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Abstract 

Halopytes are plants able to tolerate high salt concentrations but no clear definition was retained for them. In 

literature, there are more studies that showed salt-enhanced tolerance to other abiotic stresses compared to 

investigations that found enhanced salt tolerance by other abiotic stresses in halophytes. The phenomenon by 

which a plant resistance to a stress induces resistance to another is referred to as cross-tolerance. In this work, we 

reviewed cross-tolerance in halophytes at the physiological, biochemical, and molecular levels. A special 

attention was accorded to the cross-tolerance between salinity and organic pollutants that could allow halophytes 

a higher potential of xenobiotic phytoremediation in comparison with glycophytes. 

Keywords: genomic level, metabolomic level, physiological level, proteomic level, transcriptomic level. 
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Introduction 

Halophytes are plants known for their ability to tolerate high salt levels in the soil. However, no clear definition 

was given to them and researchers still cannot certainly distinguish between halophytes and glycophytes. 

Flowers and Colmer (2008) call a halophyte any plant able to complete its seed-to-seed cycle at 200 mM NaCl or 

higher. Halophytes are considered to be rare plant species that arose separately in unrelated plant families during 

the diversification of Angiosperms (O’Leary and Glenn 1994; Flowers et al. 2010) similarly to epiphytes, 

saprophytes, xerophytes, aquatics, and marsh plants (Kremer and Van Andel 1995). They were estimated to 

constitute 1 to 2% of the flora (Flowers and Colmer 2008). Several fundamental and applied (economical) 

potential uses were attributed to halophytes as promising phytoresource. At the fundamental level, they help 

understand mechanisms involved in high salinity tolerance using morphological, anatomical, ultrastructural, 

physiological, biochemical, and molecular tools (Jithesh et al. 2006; Barhoumi et al. 2008; Smaoui et al. 2010; 

Rabhi et al. 2010b; Ellouzi et al. 2011; Debez et al. 2013; Ben Hamed et al. 2014). At the applied level, 

halophytes are used for food, fodder, forage, edible oil, biofuel, medicines, phytoremediation, phytodesalination, 

sandy soil fixation, ornamentation… (Khan and Qaiser 2006; Rabhi et al. 2010a, Rabhi et al. 2010d, Zaier et al. 

2010; Al-Oudat and Qadir 2011). 

Among several classifications of halophytes, a habitat-based one distinguishes between xerohalophytes, 

those thriving under saline arid conditions, and hydrohalophytes, those thriving under saline moist conditions 

(Al-Oudat and Qadir 2011). In their natural habitats, halophytes are simultaneously subjected to a multitude of 

abiotic stresses. However, data about pretreatment of halophytes with abiotic stresses such as draught, heavy 

metals, flooding, and nutrient deficiencies to enhance their tolerance to salinity are scarce. Recently, Ellouzi et 

al. (2013) investigated the responses of the halophyte Cakile maritima to increasing salt concentrations after 

pretreatment with three abiotic stresses: drought, salinity, and cadmium. They found that all pretreatments 

enhanced salt tolerance in this species through oxidative stress alleviation, in particular under severe salinity 

conditions. A seed priming with a relatively high CaCl2 concentration (50 mM) was also shown to alleviate the 

adverse effects of high KCl, NaCl, Na2SO4, and MgSO4 concentrations on germination of Urochondra setulosa 

(Shaikh et al. 2007). 

In literature, there are more works about salt-enhanced tolerance to other abiotic stresses than about 

enhanced salt tolerance by other abiotic stresses in halophytes (See Ben Hamed et al. 2013). In Artemisia 

anethifolia and Suaeda salsa, salt adaptation enhanced PSII tolerance to heat stress through an improvement of 
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thermotolerance of PSII reaction centers, oxygen-evolving complexes, and light-harvesting complex (Lu et al. 

2003). In Hordeum maritimum, it was also shown that moderate salinity alleviated the effects of phosphorus 

deficiency (Talbi-Zribi et al. 2012). Moreover, under low potassium availability conditions, salt stress improved 

K/Na selectivity in this halophyte (Hafsi et al. 2007). In the same context, Glenn et al. (2012) showed that 

salinity enhances Atriplex spp. tolerance to drought in drying soils. Beneficial salt effects on Sesuvium 

portulacastrum responses to drought (Slama et al. 2007) and heavy metals (Ghnaya et al. 2005; Zaier et al. 2010) 

were also reported. Salt priming was also shown to improve Distichlis spicata establishment under low to 

moderate salinity conditions (Sargeant et al. 2006). 

