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Abstract 

 

Acetylated and/or 3,5-dimethylphenylcarbamated riboflavins were prepared and the resulting riboflavin derivatives as well as natural 

riboflavin were regioselectively immobilized on silica gel through chemical bonding at the 5’-O- or 3-N-position of the riboflavin to 

develop novel chiral stationary phases (CSPs) for enantioseparation by high-performance liquid chromatography (HPLC). The chiral 

recognition abilities of the obtained CSPs were significantly dependent on the structures of the riboflavin derivatives, the position of the 

chemical bonding on the silica gel, and the structures of the racemic compounds. The CSPs bonded at the 5’-O-position on the silica 

gel tended to well separate helicene derivatives, while the CSPs bonded at the 3-N-position composed of acetylated and 3,5-

dimethylphenylcarbamated riboflavins showed a better resolving ability toward helicene derivatives and bulky aromatic racemic 

alcohols, respectively, and some of them were completely separated into the enantiomers. The observed difference in the chiral 

recognition abilities of these riboflavin-based CSPs is discussed based on the difference in their structures, including the substituents of 

riboflavin and the positions immobilized on the silica gel. 
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Introduction 

The separation of enantiomers by high-performance liquid 

chromatography (HPLC) has been recognized as one of the most 

useful techniques not only for obtaining both enantiomers on a 

large scale, but also for the precise determination of the 

enantiomeric excess of the chiral analytes including chiral drugs.1-

4 The development of a chiral stationary phase (CSP) showing an 

efficient chiral recognition for a variety of enantiomers is of key 

importance for this purpose. Therefore, a number of chiral 

stationary phases (CSPs) for HPLC has been prepared in the past 

few decades, and more than 100 CSPs have been 

commercialized,5 which mostly consist of synthetic or 

polysaccharide-derived helical polymers6-11 or are derived from 

optically-active synthetic or naturally-occurring small molecules 

including amino acids, crown ethers, and cinchona alkaloids.12-15 

Riboflavin (vitamin B2) is an important unit of cofactors of 

biologically-active flavoenzymes16 and provides a variety of 

functions, such as catalytic and redox activities and a 

photoluminescent ability. Hence the readily-available natural 

riboflavin consisting of a diverse functional heterocyclic 

isoalloxazine ring together with an optically-active ribityl group and 

its derivatives have been considered as a promising class of novel 

asymmetric organocatalysts17,18 and chiral materials for sensing19 

and separating enantiomers, but successful examples for the use 

as a CSP are still rare except for one precedent by Gil-Av et al.;20 

they found that natural riboflavin had a high chiral recognition 

ability toward carbohelicenes ([7] to [14]helicene) when coated on 

silica gel as a CSP for HPLC using a mixture of n-hexane and 

CH2Cl2 as the eluent. Recently, Papadimitrakopoulos and 

coworkers have also demonstrated that the flavin mononucleotide 

(FMN), a phosphorylated analog of riboflavin, self-assembled and 

wrapped around single-walled carbon nanotubes (SWCNTs) in a 

chirality and handedness selective way and enriched the left-

handed helical SWCNTs.21 These results suggest that riboflavin 

and its derivatives may have the potential as promising CSPs for 

separation of polyaromatic racemic compounds through – 

interactions including charge-transfer complexation between the 

analytes and isoalloxazine ring of the riboflavin20 when they are 

chemically-bonded to silica gel.22-25 Riboflavin has reactive 

hydroxy and amino groups, and modification with various 

substituents and further chemical bonding to silica gel are 

possible. 

In this study, we prepared five new riboflavin-based CSPs 

composed of natural riboflavin and its acetylated and/or 3,5-

dimethylphenylcarbamated derivatives by regioselective 
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immobilization at the 5’-O- or 3-N-position of the riboflavin on silica 

gel (Fig. 1), and their chiral recognition abilities were evaluated. 

Among the possible derivatization methods of the hydroxy groups 

of the ribityl unit, we employed 3,5-dimethylphenylcarbamoylation 

because the CSPs composed of the tris(3,5-

dimethylphenylcarbamate)s of cellulose and amylose developed 

by Okamoto et al. exhibit an excellent chiral resolving ability for a 

wide range of racemic compounds and are recognized as the 

most frequently used CSPs.4-7,9-11 

 

 
Fig. 1. Structures of riboflavin-based chiral stationary phases. 

Materials and Methods 

Instruments 

The NMR spectra were measured using a Varian VXR-500S 

spectrometer (Varian, Palo Alto, CA) operating at 500 MHz for 1H 

and 125 MHz for 13C using tetramethylsilane (TMS) for CDCl3 as 

the internal standard. The IR spectra were recorded on a JASCO 

FT/IR-680 spectrometer (JASCO, Tokyo, Japan). The 

chromatographic separations of enantiomers were performed 

using a JASCO PU-2080 Plus liquid chromatograph equipped 

with Multi UV-Vis (JASCO MD-2010 Plus or MD-2018 Plus) and 

CD detectors (JASCO CD-1595 or CD-2095 Plus) at ca. 25 ˚C. A 

solution of racemate was injected into the chromatographic 

system using a Rheodyne Model 7725i injector (20 µL loop). The 

thermogravimetric (TG) analyses were conducted on a SEIKO 

EXSTAR6000 TG/DTA 6200 (Seiko Instruments Inc., Chiba, 

Japan) under a heating rate of 10 °C/min in a nitrogen flow of 200 

mL/min. 

