9% higher at 14°C with shock than without shock (Table 2, A1 vs B2, p = 0.03).  

 

3.3. Cumulative effect on various temperatures and thermal shock on MO2 by silver eels 

At a stable temperature of 14°C (A1 in Tables 1 and 2), corresponding to the nocturnal migration at 

shallower depths, female eels consumed a mean of 76.71 mg O2.kg-1.h-1 (sd = 9.22) and males 

consumed a mean of 110.38 mg O2.kg-1.h-1 (sd = 47.42). During descending migration, simulated by 

thermal shock experiments (14°C to 8°C, A2 in Tables 1 and 2), the O2 consumption significantly (p = 

0.049) increased by 17.87% (from 76.71 to 90.42 mg O2.kg-1.h-1) in females (Table 1). The O2 

consumption increased by 9.69% in males (from 110.38 to 121.08 mg O2.kg-1.h-1), although this 

increase was not significant (p = 0.32, Table 2).  

 

At a stable cold temperature of 8°C (B1 in Tables 1 and 2), corresponding to diurnal migration at deep 

depths, the mean oxygen consumption was 76.72 mg O2.kg-1.h-1 (sd = 34.41) for females and 88.84 

mg O2.kg-1.h-1 (sd = 45.86) for males (Tables 1 and 2). Ascent from cold (deep) to warm (surface) 

water was simulated in the ascent shock experiments (8°C to 14°C, B2 in Tables 1 and 2), which 

induced an increase in MO2 of 16.03% (from 76.72 to 89.02 mg O2.kg-1.h-1) in females and of 73.90% 

(from 88.84 to 154.54 mg O2.kg-1.h-1) in males (Tables 1&2). These differences were significant in 

males only (p = 0.004). 

 

4. DISCUSSION 

4.1. Effect of single thermal shock on the respiratory metabolism of eels 
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The results from the present study suggest that there was a significant difference between the MO2 

at a given temperature (14°C and 8°C) without and with thermal shock (A1 vs B2, and B1 vs A2). This 

indicates that a single thermal shock, as observed in field studies during DVMs, has a high energy-

requirement, since the MO2 at 8°C and 14°C after a thermal shock was increased by 36.31% and 

39.94%, respectively, for males, and 17.85% and 16.04%, respectively, for females than after a slow 

change in temperature. These data were obtained by measurements made during 120 min after the 

thermal shock. The duration chosen was very important. Indeed, MO2 was higher just after the 

thermal shock, at about 30 min. There was a smaller difference when a 120 min period was used, 

thus suggesting that the impacts of the thermal shocks were long-lasting. Nevertheless the real 

duration of the MO2 increase remained unable to estimate with such an experimental device. 

Consequently, these results have to be considered as a lower bound of the integration of the varying 

MO2.   

 

4.2. Diel Vertical Migrations in Anguilla spp. 

DVMs were firstly highlighted in European eels in 1989 by Tesch (1989) and in A. diffenbachii in 2005 

by Jellyman and Tsukamoto (2005). In their field study, Aarestrup et al. (2009) tracked eels with pop-

up satellite archival transmitters and showed clear and regular DVMs predominantly between depths 

of 200 m and 1000 m. During the night, eels remained in the shallower warmer water, and at dawn 

they made a steep dive down to the cool disphotic zone. At night, they ascended sharply back to the 

upper layer.  

 

DVMs seem to be usual in eels since Manabe et al. (2011) recently showed that two Japanese eels, A. 

japonica, which were tracked with pop-up tags for about a month also showed clear DVMs, 

predominantly swimming between depths of 100–500 m at night and 500–800 m in the day. DVMs 

were also observed for three New Zealand longfin eels, A. dieffenbachii, tracked by pop-up tags in 

May 2006 (Jellyman, Tsukamoto, 2010). In their survey, the three eels exhibited daytime dives to 
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depths of 600–900 m in 6–7°C waters, followed by night ascents to depths of 200–300 m in 16–17°C 

waters. This pattern is consistent with that observed in European eels by Aarestrup et al.(2009).  