Cross-tolerance is defined as the phenomenon by which a plant resistance to a stress induces resistance to 

another (Genoud and Metraux 1999). Because much of the injuries they induce in plants are associated with 

oxidative damage at the cellular level, oxidative stress tolerance is thought to play a key role in cross-tolerance to 

a variety of environmental stresses (Iseki et al. 2013).  

1. Mechanisms involved in halophyte salt-induced tolerance are common to other abiotic stresses 

2.1. Cross-tolerance physiology 

2.1.1. Intracellular compartmentalization of toxic molecules and osmotic adjustment 

As subjected to salt stress, halophytes compartmentalize excess ions predominantly in vacuoles, maintaining in 

this way their concentrations in the cytoplasm within tolerable limits. They accumulate organic osmolytes such 

as proline, glycinebetaine, and sugars mainly in cytoplasm for osmotic adjustment without impairing metabolic 

activities (Debez et al. 2010). This significantly contributes to the overall water relations that allow halophytes to 

obtain water from saline soils (Flowers and Colmer 2008). Osmolyte accumulation under salt-induced water 

deficiency was also observed in the case of direct (insufficiently-irrigated soil) and PEG- and mannitol-induced 

drought (Slama et al. 2007; Rouached et al. 2013). The comparison between Hordeum martimum and H. vulgare 

after 60 h of salt stress showed that the former is more able to accumulate inorganic solutes (such as Na+) in 

vacuoles for osmotic adjustment and to keep organic solutes and a large part of K+ for metabolic activities. Such 

an economic strategy was absent in H. vulgare whose osmotic adjustment was based on organic osmolytes 

regardless of stress severity (Yousfi et al. 2010). Munns (2002) reported that the use of one mole of Na+,  

mannitol, proline, glycinebetaine, or sucrose as an osmoticum in leaf cell needs 3.5, 34, 41, 50, or 52 moles of 

ATP, respectively. Moreover, even within halophytes themselves, species differ in succulence and in the solutes 

they accumulate, Chenopodiaceae being more able to use salt ions in osmotic adjustment than Poaceae (Flowers 
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and Colmer 2008). Succulence results in an increase in cell size and a decrease in growth extension, this process 

reduces surface area per tissue volume, leading to higher water content per unit area (Weber 2008). 

Maintaining water status within plant tissues requires, in addition to osmotic adjustment, a decrease in water 

losses through a decline in stomatal conductance (gs). Nevertheless, differences between halophytes were 

described. For instance, in a comparative study between two obligate halophytes Sesuvium portulacastrum (C3) 

and Tecticornia indica (C4), different stomata responses were observed at moderate salt concentration (200 mM 

NaCl); in the former gs was enhanced whereas in the latter it showed no variation. At higher salt concentration 

(400 mM NaCl), this parameter was decreased in both species. The decrease in gs constitutes an identical early 

response to water and salt stress (Munns 2002). Indeed, plant responses to salt stress occur in two phases: a fast 

osmotic phase (whose period depends on species and stress severity) due to the increase in external osmotic 

pressure followed by a slower ionic phase due to ion accumulation in leaves (Munns and Tester 2008). Water use 

efficiency (WUE = A / E with A and E standing respectively for net CO2 assimilation and transpiration rate) was 

shown to be a good tool for measuring the aptitude of a plant to adjust its gas exchanges under stressful 

conditions by increasing CO2 capture and reducing water losses (Gleick et al. 2011).  

Vacuole sequestration is not limited to salt ions but it is also extended to a variety of toxic ions and molecules 

such as heavy metals (Hossain et al. 2012) and organic pollutants (Tissut et al. 2006). In the case of heavy 

metals, a prior chelation phase is needed (Mendoza-Cózatl et al. 2010). As regards organic pollutants, three 

phases are often described: 1) biotransformation that converts xenobiotics into more polar compounds (in some 

cases, this phase is not necessary), 2) conjugation that adds to the xenobiotics sugars, amino acids, or peptides to 

facilitate their metabolism, and 3) sequestration of conjugated molecules into vacuoles or their fixation to the cell 

wall components (Tissut et al. 2006). 