Chemicals and Reagents 

Anhydrous dimethylformamide (DMF), dimethyl sulfoxide 

(DMSO), chloroform (CHCl3), pyridine, and tetrahydrofuran (THF) 

(water content <0.005%), methanol (MeOH), ethanol (EtOH), 

acetone, n-hexane, N,N-dimethyl-4-aminopyridine (DMAP), and 

1,8-diazabicyclo [5.4.0]-7-undecene (DBU) were purchased from 

Wako (Osaka, Japan). Riboflavin (RF), 3-(triethoxysilyl)propyl 

isocyanate, 11-bromo-1-undecene (5), p-toluenesulfonic acid 

monohydrate, 2,2’-azobis(isobutyronitrile) (AIBN), and 3,5-

dimethylphenyl isocyanate were purchased from Tokyo Kasei 

(TCI, Tokyo, Japan). Hydrogen chloride in diethyl ether (1.0 M) 

was obtained from Aldrich (Milwaukee, WI). Triethylamine and 

acetic anhydride were obtained from Kishida (Osaka, Japan). 

Tetraacetylriboflavin (TARF),26 (3-mercaptopropyl)triethoxy 

silanized silica gel (M-silica, 8.3 wt%) with a mean particle size of 

7 µm and a mean pore diameter of 12 nm,27 and 5’-O-trityl 

riboflavin (TrRF)28 were prepared according to the previously 

reported methods. The solvents used in the chromatographic 

experiments were of HPLC grade. The racemates were 

commercially available or were prepared by the usual or reported 

methods.29-31 The synthesis of new [6]helicene derivatives (26–

28) will be reported elsewhere. Porous spherical silica gel (Daiso 

gel SP-120-7P, N-silica) with a mean particle size of 7 µm and a 

mean pore diameter of 12 nm was kindly supplied from Daicel 

(Tokyo, Japan). 

Synthesis 

Synthesis of Compound 1. The synthesis of 1 was carried out 

according to Scheme 1. To a solution of RF (1.08 g, 2.87 mmol) 

in anhydrous DMF (400 mL) were added 3-(triethoxysilyl)propyl 

isocyanate (710 µL, 2.88 mmol) and triethylamine (400 µL, 2.87 

mmol) under nitrogen. The reaction mixture was stirred at 80 °C 

for 24 h, and then the solvent was evaporated to give 1 (1.71 g). 

The residue was used for the next reaction without further 

purification (see below for immobilization of the compound 1 on 

silica gel, Scheme 8). Among four possible carbamate derivatives, 

the main-product was found to be the 5’-carbamated riboflavin 

(Scheme 1) produced by the reaction at the primary hydroxy 

group at the 5’-O-position and its regioselectivity was about 80% 

estimated from its 1H NMR spectrum (see Spectrum S1 in the 

Supporting Information (SI)).  

 

Scheme 1. Synthesis of 1. 
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Synthesis of Compound 2. The synthesis of 2 was carried out 

according to Scheme 2. To a solution of TrRF (1.10 g, 2.78 mmol), 

which had been prepared according to the reported method,28 and 

DMAP (261 mg, 2.09 mmol) in CHCl3 (93 mL) were added 

anhydrous pyridine (13 mL) and acetic anhydride (71 mL) under 

nitrogen. After the reaction mixture was stirred at room 

temperature for 24 h, to this was further added acetic anhydride 

(20 mL) and anhydrous pyridine (3.8 mL). After stirring at room 

temperature for 24 h, the solvents were evaporated. The residue 

was dissolved in EtOAc (80 mL) and the solution was washed with 

brine (50 mL x 3) and then dried over anhydrous MgSO4. After 

filtration, the solvent was evaporated to dryness. The residue was 

purified by column chromatography (SiO2, EtOAc–n-hexane = 

0:10 to 5:5, 9:1 (v/v)) and then subjected to SEC fractionation to 

give 2 as an orange solid (3.2 g, 88% yield). 

       

Scheme 2. Synthesis of 2. 

Spectroscopic data of 2: 1H NMR (500 MHz, CDCl3, 25 ˚C): δ 8.34 

(s, CONH, 1H), 8.04 (s, ArH, 1H), 7.56 (s, ArH, 1H), 7.42-7.38 (m, 

OCArH, 9H), 7.24-7.13 (m, OCArH, 6H), 5.69-5.59 (m, NCH2CH, 

NCH2CHCH, 2H), 5.38-5.34 (m, NCH2CHCHCH, 1H), 3.46-3.16 

(m, OCOCH2, 2H), 2.53 (s, ArCH3, 3H), 2.44 (s, ArCH3, 3H), 2.37 

(s, CH3COO, 3H), 1.90 (s, CH3COO, 3H), 1.68 (s, CH3COO, 3H). 

Synthesis of Compound 3. The compound 3 was prepared 

according to Scheme 3. The compound 2 (2.19 g, 2.94 mmol) was 

dissolved in anhydrous CHCl3 (34 mL) under nitrogen and the 

solution was stirred at 0 ˚C for 30 min. To this was added diethyl 

ether containing HCl (1.0 M) (11 mL) and the reaction mixture was 

stirred at 0 ˚C for 45 min so as to remove the trityl group. The 

solution was then neutralized with aqueous NaHCO3 (50 mL) and 

extracted with CHCl3 (20 mL). The organic layer was washed with 

water (50 mL) and brine (50 mL), and then dried over anhydrous 

MgSO4. After filtration, the solvent was evaporated to dryness. 

The residue was purified by column chromatography (SiO2, 

MeOH–CHCl3 = 0:10 to 1:9 (v/v)) to give 3 as a yellow solid (1.11 

g, 75% yield).  

       

Scheme 3. Synthesis of 3. 

Spectroscopic data of 3: 1H NMR (500 MHz, CDCl3, rt.): δ 8.08 (s, 

ArH, 1H), 7.76 (s, ArH, 1H), 5.73-5.65 (m, NCH2CH, 1H), 5.30-

5.24 (m, NCH2CHCH, 1H), 4.30-4.25 (m, OHCH2, 2H), 3.64 (s, 

NCH2CHCHCH, 1H), 2.58 (s, ArCH3, 3H), 2.47 (s, ArCH3, 3H), 

2.12 (s, CH3COO, 3H), 2.09 (s, CH3COO, 3H), 1.97 (s, CH3COO, 

3H). 