 

These studies all suggest that regular exposure to cool temperatures is used by eels to regulate the 

rate of gonad maturity that is thermal-dependant. While swimming at depth could reduce predation, 

the increased pressure would also stimulate ovarian development, which may also be controlled by 

regular ascents to shallower waters.  

 

Complementary hypotheses have also been used to explain DVM behaviour. These suggest that 

there is a trade-off between predator avoidance and the necessity to maintain a high metabolism 

that is sufficient for migration in three species of tropical Pacific eels (A. marmorata, A. megastoma, 

and A. obscura). These species exhibit DVMs from around 200 m night time depth, to 320 m (A. 

obscura), 650 m (A. marmorata), and 750 m (A. megastoma) during the day (Schabetsberger, et al., 

2013). Such alternative hypotheses were also proposed by Jellyman and Tsukamoto (2005) after a 

study based on 10 female longfin eels (A. australis) tracked in May 2001. 

The only way to observe DVMs in field studies is to use pop-up tags, which are too heavy to be used 

on males (whom are always smaller), meaning that this approach is limited in its application to large 

female eels only. In the present study, for the first time, male eels were experimentally submitted to 

thermic conditions comparable to those observed during DVMs. To date, whether or not males 

perform DVMs during migration remains unknown, but the results from this study suggest that DVMs 

may require more energy in males than in females.  

 

In the present study, the effect of mimicked DVMs were different according to the sex of the eels. 

Female eels were only affected by DVMs during the descent, while male eels were affected during 

the ascent. In female eels, a difference before and after the DVM ascent was observed (76.72 vs 

89.02 mg.O2/kg-1.h-1), but this difference was not significant. However, this result should be carefully 
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interpreted, because there was high variability in the B2 MO2 (mean = 76.72, sd = 34.41), which 

probably invalidated the statistic test. In male eels, there was no difference between MO2 before and 

after the DVM descent (p = 0.32). Again, strong variability in the oxygen consumption could have 

affected the statistical test. However, Degani et al. (1989) showed that oxygen uptake in the 

European eel was higher at 27°C than at 18°C. They also showed that the effect of temperature was 

greater on smaller eels than on larger eels. The present results are consistent with those from this 

previous study because only the MO2 of males was impacted by the effect of temperature alone 

(p(A1 vs B1) = 0.09 for males and 0.51 for females). Therefore, it can reasonably be assumed that the 

difference before and after the DVM descent in male eels was masked by the effect of temperature 

alone on oxygen uptake, suggesting that the DVM descent is easier than the DVM ascent. 

The present study suggests that DVMs require a strong energy expenditure indicating that there 

must be some significant hidden gain for the eels as a trade-off for this energy loss; however, the 

duration of this increase requires further exploration. Because the energy expenditure is taken from 

energy stored for the migration, it is suggested that this benefit is most likely for reproduction. Thus, 

whether or not reproduction in the absence of DVMs is possible remains unknown. 

 

4.3. Direct impact of DVMs on total energy required for migration and COT 

According to a study by Aarestrup et al. (2009), one can estimate that DVMs add an additional 

distance of 1.2 km per day to the daily migratory distance (14 km per day, estimated by GPS data), 

leading to a 10 % increase. However the authors assumed that the drag of the mark has an influence 

on this low distance swam per day.  Indeed, an experimental study showed that European silver eels 

have an average swimming speed of 0.5 body length per second, enabling 80 cm silver eels to swim 

the 5000 or 6000 km migration in about 6 months (van den Thillart, et al., 2004), leading to a 30-35 

km per day swimming speed. According to this speed, which appears more realistic, the distance 

increase induced by DVM reach only about 4 %. Indeed, this first component of DVMs increases the 

total energy required for migration by increasing the total distance. Palstra et al. (2008), showed that 
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the COT during migration in wild European silver eels ranged from 37 to 50 mg O2.kg-1.km-1 for 

females. With the mean data of eels studied here (352 g), and based only on distance increase due to 

DVMs (200 km according to van den Thillart et al. (2004)), the data of Palstra et al. indicates a 

supplementary loss ranging from 2.6 to 3.5 g of lipids due to DVMs, in comparison to a migration 

without DVMs, which seems relatively low. 