2.1.2. Excretion of toxic molecules 

Many halophytes were shown to have trichomes or salt glands controlling salt accumulation in plant tissues. Salt 

glands are embedded in the leaf epidermis. They can be multicellular, as observed in Dicots (Plumbaginaceae 

and Tamaricaceae), or bicellular, as reported in Monocots (Poaceae; Barhoumi et al. 2008). Trichomes are 

composed of two parts: i) a stalk embedded in the epidermis bearing ii) a unicellular bladder cell with a huge 

vacuole, a well-reduced cytoplasm pushed close to the wall, and only a few organelles (Smaoui et al. 2010). In 

some cases, salt excretion is performed by leaf cuticle as described in Suaeda fruticosa (Chenopodiaceae), a 

species with no excreting glands or trichomes (Labidi et al. 2010). Hence, salt excretion is a phenomenon by 

which halophytes eliminate excess salt reaching their leaves (Sobrado 2002) in a highly-selective way, secreting 
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mostly NaCl and thus contributing to maintain a suitable K+/Na+ ratio of cell cytoplasm. However, other ions 

such as K+, Mg2+, Ca2+, and SO4
2– can be excreted (Sobrado and Greaves 2000) if they are in excess in leaf 

tissues. Manousaki and Kalogerakis (2011) reported also that salt glands and trichomes on leaf surfaces of some 

halophytes (such as Tamarix smyrnensis, Atriplex halimus, Armeria maritime, Avicennia marina, Avicennia 

germinans, and Spartina alterniflora) can excrete excess metals as a possible detoxification mechanism. 

2.1.3. Nutrient homeostasis 

Nutrient homeostasis is one of the major factors allowing halophytes to survive under extreme saline conditions. 

It is based on two main strategies: nutrient uptake efficiency and nutrient use efficiency. Since the most abundant 

salt is NaCl, the former strategy relies on cation/Na+ selectivity and anion/Cl- one that increase to mitigate the 

salt-induced reduction in nutrient uptake efficiency (Hafsi et al. 2007; Rabhi et al. 2010c). However, K+/Na+ 

selectivity is the most studied one as this macronutrient is often more affected by salinity than other nutrients. 

Although nutrient/salt selectivity is often described in halophytes in response to salt stress, it is not sufficient to 

maintain nutrient uptake efficiency at the level of the control. This is why high use efficiency is needed (Hafsi et 

al. 2007; Rabhi et al. 2010c). Mineral nutrition is imbalanced by several stresses other than salinity. For instance, 

the two halophytic Aeluropus species A. lagopoides and A. littoralis displayed an increase in K+ and Na+ 

concentrations under drought stress (Vaziri et al. 2011). This is important for osmotic adjustment during water 

stress as inorganic osmolytes increase osmotic potential. Gulzar et al. (2003) who observed an enhancement in 

K+ level in A. lagopoides tissues attributed such a response to drought stress to a high selectivity for K+ by 

retaining higher Cl- and Mg2+ ions in roots. Heavy metal stress is also a factor of nutrition disturbances and 

plants able to maintain their nutrient homeostasis under this stress are thought to overcome it. For instance, the 

two halophytes Sesuvium portulacastrum and Mesembryanthemum crystallinum experienced different potassium 

and calcium status as subjected to a range of cadmium (Cd) concentrations (0, 50, 100, 200, and 300 µM), the 

former being more able to maintain its nutrient homeostasis than the latter (Ghnaya et al. 2007). This was due to 

the fact that S. portulacastrum displayed a higher aptitude to produce biomass and to limit Cd uptake even under 

severe stress conditions than M. crystallynum (Ghnaya et al. 2007), which is probably due to its higher Ca2+ and 

K+ selectivity over Cd2+. In addition, recently, Zhan et al. (2013) found that a K+ influx/H+ efflux reaction is 

coupled with the transport of the Polycyclic Aromatic Hydrocarbon (PAH) phenanthrene into root cells, which 

constitutes a new insight into its uptake by plant roots. This also opens new perspectives on the role of nutrient 

homeostasis in plant tolerance to organic pollutants, in particular in halophytes. 
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2.1.4. Membrane integrity 

Plant cells contain many membrane systems that are not considered as simple barriers delimiting different 

compartments; they are specialized to particular functions undertaken by their lipid components and membrane-

associated proteins (Komatsu et al. 2007). Hence, almost all plant responses to environmental stresses directly or 

indirectly require membrane integrity to be maintained, although stresses themselves cause significant 

intracellular restructuring (Buchanan et al. 2000). The most studied membranes under abiotic stress conditions 

are plasmalemma, tonoplast, and thylakoid membranes. Plasmalemma plays structural and communicating 