Synthesis of Compound 4. The synthesis of 4 was carried out 

according to Scheme 4. To a solution of 3 (502 mg, 1.00 mmol) in 

anhydrous DMF (10 mL) were added 3-(triethoxysilyl)propyl 

isocyanate (737 µL, 2.98 mmol) and triethylamine (413 µL, 2.98 

mmol) under nitrogen. After the reaction mixture was stirred at 

75 °C for 24 h, the solvents were evaporated. The residue was 

washed with n-hexane (200 mL) and purified by column 

chromatography (SiO2, EtOAc–n-hexane = 0:10 to 5:5, 9:1 (v/v)) 

and then subjected to SEC fractionation to give 4 as an orange 

solid (280 mg, 38% yield).  

 

Scheme 4. Synthesis of 4. 

Spectroscopic data of 4: Mp: 206.7 ˚C (dec); IR (KBr, cm–1): 3173, 

3019, 2810, 1742, 1663, 1579, 1542, 1226, 104; 1H NMR (500 

MHz, CDCl3, 25 ˚C): δ 8.50 (s, CONH, 1H), 8.03 (s, ArH, 1H), 7.57 

(s, ArH, 1H), 5.72-5.62 (m, NCH2CH, 1H), 5.48-5.38 (m, 

NCH2CHCH, NCH2CHCHCH, 2H), 4.46-4.21 (m, OCOCH2, 2H), 

3.86-3.78 (q, J = 7.1 Hz, SiOCH2, 6H), 3.35-3.25 (t, J = 6.8 Hz, 

OCONHCH2, 2H), 2.57 (s, ArCH3, 3H), 2.45 (s, ArCH3, 3H), 2.29 

(s, CH3COO, 3H), 2.22 (s, CH3COO, 3H), 2.08 (s, CH3COO, 3H), 

1.74-1.71 (m, OCONHCH2CH2, 2H), 1.31-1.20 (t, SiOCH2CH3, 

9H), 0.70-0.65 (m, SiCH2, 2H); 13C NMR (125 MHz, CDCl3, 25 °C): 

170.77, 170.44 170.03, 169.88, 159.42, 154.49, 150.87, 148.28, 

137.16, 136.20, 134.79, 133.14, 131.38, 115.67, 70.63, 69.59, 

69.16, 62.03, 58.62, 45.54, 45.18, 25.26, 21.61, 21.19, 20.94, 

20.47, 19.60, 18.42, 7.70; HRMS (ESI+): m/z calcd for 

C33H47N5O13Si (M + Na+) 772.2837; found 772.2803. 

Synthesis of Compound 6. The compound 6 was prepared 

according to Scheme 5. To a solution of 5 (4.4 mL, 20 mmol) and 

TARF (2.20 g, 4.04 mmol)26 in anhydrous DMF (190 mL) was 

added DBU (1.2 mL, 8.0 mmol) under nitrogen. After the reaction 

mixture was stirred at 50 °C for 20 h, the solvent was evaporated, 

and the residue was washed with n-hexane (100 mL x 2). The 

residue was then dissolved in CHCl3 (250 mL) and the solution 

was washed with water (300 mL x 4), and then dried over 

anhydrous MgSO4. After filtration, the solvent was evaporated to 

dryness, and the residue was purified by column chromatography 

(SiO2, CHCl3–n-hexane = 1:1 to 1:0 (v/v) then MeOH/CHCl3 = 

0/100 to 5/95 (v/v)) and MeOH–CHCl3 = 0:10 to 1:9 (v/v)) to give 

6 as an orange solid (2.1 g, 73% yield). 
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Scheme 5. Synthesis of 6. 

Spectroscopic data of 6: Mp: 67.5-69.3 ˚C; IR (KBr, cm–1): 2927, 

2855, 1751, 1663, 1588, 1551, 1221, 1050; 1H NMR (500 MHz, 

CDCl3, 25 ˚C): δ 8.03 (s, ArH, 1H), 7.53 (s, ArH, 1H), 5.86-5.76 

(ddt, J = 17.1, 10.3, 6.7 Hz, CH2CH＝CH2, 1H), 5.72-5.62 (m, 

NCH2CH, 1H), 5.50-5.44 (m, NCH2CHCH, 1H), 5.44-5.37 (m, 

NCH2CHCHCH, 1H), 5.02-4.95 (m, CH＝CHZHE, 1H), 4.94-4.89 

(m, CH＝CHEHZ, 1H), 4.47-4.21 (m, OCOCH2, 2H), 4.09-4.12 (t, 

J = 7.6 Hz,  NCH2C8H16CH＝CH2, 2H), 2.55 (s, ArCH3 , 3H), 2.44 

(s, ArCH3, 3H), 2.30 (s, CH3COO, 3H), 2.22 (s, CH3COO, 3H), 

2.08 (s, CH3COO, 3H), 2.05-2.00 (m, CH2CH＝CH2, 2H), 1.73 (s, 

CH3COO, 3H), 1.74-1.66  (m, NCH2C7H14, 2H), 1.40-1.26 (m, 

NCH2C7H14, 12H); 13C NMR (125 MHz, CDCl3, 25 °C): δ 170.76, 

170.45, 170.02, 169.79, 159.75, 155.14, 149.26, 147.45, 139.43, 

136.54, 135.97, 134.78, 133.08, 131.29, 115.45, 114.20, 70.54, 

69.57, 69.13, 62.03, 44.55, 42.26, 33.96, 29.61, 29.57, 29.49, 

29.26, 29.08, 27.90, 27.14, 21.53, 21.21, 20.95, 20.84, 20.47, 

19.56; HRMS (ESI+): m/z calcd for C36H48N4O10 (M + Na+) 

719.3268; found 719.3286. 

Synthesis of Compound 7. The synthesis of 7 was carried out 

according to Scheme 6. The compound 6 (7.97 g, 11.4 mmol) and 

p-toluenesulfonic acid monohydrate (6.61 g, 34.7 mmol) were 

dissolved in EtOH (820 mL) and the solution was refluxed for 16 

h under nitrogen. The reaction mixture was then cooled to -20 ˚C. 