However, above the effect of increased total distance, the present study suggests that the thermal 

shock experienced during DVMs increases oxygen consumption. By comparison with a migration at a 

constant temperature (8 or 14°C), a migration at variable temperatures, from 8 to 14°C and from 14 

to 8°C, has greater energy requirements. 

Nevertheless, these data and those from previous studies suggest that the temperature variations 

only influence the MO2 in small eels (including males). The females (larger than males) seem to be 

less affected by the direction of the DVMs than males. 

 

However, this extra consumption requires further studies because this experimental design does not 

permit the inclusion of pressure, another fundamental change experienced by silver eels during 

DVMs. Other factors may also influence MO2, such as light condition because DVMs seem to follow a 

circadian rhythm, which could be analysed in further experiments. In a previous study, authors 

showed that marine birds showed difference behaviours related to a strong stress (diving) if this 

stress was voluntary or forced (Kanwisher, et al., 1981). Unfortunately, it is not possible to distinguish 

between a temperature effect and a general effect of stress in an experimental study using fish. By 

definition, it is a fundamental limit of experimental studies. We cannot exclude the possibility that 

the observed responses would differ based on individual fish behaviours. This clearly opens up new 

research directions to enable a better understanding of the effect that this intriguing DVM behaviour 

has on the physiology of anguillid eels.  
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6. FIGURE  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Experimental design showing the temperature variation used in experiments on silver eels 

according to two modalities: Decreasing (a) and increasing (b) thermal shocks. Blue lines are the 

instantaneous water temperatures in tunnels. Red lines are water velocities in body length per 

second. Blue squares represent durations of oxygen decline logging. To increase the readability, we 

call A1 and A2 the mean oxygen consumption during the first modality of the experiment (DVMs 

down), and B1 and B2 the mean oxygen consumption during the second modality of the experiment 

(DVMs up). 
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7. TABLES 

Table 1: Experimental design and t-test values for female silver eels. The mean MO2 (mean) and 

standard deviation (sd) are given in mg O2.kg-1.h-1.  

Modality 1 
 

DVM Down 
 

 

Target temperature 

(°C) 

Thermal 

shock effect 

Mean 02 

consumption 

Sd O2 

consumption 
N 

A1 14 No 76.71 9.22 9 

A2 8 Yes 90.42 22.19 9 

      
Modality 2 

 
DVM Up 

 

 

Target temperature 

(°C) 

Thermal 

shock effect 

Mean O2 

consumption 

Sd O2 

consumption 
n 

B1 8 No 76.72 34.41 9 

B2 14 Yes 89.02 16.54 9 

      
 Paired modalities p-values 

t-test 

14°C vs 8°C - no shock p(A1 vs B1) 0.51 

14°C - without/with shock p(A1 vs B2) 0.03 

8°C - without/with shock p(B1 vs A2) 0.10 

DVM Down p(A1 vs A2) 0.05 

DVM Up p(B1 vs B2) 0.13 
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Table 2: Experimental and t-test values for male silver eels. The mean MO2 (mean) and standard 

deviation (sd) are given in mg O2.kg-1.h-1. 

 

Modality 1 
 

DVM Down 
 

 
Target 

temperature (°C) 

Thermal 

shock effect 

Mean O2 

consumption 

Sd O2 

consumption 
n 

A1 14 No 110.38 47.42 7 

A2 8 Yes 121.08 58.97 5 

      
Modality 2 

 
DVM Up 

 

 

Target 

temperature (°C) 

Thermal 

shock effect 

Mean O2 

consumption 

Sd O2 

consumption 
n 

B1 8 No 88.84 45.86 5 

B2 14 Yes 154.54 61.09 7 

      
 Paired modalities p-values 

t-test 

14°C vs 8°C - no shock p(A1 vs B1) 0.09 

14°C - without/with shock p(A1 vs B2) 0.03 

8°C - without/with shock p(B1 vs A2) 0.05 

DVM Down p(A1 vs A2) 0.32 

DVM Up p(B1 vs B2) 0.004 

 

 