(interface with the extracellular environment exchanging information and substances) roles. Hence, it constitutes 

the site of signal processing in response to stresses (Komatsu et al. 2007). To estimate membrane integrity under 

stress, some usual parameters are often used: i) malondialdehyde (MDA) concentration that constitutes an 

indirect measurement of lipid peroxidation (for all membranes), ii) electrolyte leakage that indicates the degree 

of the plasmalemma permeability and therefore its inaptitude to retain electrolytes (for plasmalemma since it is 

the last membrane to be crossed, iii) the correlation between excessive salts within a tissue and its water content 

to estimate the degree of their sequestration into vacuoles (for tonoplast), and iv) chloroplast ultrastructure that 

illustrates the degree of damage in grana (for thylakoid membranes). In halophytes, as in all plants, the use of 

these parameters among others have shown that a variety of severe abiotic stresses induce membrane damages 

(Ben Hassine et al. 2009; Parida and Jha 2013), which is due to the generation of Reactive Oxygen Species 

(ROS) responsible for oxidative stress (Bose et al. 2013). Hence, ROS homeostasis is one of the major factors 

allowing halophytes higher salt tolerance in comparison with glycophytes (Bose et al. 2013). 

ROS overproduction was described in halophyte responses to several abiotic stresses as reviewed by 

Jithesh et al. (2006). It is initiated by the univalent reduction of O2 or the transfer of excess excitation energy to 

O2. The transfer of one, two, or three electrons generates respectively superoxide radicals (O2
.-), hydrogen 

peroxide (H2O2), or hydroxyl radical (HO.) (Mittler 2002). Nevertheless, plants are equipped with two 

antioxidant systems that can scavenge ROS and therefore protect cell membranes and molecules from damages. 

The non-enzymatic system groups a variety of molecules such as tocopherol, carotenoids, ascorbate, and 

glutathione, whereas the enzymatic one groups several enzymes, namely superoxide dismutase, catalase, 

ascorbate peroxidase, monohydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase 

(Jithesh et al. 2006). 

 Chloroplast (thylakoid membrane) is one of the main targets of ROS. Its protection is therefore a 

priority in halophytes under stress conditions. Rabhi et al. (2010b) showed that the halophyte Sesuvium 
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portulacastrum is able to protect thylakoid membranes and proteins even at 400 mM NaCl. Similar results were 

also found in the halophyte Sulla carnosa under magnesium deficiency conditions (Farhat et al. 2014, 2015) as 

well as under individual and combined effects of salinity and iron deficiency (Unpublished data). 

2.2. Biochemical and molecular mechanisms of cross-tolerance 

2.2.1. Gene duplication and promoter adaptation 

Gene duplication is a kind of genome adaptive mechanisms to environment fluctuations (Kondrashov 2012). The 

identification of copy-number variations (CNVs) in response to stressful or changing conditions may help 

understand gene duplications as an adaptive mechanism. Studies of 80 Arabidopsis thaliana ecotypes showed 

that natural selection has led to CNVs covering 2.2 Mb of the reference genome (Cao et al. 2011). The genomes 

of A. thaliana and its halophyte relative Thellungiella parvula have approximately 10% of their total genes in 

tandem duplicates (Dassanayake et al. 2011), and they are clearly involved in the species dramatically different 

stress tolerance strategies. This is exemplified by the amplification of NHX8 homologs, known to encode a 

putative Li+ transporter in A. thaliana (An et al. 2007). The duplication led to a constitutively higher expression 

in T. parvula than in A. thaliana. This was probably responsible for the improvement of T. parvula tolerance to 

high Li+ concentrations in its natural biotope. Some other examples were also reported such as the duplications 

of CBL10 orthologs, encoding a calcium sensor, AVP1, encoding a vacuolar proton transporter in T. parvula, and 

HKT, present in a single copy in A. thalina and in three ones in T. parvula (Dassanayake et al. 2011). 

Based on molecular and genomic studies, several key transcription factors were identified to be induced 

under several abiotic stress conditions. Among them, DREB and ABF are well characterized transcription factors 

known to play an important role in regulating gene expression in response to abiotic stresses through both ABA-

independent and dependent pathways. In parallel, many salt-induced promoters are not specific to salinity. 