The precipitated solid was collected by filtration and washed with 

EtOH (60 mL) to give 7 as an orange solid (3.94 g, 65% yield). 

 

Scheme 6. Synthesis of 7. 

Spectroscopic data of 7: Mp: 164.0-167.9 ˚C; IR (KBr, cm–1): 3400, 

2925, 1546; 1H NMR (500 MHz, DMSO-d6, 25 ˚C): δ 7.94 (s, ArH, 

1H), 7.93 (s, ArH, 1H), 5.84-5.72 (ddt, J = 17.3, 10.1, 6.9 Hz, 

CH2CH＝CH2, 1H), 5.18-5.05 (s, OH, 1H), 5.02-4.95 (m, CH＝

CHZHE, 1H), 4.94-4.89 (m, CH＝ CHEHZ, 1H), 4.89-4.80 (m, 

NCH2CH, OH, 2H), 4.79-4.77 (m, OH, 1H), 4.64-4.60 (m, 

NCH2CHCH, 1H), 4.51-4.49 (m, OH, 1H), 4.30-4.21 (m, 

NCH2CHCHCH, 1H), 3.90-3.83 (t, J = 7.6 Hz, NCH2C8H16CH＝

CH2, 2H), 3.70-3.42 (m, NCH2, OCOCH2, 4H), 2.48 (s, ArCH3, 3H), 

2.40 (s, ArCH3, 3H), 2.05-1.95 (m, CH2CH＝CH2, 2H), 1.62-1.18 

(m, NCH2C7H14, 14H); 13C NMR (125 MHz, DMSO-d6, 25 °C): 

159.41, 154.65, 149.42, 146.12, 138.82, 135.86, 135.79, 134.28, 

132.05, 130.68, 117.41, 114.62, 114.60, 73.55, 72.78, 68.79, 

63.41, 47.07, 33.16, 28.90, 28.81, 28.77, 28.50, 28.26, 27.34, 

26.45, 20.77, 18.76; HRMS (ESI+): m/z calcd for C28H40N4O6 (M 

+ Na+) 551.2846; found 551.2863. 

Synthesis of Compound 8. The compound 8 was prepared 

according to Scheme 7. To a solution of 7 (1.17 g, 2.22 mmol) in 

anhydrous DMF (100 mL) were added anhydrous pyridine (60 mL) 

and 3,5-dimethylphenyl isocyanate (2.0 mL, 14 mmol) under 

nitrogen. The reaction mixture was stirred at 80 °C for 20 h, and 

then the solvents were evaporated.  The residue was dissolved in 

CHCl3 (100 mL) and the solution was washed with water (150 mL 

x 3), and then dried over Na2S2O4. After filtration, the solvent was 

evaporated to dryness. The residue was purified by column 

chromatography (SiO2, EtOAc–n-hexane = 1:9 to 4:6 (v/v)) and 

then subjected to SEC fractionation to give 8 as a yellow solid (1.3 

g, 54% yield). 

 

Scheme 7. Synthesis of 8. 

Spectroscopic data of 8: Mp: 217.8-219.0 ˚C; IR (KBr, cm–1): 3313, 

2924, 1735, 1650, 1585, 1549, 1216; 1H NMR (500 MHz, CDCl3, 

25 ̊ C): δ 7.99 (s, ArH, 1H), 7.63 (s, ArH, 1H), 7.21 (s, OCONHArH, 

2H), 7.05 (s, OCONHArH, 2H), 6.85 (s, OCONHArH, 2H), 6.70 (s, 

OCONHArH, 1H), 6.67 (s, OCONHArH, 1H), 6.65 (s, OCONHArH, 

1H), 6.60 (s, OCONHArH, 2H), 6.48 (s, OCONHArH, 2H), 6.00-

5.91 (br, NCH2CH, 1H), 5.86-5.77 (ddt, J = 17.1, 10.5, 6.7 Hz, 

CH2CH＝CH2, 1H), 5.61-5.44 (m, NCH2CHCH, NCH2CHCHCH, 

2H), 5.02-4.95 (m, CH＝CHZHE, 1H), 4.94-4.89 (m, CH＝CHEHZ, 

1H), 4.76-4.38 (m, OCOCH2, 2H), 4.52-4.48 (br, NCH2, 2H), 4.11-

3.88 (m, NCH2C8H16CH＝CH2, 2H), 2.40 (s, ArCH3, 3H), 2.30 (s, 

ArCH3, 3H), 2.29-2.24 (m, OCONHArCH3, 12H), 2.21-2.12 (m, 

OCONHArCH3, 12H), 2.04-1.98 (m, CH2CH＝CH2, 2H), 1.69-1.24 

(m, NCH2C7H14, 14H); 13C NMR (125 MHz, CDCl3, 25 °C): 159.91, 

156.48, 153.07, 152.76, 152.72, 152.60, 148.88, 147.68, 139.42, 

139.40, 138.98, 138.82, 138.63, 138.61, 137.87, 137.28, 136.66, 

136.38, 135.87, 135.21, 132.76, 131.66, 126.14, 125.81, 125.28, 

125.06, 122.10, 117.10, 117.01, 116.65, 116.18, 115.52, 114.22, 

114.20, 107.07, 71.71, 71.24, 63.56, 46.07, 42.28, 33.96, 29.65, 

29.60, 29.49, 29.26, 29.08, 27.91, 27.24, 21.56, 21.50, 21.44, 

21.35, 19.41; HRMS (ESI+): m/z calcd for C64H76N8O10 (M + Na+) 

1139.5582; found 1139.5577. 

Immobilizations of compounds 1, 4, 6, 7, and 8 on silica gel were 

carried out according to Scheme 8. 