Promoters of the stress-induced genes contain cis-regulatory elements such as DRE/CRT, ABRE, MYC 

recognition sequence (MYCRS), and MYB recognition sequence (MYBRS), which are regulated by various 

upstream transcriptional factors (Mahajan et al. 2005; Zhu 2002). Nawaz et al. (2014) compared expression 

levels and promoter activities of candidate salt tolerance genes in the halophyte T. salsuginea and the glycophyte 

A. thaliana using promoter swap experiments. They showed that SOS1 and VATD promoters were respectively 

five-fold and two-fold more active in T. salsuginea than in A. thaliana. These observations were supported by an 

expression of a higher number of gene families nonspecific to salt stress in the halophyte than in the glycophyte 

(Wu et al. 2012). 
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2.2.2. Wide genome transcriptional adaptation to abiotic stresses 

Wu et al. 2012 found that 21 transcription factor families were expanded in T. salsuginea genome as compared 

to that of A. thaliana. These expansions may be associated with the adaptation of T. salsuginea to extreme 

environments, as individual members of some A. thaliana factor families have been shown to be related to stress 

tolerance. For example, the RAV gene family that has been reported to respond to several stresses, including 

salinity (Fowler et al. 2005; Sohn et al. 2006), expanded from six members to nine, respectively in A. thaliana 

and T. salsuginea (Wu et al. 2012). In the extreme halophyte Salicornia brachiata, transcript profiling revealed 

an abundance of SbUSP (an uncharacterized universal stress protein gene) transcripts in response to salt stress as 

well as to drought, heat, and cold stresses. Heterologous expression of this gene conferred salt and osmotic 

tolerance to E. coli (Udawat et al. 2013). Some other salt-responsive genes cloned from this halophyte 

experienced also elevated expression under abiotic stress conditions in the host plant. For instance, SbMT-2 gene 

was up-regulated by salinity, drought, and heat stresses and its expression increased with treatment time 

(Chaturvedi et al. 2012). The peroxisomal ascorbate peroxidase gene (SbpAPX) was also strongly induced by 

cold (Singh et al. 2013). In addition, pAPX gene cloned from Avicenia marina was up-regulated by salinity, 

H2O2, prolonged light, and ferric citrate treatment (Kavitha et al. 2008). In the same context, a SUMO 

conjugating (Small Ubiquitin related Modifier) enzyme gene ‘SaSce9’ from experienced induced transcripts 

under salinity, drought, cold, and exogenously supplied ABA conditions in leaves as well as in roots of the 

halophytic grass Spartina alterniflora. Its constitutive overexpression in A. thaliana improved its tolerance to 

salinity and drought (Karan and Subudhi 2012). In the halophyte Limoniastrum monopetalum, El-Bakatoushi 

(2011) showed that crude oil exposure over-expressed salt and drought genes. 

2.2.3. Proteomic analysis revealed the induction of several non specific-stress- and defense-related 

proteins 

While addressing the key pathways regulating abiotic stress plant adaptation, comprehensive data presented 

confirmed that proteins are relevant tools to confer tolerance. Therefore, it has been found out that salinity 

induces more proteomic changes in A. thaliana than in T. salsuginea (Oliver et al. 2011; Gechev et al. 2012; 

Dooki et al. 2006). The former displayed 88 differentially abundant protein spots versus 37 ones in T. salsuginea 

as compared to their controls (Dooki et al. 2006). Therefore, salinity changes more the proteomic profile of A. 

thaliana as compared to that of T. salsuginea since the latter is able to maintain enough photosynthetic activity 

and ATP production for stress adjustment. A proteomic study of Suaeda salsa under individual and combined 
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effects of salinity and heat shock showed that out of 80 proteins whose levels were increased by salt stress and 

70 proteins whose levels were reduced by heat shock, an overlap of only 17 proteins was detected. In addition, 

out of 112 proteins accumulated by the combined effects, only 43 were salt-elevated and 30 were heat shock-

elevated (Li et al. 2011). Hence, among 124 induced proteins (during salinity, heat shock, or their combination), 

only 14 were common in the three treatments (Li et al. 2011). Interestingly, the authors found an overexpression 

of STO5 not only by salt stress but also by heat shock and their combination, which can lead to higher salt 

tolerance in transgenic plants (Nagaoka and Takano 2003). An aluminum-induced protein-like protein (AIPLP) 

that has been shown to be involved not only in aluminum stress response but also in other metal, wounding 

(Snowden et al. 1995), and drought stress responses (Oztürk et al. 2002), was induced in Puccinellia tenuiflora 

under 95 mM Na2CO3 treatment, which suggests that it might also contribute to its tolerance to Na2CO3 stress 

(Yu et al. 2013). In addition, a developmentally-regulated plasma membrane polypeptide (DREPPPM)-like 

protein that has been shown to be involved in cold acclimation and salt stress, increased under Na2CO3 stress. 