Immobilization of Compounds 1 and 4 on Silica Gel. A typical 

experimental procedure is described below. N-Silica (901 mg) 

was dispersed in a solution of 1 just after the preparation (ca. 2.8 

mmol) in anhydrous DMSO (4.0 mL) and pyridine (1.5 mL) under 

nitrogen and the mixture was heated at 70 °C. After 25 h, 

anhydrous DMF (60 mL) was added to this, and the resulting 
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Scheme 8. Immobilization of 1, 4, 6, 7, and 8 on silica gel. 

silica gel was collected by filtration, washed with DMF (20 mL), 

MeOH (60 mL), acetone (80 mL), and n-hexane (60 mL), and 

dried in vacuo at 120 °C overnight, yielding the CSPA (1.14 g). 

The content of 1 chemically bonded to silica gel was estimated by 

TG analysis and was 13.4 wt%. In the same way, the compound 

4 was chemically bonded to N-silica (CSPB), and its content was 

estimated to be 13.2 wt%.  

Immobilization of Compounds 6, 7, and 8 on Silica Gel. A 

typical experimental procedure is described below. M-silica (1.00 

g, 8.3 wt%)27 was dispersed in a solution of 7 (444 mg, 0.638 

mmol) in THF (30 mL) under nitrogen, and to this was added AIBN 

(35.7 mg, 0.217 mmol). The reaction mixture was refluxed for 24 

h, and AIBN (35.5 mg, 0.216 mmol) was further added. After 

refluxing for 15 h, the resulting silica gel was collected by filtration, 

washed with THF (50 mL x 2) and n-hexane (50 mL), and dried in 

vacuo at 120 °C overnight. The content of 7 chemically bonded to 

silica gel was estimated by TG analysis and was 11.8 wt%. In 

order to improve the amount of 7 bonded to silica gel, the 

immobilization procedure was repeated two times, giving CSPC 

(0.92 g); the content of 7 was 18.4 wt% thus estimated by TG 

analysis. In the same way, the compounds 6 and 8 were 

chemically bonded to M-silica, and their contents were estimated 

to be 15.9 (CSPD) and 24.7 wt% (CSPE), respectively. 

Preparation of Chiral Columns. Each column packing material 

was packed into a stainless-steel tube (25 cm x 0.20 cm (i.d.)) by 

conventional high-pressure slurry packing technique using a 

Chemco Slurry-Packing Apparatus Model 124A (Chemco, Osaka, 

Japan).29 The plate numbers of the columns were 1500–2200 for 

benzene with n-hexane–2-propanol (90:10, v/v) as the eluent at a 

flow rate of 0.1 mL/min. The dead time (t0) was estimated using 

1,3,5-tri-tert-butylbenzene as the nonretained compound.32 The 

CSPs are stable and maintained their chiral recognition abilities at 

least for more than one month. 

Results and Discussion 

Synthesis of Riboflavin Derivatives and Immobilization on 
Silica Gel. 

 
In order to regioselectively immobilize natural riboflavin and its 

derivatives (1, 4, 6–8) on the silica gel (7 µm particle size, 12 nm 
pore size) surface via chemical linkages, a 3-
(triethoxysilyl)propylcarbamate or a 1-undecenyl residue was 
introduced at the 5’-O- (1 and 4) or 3-N-position (6–8) of the 
riboflavins, respectively (Scheme 8). The precursors were then 
allowed to react with unmodified silica gel in DMSO in the 
presence of pyridine or (3-mercaptopropyl)triethoxy silanized 
silica gel in DMF in the presence of AIBN,27 producing the 
riboflavin-based CSPs regioselectively immobilized on the silica 
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gel (Scheme 8 and Fig. 1). Complete regioselective modifications 
except for 1 (ca. 80%) were confirmed by the 1H and 13C NMR 
spectra of the precursors (4, 6–8) before the immobilization on 
silica gel (see Experimental Procedures and Supporting 
Information). The CSPs were then packed into stainless-steel 
columns (25 cm x 0.20 cm (i.d.)) by the conventional high-
pressure slurry packing procedure.29  
 

Enantioseparation on Riboflavin-Based CSPs. 
 

Chart 1. Racemates used for resolution on riboflavin-based 

CSPs (9–31). 
 

 
 

We first performed the chromatographic enantioseparation of 
ten standard racemic compounds with different structures and 
functionalities (9–18) (Chart 1)6,10,24 using the five riboflavin-based 
CSPs with n-hexane–2-propanol (90:10, v/v) and n-hexane–
CH2Cl2 (90:10, v/v) as the eluent to get an insight into their specific 
chiral recognition abilities toward such a variety of racemates, and 
the results are summarized in Table S1 and Table S2, 
respectively. The chromatographic parameters, the retention 

factor k1 [= (t1 – t0)/t0], the separation factor  [=(t2 – t0)/(t1 – t0)], 
and the resolution factor RS [= 2(t2 – t1)/(w1 + w2)] were used to 
evaluate the resolution results, where t0, t1, and t2 are the dead 
time and the retention times of the first- and second-eluted 
enantiomers and w1 + w2 are the peak widths at the base-line, 
respectively. A chromatogram for the resolution of trans-
cyclopropanedicarboxylic acid dianilide (18) on CSPE using n-
hexane–2-propanol (90:10, v/v) as the eluent is shown in Fig. 2. 
The peaks were detected by a UV detector and identified by a CD 
detector. The (–)- and (+)-18 enantiomers eluted at the retention 
times of t1 and t2, showed almost base-line separation, and the 

retention factor k1, the separation factor , and the resolution 
factor RS were estimated to be 0.78, 1.38 and 1.28, respectively. 

            
Fig. 2. Chromatograms for the resolution of 18 on CSPE. Eluent: 

n-hexane–2-propanol (90:10). Flow rate: 0.1 mL/min. 
 

 
Fig. 3. Chromatograms for the resolution of (A) 16 on CSPE 
(eluent; n-hexane–2-propanol (90:10), flow rate; 0.1 mL/min), (B) 
23 on CSPC (eluent: n-hexane–2-propanol (80:20), flow rate: 0.5 
mL/min), (C) 31 on CSPD (eluent: n-hexane–CH2Cl2 (90:10), flow 
rate: 0.5 mL/min), and (D) 23 on CSPE (eluent: n-hexane–CH2Cl2 
(80:20), flow rate: 0.5 mL/min). 
 

As anticipated from the riboflavin structure in which a chiral, 
flexible ribityl chain is located away from the achiral heterocyclic 
isoalloxazine ring, the CSPs separated only two (16 and 18) 
(Table S1) and three racemates (10, 12, and 16) (Table S2) with 
n-hexane–2-propanol (90:10, v/v) and n-hexane–CH2Cl2 (90:10, 
v/v) as the eluents, respectively. The chromatographic resolution 
results, however, gave useful information regarding the specificity 
of the CSPs for the racemates and interaction mode between the 
CSPs and racemates; in the n-hexane–2-propanol system, the 
fully phenylcarbamated CSPE immobilized at the 3-N-position 
almost completely resolved a bulky aromatic racemic alcohol, 1-
(9-anthryl )-2,2,2- tr i f luoroethanol  (16) (Fig. 3A) and a 
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TABLE 1. Chromatographic resolution results of racemates on riboflavin-based CSPs with n-hexane–2-propanol as the eluenta  

cyclic dianilide 18 (Fig. 2) with high  values ( = 1.11 and 1.38, 
respectively) probably through an intermolecular hydrogen bond 
formation between the polar carbamate residues introduced at the 
ribityl group of the CSPE and the hydroxy or amide residues of the 
analytes, while the CSPA, CSPB, and CSPD only partially resolved 
18 (Table S1). A similar trend was observed in the n-hexane–
CH2Cl2 system for CSPE that partially separated the bulky 
aromatic alcohols 12 and 16. In contrast to the resolutions in n-
hexane–2-propanol (90:10, v/v), the CSPA and CSPB immobilized 
at the 5’-O-position partially resolved the Tröger base (10) in 
addition to 16 in n-hexane–CH2Cl2 (90:10, v/v) (Table S2), 
indicating that not only hydrogen bonding, but also hydrophobic 

or -stacking interactions may contribute during the chiral 
recognition process in this eluent system. The CSPC bearing the 
free ribityl group showed a poor chiral recognition in both eluent 
systems and could not separate the ten tested racemates. It 
should be noted that the bulky aromatic racemic alcohols with an 
acidic hydroxy group 13 and 16 strongly interacted with the five 
CSPs in n-hexane–CH2Cl2, in particular on the CSPC and CSPD, 
16 could not elute (k1 > 100) under the present conditions.  

Based on the above results together with the previously 
reported intriguing chiral recognition abilities of riboflavin20 and 
FMN21 for the racemic helicenes and SWCNTs, respectively, we 
employed 13 racemates (19–31) (Chart 1) including the cyclic 
dibenzamide (19) and dianilide (20), bulky aromatic racemic 
alcohols (21–23), and helicene derivatives including the [6] and 
[7]helicenes (24–30) and a metal-containing [8]helicene analog 
(31) to further evaluate the specific chiral recognition abilities of 
the riboflavin-based CSPs in n-hexane–2-propanol and n-
hexane–CH2Cl2 eluent systems; the chromatographic resolution 

results showing a more or less enantioselectivity ( > 1) on either 
CSP for the racemates are summarized in Table 1 and Table 2, 
respectively. For comparison, some resolution results in Tables 
S1 and S2 are also shown.  

As expected, an analogous cyclic dibenzamide (19) and more 
bulky aromatic alcohols (22 and 23) were partially or almost 
completely resolved on the phenylcarbamated CSPE in n-hexane–
2-propanol (Table 1). The four-membered cyclic dianilide (20) was 
not resolved on CSPE, but 20 as well as the bulky alcohols (22 or 
23) were partially resolved on CSPA, CSPB, and CSPD and the 
reversed elution order was observed for 23 on CSPD. The fact that 
the relatively less bulky 2,2‘-dihydroxy-6,6‘-dimethylbiphenyl (13) 
and 1,1‘-bi-2-naphthol (21) were not separated at all on all of the 
CSPs independent of the eluents (Tables 1 and 2) clearly 
indicated the important role of the steric or bulky effect, in other 
words, the molecular size for the efficient separation of aromatic 
racemic alcohols on the riboflavin-based CSPs. A similar 
molecular size effect was suggested by Gil-Av during the 
separation of a series of achiral polyaromatic compounds on silica 
gel coated with natural riboflavin.20 Interestingly, CSPC exhibited 
an exceptionally high chiral recognition ability only for the bulky 

racemic alcohol 23 ( = 1.54) and completely resolved it (Fig. 3B), 
although the CSPC showed a poor chiral recognition for the other 
racemates in both eluent systems. In addition, most of the CSPs 
could not resolve the polycyclic fully aromatic [6] and [7]helicenes 
(24 and 30) except for CSPA bearing mostly free hydroxy groups 
at the ribityl chain, which partially separated [7]helicene (30) into 
enantiomers.  