This protein may be associated with the Ca2+ signal transduction pathway in the seedlings of Puccinellia 

tenuiflora under Na2CO3 stress (Yu et al. 2013). 

2.2.4. Cross-tolerance-enhanced abundance of protective proteins involved in photosynthesis 

activation and protein biosynthesis 

Abiotic stresses negatively affect photosynthesis at different levels, altering both photochemichal and non-

photochemical processes (Saibo et al. 2009). Nevertheless, plants have developed many adaptive strategies 

allowing them to cope with severe conditions (Zhu 2002; Saibo et al. 2009). Identification of photosynthesis-

related proteins that are differentially abundant under drought and severe salt stress is very important. So far, 

many photosynthesis-related proteins exhibited an increase or decrease in response to these two stresses (Oliver 

et al. 2011; Vanhove et al. 2012; Aranjuelo et al. 2011). The comparison between halophyte and glycophyte 

proteins under salt stress reviewed by Kosová et al. (2013) reported an increase in PsbP, ferredoxin-NADPH 

reductase, OEE2, RubisCO activase, TPI, GAPDH, and Glucose-6-P dehydrogenase in glycophytes and an 

increase in LHC, OEE2, RubisCO LSU and SSU, RubisCO activase, D2, CP24, CP47, PSI subunit IV, carbonic 

anhydrase; SBP, and PGK. In response to salinity, non-salt-specific proteins can be accumulated. For instance, 

Chen et al. (2012) found an enhanced abundance in eleven heat-shock proteins (HSPs) in the halophyte Nitraria 

sphaerocarpa under saline conditions. Based on literature and their own results, the authors suggested an 

HSP/chaperone network in plants that responds to salinity. As subjected to salt stress, the halophytic plant 
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Puccinellia tenuiflora exhibited an increased abundance of tocopherol cyclase, a crucial enzyme in the 

biosynthesis of α-tocopherol in plants (Yu et al. 2011) conferring it higher stress tolerance. It is also known that 

free metal ions can catalyze ROS formation. Therefore, responses leading to the elimination of free metal ions 

were observed in salt-stressed plants (Kosová et al. 2013). Stress also results in an accumulation of several 

protective proteins as chaperones from HSP90 family, HSP70 family, and Hsc70 (heat-shock cognate) (Kosová 

et al. 2013). Other stress-protective proteins, such as osmotin and osmotin-like proteins, are involved in 

enhancing osmotic stress responses. PR-10 proteins respond not only to biotic, but also to abiotic stresses, such 

as drought, salt, cold, and oxidative stresses, and UV-irradiation (Agarwal et al. 2013). 

2.2.5. Abiotic-stress-commonly-induced alterations in carbohydrate nutritional status  

Sugar metabolism is a very dynamic process and its metabolic fluxes and concentrations highly fluctuate with 

development stage and in response to environmental stresses (Rolland et al. 2006). Under abiotic stress, glucose 

has an important role as osmolytes in maintaining cell turgor, stabilizing cell membranes, and decreasing protein 

degradation (Sharp et al. 2004). Non-reducing disaccharides such as trehalose can accumulate with higher levels 

in tolerant plants. Other sugars with no energetic role, such as the oligosaccharides raffinose and stachyose were 

accumulated in response to abiotic stress conditions such as drought, salinity, and extreme temperatures (Kaplan 

et al. 2004). Relevant physiological studies have shown that soluble carbohydrates, like glucose, fructose, 

sucrose, or fructans, significantly contribute to the mechanisms of adaptation to salt stress (Parida et al. 2002). 

Gil et al. (2011) studied sugar accumulation in five halophytes (Juncus acutus, Juncus maritimus, Plantago 

crassifolia, Inula crithmoides, and Sarcocornia fruticosa) and found that sucrose, and at a lower level, glucose 

and fructose were the most abundant sugars in J. acutus and J. maritimus, and sorbitol the only soluble sugar 

accumulated in P. crassifolia. In addition to their involvement in osmotic adjustment, soluble carbohydrates 

stabilize also proteins and membrane structure and protect plant cell against ROS, especially in halophyte 

species (Szabados and Savouré 2010; Boriboonkaset et al. 2013). Polyols and sugar alcohols like mannitol or 

sorbitol were also accumulated and linked to abiotic stress tolerance (Arbona et al. 2008). In addition to all cited 

roles, sucrose, fructose, and glucose play also pivotal roles as signaling molecules to abiotic stresses (Koch, 

2004; Rolland et al. 2006; Ruan 2014). 