Interestingly, all of the eight helicene derivatives (24–31) were 
efficiently recognized by the 5’-O-bonded CSPA and CSPB except 
for 29 on CSPB in n-hexane–CH2Cl2, showing not complete, but 
partial separations in the same elution order, while interacting 
strongly with the CSPs as supported by high k1 values (Table 2). 
However, CSPC and CSPE immobilized at the3-N-position could 
not resolve the helicenes at all, indicating that the interaction of 
the original isoalloxazine ring of CSPA and CSPB with the 
polyaromatic helicenes may be the major driving force for their 
efficient chiral recognition of the helicenes rather

TABLE 2. Chromatographic resolution results of racemates on riboflavin-based CSPs with n-hexane–CH2Cl2 as the eluenta 

Racemates 
 CSPA  CSPB  CSPC 

 k1  Rs  k1  Rs  k1  Rs 

13  2.77 1 —  3.05 1 —  2.65 1 — 

16  11.8 1 —  16.8 1 —  9.38 1 — 

18  4.29 1.11 (–) 0.60  4.49 1.05 (–) 0.48  2.54 ca. 1 (–) — 

19  3.18 1 —  3.35 1 —  5.89 1 — 

20  2.51 1.04 (–) 0.27  1.78 1.02 (–) 0.22  20.4 1 — 

21b  6.73 ca. 1 (+) —  7.83 ca.1 (+) —  4.89 ca. 1 (–) — 

22b  4.93 1.06 (+) 0.14  4.93 1.07 (+) 0.17  5.23 ca. 1 (–) — 

23b  21.3 ca. 1 (–) —  20.5 ca. 1 (–) —  16.0 1.54 (–) 1.54 

24  3.00 ca. 1 (–) —  2.98 ca. 1 (–) —  1.67 ca. 1 (–) — 

30  3.49 1.07 (–) 0.28  2.89 ca. 1 (–) —  2.02 ca. 1 (–) — 

 

Racemates 
 CSPD  CSPE 

 k1  Rs  k1  Rs 

13  3.00 ca. 1 (–) —  1.25 1 — 

16  8.17 1 —  5.26 1.11 (–) 1.02 

18  2.04 1.05 (–) 0.23  0.78 1.38 (–) 1.28 

19  2.31 1 —  2.11 1.12 (–) 0.46 

20  1.66 1.11 (–) 0.30  1.54 1 — 

21b  5.30 ca. 1 (–) —  2.69 ca. 1 (+) — 

22b  6.71 ca. 1 (–) —  2.31 1.25 (–) 0.66 

23b  32.2 1.27 (+) 0.79  5.82 1.49 (–) 1.26 

24  1.93 ca. 1 (+) —  2.12 ca. 1 (–) — 

30  2.35 ca. 1 (+) —  2.44 ca. 1 (–) — 
aConditions: column, 25 x 0.20 (i.d.) cm; eluent, n-hexane–2-propanol (90:10); flow rate, 0.1 mL/min; temperature, 25 ˚C. The signs 
in parentheses represent the CD detection (254 nm) of the first-eluted enantiomer. bEluent, n-hexane–2-propanol (80:20); flow rate, 
0.5 mL/min.  
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than the ribityl moiety, since CSPA and CSPC possess the same 

ribityl group except for the 5’-O-position of CSPA. Obviously, the 

chirality of the ribityl chain is essential for the chiral recognition of 

the present riboflavin-based CSPs. The elution order of 

Racemates 
 CSPA  CSPB  CSPC 

 k1  Rs  k1  Rs  k1  Rs 

10  10.5 1.03 (+) 0.23  11.2 1.03 (+) 0.09  3.93 1 — 

12  2.80 1 —  0.76 1 —  3.88 1 — 

13  36.9 1 —  18.6 ca. 1 (+) —  40.9 1 — 

13b  16.8 ca. 1 (+) —  — — —  13.8 ca. 1 (–) — 

16  88.3 1.17 (–) 0.28  90.0 1.12 (–) 0.13  >100 — — 

16b  65.7 1 —  — — —  — — — 

16d  17.1 1 —  18.4 1 —  9.61 1 — 

21  15.3 1 —  1.68 1 —  1.34 1 — 

22c  29.8 1.07 (+) 0.28  19.9 1.10 (+) 0.26  5.82 ca. 1 (+) — 

22d  4.07 1.08 (+) 0.32  — — —  — — — 

23c  >100 — —  >100 — —  31.4 1.15 (–) 0.54 

23d  20.1 1 —  16.5 ca. 1 (+) —  11.6 1.28 (–) 1.23 

24c  3.37 1.05 (+) 0.26  2.90 1.06 (+) 0.28  0.87 ca. 1 (+) — 

25  3.66 1.04 (–) 0.26  3.46 1.05 (–) 0.23  2.92 ca. 1 (–) — 

26  25.0 1.08 (–) 0.50  21.5 1.04 (–) 0.42  33.0 ca. 1 (–) — 

26b  4.43 1.07 (–) 0.43  3.05 1.09 (–) 0.44  0.89 ca. 1 (–) — 

27  21.0 1.07 (+) 0.24  18.9 1.06 (+) 0.22  52.8 ca. 1 (–) — 

27b  7.71 1.03 (+) 0.18  — — —  1.56 ca. 1 (–) — 

28  30.4 1.09 (–) 0.52  24.1 1.05 (–) 0.47  36.7 ca. 1 (–) — 

28b  4.47 1.07 (–) 0.35  2.91 1.08 (–) 0.35  0.81 ca. 1 (–) — 

29  4.45 1.08 (–) 0.32  3.54 ca. 1 (–) —  3.39 ca. 1 (–) — 

30  >100 — —  >100 — —  5.09 1 — 

30c  5.29 1.07 (+) 0.34  5.30 1.07 (+) 0.35  1.21 1 — 

31e  — — —  — — —  — — — 

31c  6.66 1.16 (+) 0.38  6.40 1.10 (+) 0.62  7.00 ca. 1 (+) — 

 