2.2.6. Enhanced biosynthesis of organic osmolytes, phenolic compounds, and lignin 

Under abiotic stresses, plants synthesize osmolytes like soluble sugars and amino acids that contribute to turgor 

maintaining by osmotic adjustment (Arbona et al. 2003; Arbona et al. 2008). In this context, it is interesting to 
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follow the synthesis and levels of osmolytes involved in stress tolerance such as amino acids, secondary 

metabolites, and regulatory metabolites (Arbona et al. 2013). Indeed, increases in Proline (Pro) content have 

been reported in response to a variety of abiotic stress conditions like salt stress (Yoshiba et al. 1995; Arbona et 

al. 2008), soil flooding (De Campos et al. 2011), drought (Arbona et al. 2008), and extreme temperatures 

(Kaplan et al. 2004). The target enzyme is a pyrroline-5-caboxylate synthetase (P5CS) (Arbona et al. 2008). Pro 

plays also a role in ROS scavenging (Arbona et al. 2003) as well as in DNA, membrane, and protein stabilization 

(Arbona et al. 2008). Polyamines (PA) also have protective ROS scavenging roles (Alet et al. 2012). A variety of 

abiotic stresses were shown to induce PA accumulation that was found to positively correlate with stress 

tolerance (Martin-Tanguy 1997; Bitrián et al. 2012). Putrescine (Put), spermidine (Spd), and spermine (Spm) are 

the most abundant PAs found in higher plants (Arbona et al. 2013). It has been recently reported that, in non-

adapted Thellungiella salsuginea accessions, sugars and polyamines could be involved in the mechanisms of 

cold adaptation (Colinet et al. 2012). However, the most described and important compounds are sugars, sugar 

alcohols, and nitrogenous compounds with low molecular weight (in particular Pro and glycinebetaine). Their 

accumulation in adapted plants is thought to be involved in their tolerance to stresses (Witt et al. 2012). Under 

heavy metal stress, to reduce metal accumulation in photosynthetic organs is considered as a tolerance trait like 

phytochelatin biosynthesis and glutathione metabolism (Arbona et al. 2013). 

It is known that heat induces PAL activity and phenolic production and reduces, at the same time, their 

oxidation, contributing to heat stress acclimation (Arbona et al. 2013). The precursors of lignins, 

phenylpropanoids are also involved in stress defense mechanisms, in particular in roots where they can adjust 

cell wall composition and stiffness (Van Poecke et al. 2001; D’Auria et al. 2005). 

Carotenoids and xanthophylls are lipophilic compounds synthesized in plants from isopentenyl 

pyrophosphate (IPP) via the plastidial methyl erythritol phosphate (MEP) pathway. The role of carotenoids is not 

restricted to cell protection from UV radiation under stress conditions. Indeed, it was demonstrated that the 

overexpression of phytoene synthase gene in transgenic tobacco plants resulted in a higher osmotic and salt 

tolerance, but through channeling carotenoid flux to ABA biosynthesis which resulted in an enhancement of 

ABA levels (Cidade et al. 2012). 

The following diagram (Figure) summarizes specific and non-specific responses to combined stresses. 

Figure. Schematic diagram showing the possible cross-talk involved in the response of halophytes to multiple 

stresses. The signal pathways resulting from several stresses induce specific and non-specific genes that can 
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confer stress-tolerance. The latter are responsible for cross-tolerance. GPCR: G-protein-coupled receptor; RLK: 

receptor-like kinase; CBL:  calcineurin B-like interacting protein kinase; CPK: calcium-dependent protein 

kinase; MAPK:  mitogen-activated protein kinase; ROS: reactive oxygen species; TFs: transcription factors.  
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3. Cross-tolerance between salinity and organic pollutants: application for phytoremediation 