Racemates 
 CSPD  CSPE 

 k1  Rs  k1  Rs 

10  1.66 1 —  5.45 1 — 

12  4.55 1 —  3.05 1.07 (–) 0.51 

13  18.9 1 —  19.3 1 — 

16  >100 — —  71.0 1.14 (–) 0.38 

16d  9.22 1 —  16.0c 1.09 (–)c 0.44c 

21  56.8 ca. 1 (–) —  0.96 1 — 

21d  8.81 ca. 1 (–) —  — — — 

22c  6.58 ca. 1 (–) —  2.37 1.26 (–) 0.65 

23c  26.1 1.27 (+) 0.94  5.87 1.49 (–) 1.36 

23d  14.1 1.22 (+) 0.62  — — — 

24c  0.80 ca.1 (–) —  0.70 ca. 1 (–) — 

25  2.28 1.13 (+) 1.13  2.04 ca. 1 (–) — 

26  1.30 ca. 1 (+) —  16.7 ca. 1 (+) — 

27  1.86 1.17 (–) 0.60  20.3 ca. 1 (–) — 

27b  — — —  4.14 ca. 1 (–) — 

28  1.43 ca. 1 (+) —  14.2 ca. 1 (–) — 

29  1.92 1.05 (+) 0.21  2.32 ca.1 (–) — 

30  4.29 1.09 (–) 0.86  3.41 1 — 

30c  1.00 ca. 1 (–) —  0.87 1 — 

31e  10.4 1.36 (–) 1.92  — — — 

31c  4.86 1.27 (–) 1.56  2.26 ca. 1 (+) — 
aConditions: column, 25 x 0.20 (i.d.) cm; eluent, n-hexane–CH2Cl2 (90:10); flow rate, 0.1 mL/min; temperature, 25 ˚C. The signs in 
parentheses represent the CD detection (254 nm) of the first-eluted enantiomer except for 24, 30, and 31, which were detected at 
350 nm. bEluent, n-hexane–CH2Cl2 (90:10) containing 1% 2-propanol; flow rate, 0.1 mL/min. cEluent, n-hexane–CH2Cl2 (80:20); 
flow rate, 0.5 mL/min.  dEluent, n-hexane–CH2Cl2 (80:20) containing 1% 2-propanol; flow rate, 0.5 mL/min. eFlow rate, 0.5 mL/min.   
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[7]helicene (30) on CSPA and CSPB was identical to that on the 
reported riboflavin-coated silica gel CSP,20 judging from the 
Cotton effect sign of the first-eluted enantiomer of 30 at 350 
nm.20,33 

More interestingly, most of the helicene derivatives, in 
particular, the [6]helicene derivatives (25 and 27), [7]helicene (30), 
and an [8]helicene analog (31) were better resolved on the 3-N-
bonded CSPD composed of the fully-acetylated ribityl residue, and 
25 and 31 (Fig. 3C) were completely separated. It is noteworthy 
that the elution order of the helicene derivatives (24–31) on CSPD 
was totally reversed without exception when compared to that on 
CSPA and CSPB in n-hexane–CH2Cl2 (Table 2). The difference 
between the acetylated CSPB and CSPD is the position 
immobilized on the silica gel (5’-O- and 3-N-positions, 
respectively). Therefore, the results reveal the critical role of the 
immobilization positions of the riboflavin-based CSPs during the 
enantioselectivity of the helicenes as well as their elution order. 

Again, CSPE exhibited a good chiral recognition ability for 

bulky aromatic racemic alcohols (22 and 23) ( = 1.26 and 1.49, 
respectively) and completely resolved 23 (Fig. 3D), although 

CSPE showed poor enantioselectivities ( = ca. 1) toward the 
racemic helicene derivatives. The other CSPs also separated 
either 22 or 23; the latter bulky alcohol was almost base-line 
resolved on CSPD with the reversed elution order to that on CSPE. 
The retention factors of bulky racemic alcohols (13, 16, 22, and 

23) as well as helicene derivatives (26–28) significantly 

decreased when n-hexane-CH2Cl2 (90:10 or 80/20) containing 1% 
2-propanol was used as the eluent (Table 2), while the separation 
factors slightly decreased or were improved depending on the 
CSPs. 

A comparison of the enantioseparation results on the five 
riboflavin-based CSPs summarized in Tables 1 and 2 in n-
hexane–2-propanol and n-hexane–CH2Cl2 eluent systems 
revealed their specific and relative chiral recognition ability; CSPA 
and CSPB chemically bonded at the 5’-O-position on the silica gel 
showed a relatively high chiral recognition toward the helicene 

derivatives via specific – interactions including charge-transfer 
complexation between the unmodified isoalloxazine ring and the 
polyaromatic helicenes and could also partially separate some 
bulky aromatic alcohols and cyclic amides. On the other hand, 
CSPE bearing the 3,5-dimethylphenylcarbamated ribityl unit 
bonded at the 3-N-position on silica gel specifically and better 
resolved the bulky aromatic alcohols and cyclic amides, some of 
which were completely separated into enantiomers through an 
intermolecular hydrogen bond formation, although CSPE showed 
a poor chiral recognition ability for the helicene derivatives. The 
chiral recognition power of these CSPs seems to be 
complementary. CSPC immobilized at the 3-N-position on the 
silica gel is structurally similar to CSPA with respect to the ribityl 
pendant, but showed a poor chiral recognition ability and 
specifically resolved only one bulky aromatic alcohol 23. Among 
the riboflavin-based CSPs, CSPD bearing the fully acetylated 
ribityl residue immobilized at the 3-N-position showed quite 
unique and high chiral recognition abilities for a variety of 
helicenes and bulky aromatic racemic alcohols with the reversed 
elution order compared to that on the other CSPs. The 
enantioselectivity and elution order of the racemates are 
significantly influenced not only by the position immobilized on the 
silica gel, but also by the substituents of the ribityl unit. 

These findings will contribute to the development of more 
efficient CSPs composed of novel riboflavins with more suitable 
substituents and also riboflavin-based polymers. In fact, we 
recently prepared the first optically-active riboflavin-containing 
polymer with the fully acetylated riboflavin as the main-chain, 
which enantioselectively catalyzed the asymmetric oxidation of 
sulfides whose enantioselectivity was much higher than that 
catalyzed by the corresponding riboflavin monomer18 and also 
detected the chirality of chiral primary and secondary amine 
vapors in the solid state.19 We believe that such riboflavin-based 
optically-active polymers will show a better chiral recognition 
ability than the present riboflavin-based CSPs because such 

polymers may form a preferred-handed helical structure18,34,35 and 
the research along this line is now in progress in our laboratory. 
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