3.1. Compartmentalization and subcellular sequestration are common mechanisms involved in salinity 

and organic pollutant tolerance 

As heavy metals and salts, organic pollutants constitute one of the major hazardous chemicals that contaminate 

soils today (El-Bakatoushi 2011). The uptake of toxic organics in plant cells and/or their sequestration or 

metabolism are essential for detoxification of the rhizosphere and in turn for phytoremediation. Therefore, 

organic pollutants such phenanthrene may passively penetrate the plasmalemma of root and shoot cells (Alkio et 

al. 2005). Wild et al. (2004) traced the movement of anthracene in maize leaves and showed that it was localized 

on the leaf surface; it diffused into the cytoplasm within 72 h. This finding was supported by Alkio et al. (2005) 

who showed that phenanthrene can diffuse in Arabidopsis through direct contact with the tissue as well as from 

the air. Also, Zhan et al. (2010) found in wheat two modes of phenanthrene transport; a simple diffusion and an 

active absorption by a transporter. In the same context, Cobbett and Meagher (2002) reported that the uptake of 

organic xenobiotics into the plant cell is often mediated by an ABC transport protein. A subclass of the ABC 

transporters, originally named the multi drug resistance proteins (MRPs) in reference to animal cells and 

bacteria, is the best-characterized family of plant proteins that carry organics across membranes. MRPs are 

involved in the uptake, efflux, and sequestration of toxic compounds and xenobiotics (Tommasini et al. 1998). In 

literature, little is known about the mechanisms of Polycyclic Aromatic Hydrocarbon (PAH) metabolism and 

accumulation in plants. All authors used the green lever model to explain plant cell internalization, degradation, 

and sequestration of organic compounds such as PAHs (Sandermann 1992). In plants, the metabolism of 

xenobiotics can be divided into three phases leading to the neutralization of the organic pollutant: transformation 

(Phase I), conjugation (Phase II), and compartmentalization (Phase III) (Sandermann 1992). The first two phases 

are similar to those used by animals. During phase I, the compound is transformed by oxidation (frequently), 

reduction, or hydrolysis, creating one or more functional groups on the molecule (Komives and Güllner 2005). 

The hydrophobic character of organic pollutants like PAHs suggests hydroxylation by specific enzymes to 

transform them into hydro-soluble compounds in cytoplasm. Hence, in phase II, one or more substituents are 

attached onto endogenous or existing active sites formed during Phase I. The main reactions include conjugation 

of glycosides, glutathione, amino acid, or malonic acid. During phase III, the soluble compounds are either 

stored in the vacuole or incorporated into lignin or other cell wall components of becoming non-extractable. Due 

to its similarity with the hepatic detoxification mechanisms in animals, the term "green liver" has been adopted 

for the operation of plant cells during xenobiotic metabolism (Sandermann 1994). This concept was supported 
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by Alkio et al. (2005) who demonstrated that in A. thaliana, phenanthrene was detected and sequestrated in 

particular cell “trichomes” and after higher amount of PAHs it was diffused to basal unclear cells, with increased 

the levels of particular mono- or dioxygenases that allow increased tolerance and transform PAHs to non-toxic 

intermediate compounds during phase I (Cerniglia 1997; Kanaly and Harayama 2000). 

Similarly, since monovalent ions, used by halophytes and salt-tolerant glycophytes for osmotic 

adjustment, are toxic at the required concentrations, Na+ and Cl− are predominantly vaculole-compartmentalized 

to maintain their concentrations in the cytoplasm within tolerable limits (Whyn Jones and Gorham 2002). 

Although the evidence is limited, Na+/H+ exchange and the activity of one or more of the PMF-generating 

enzymes appear to play a role in the accumulation of Na+ as they increase under saline conditions. However, ion 

transport across tonoplast is not sufficient for efficient compartmentalization; their retention within vacuoles is 

also required and was shown to be correlated with low tonoplast fluidity (Leach et al. 1990). Hence, one can 

speculate that since halophytes are more efficient in saline ion compartmentalization than glycophytes, they are 

theoretically more able to sequester any other toxic ion or compound. 

3.2. ROS accumulation and signaling are common features shared between stresses induced by salinity 

and organic pollutants 

Liu et al. (2009) suggested that phenanthrene oxidized by mono- or di-oxygenases, like the CYP, increased ROS 

level, which induces oxidative stress. However, it cannot be confirmed if oxidative stress is a consequence of 

phenanthrene detoxification activities or of its own or derivative phytotoxicity (Liu et al. 2009). ROS production 

is an unavoidable event for all organisms exposed to oxygen and Na+ and Cl– accumulation in the cytosol 

increased ROS production (Allakhverdiev et al. 2002). The result of hydroxylation of organic pollutant by 

cytochrome P450 generated also ROS production. A higher antioxidant capacity in halophytes than in 

glycophytes has been suggested to confer them a higher tolerance to stresses such as salinity (Flowers and 

Colmer 2008; Kosová et al. 2013) and phenanthrene toxicity (Shiri et al. 2014). Mittler (2006) reported that the 

exposure of a plant to a combination of several abiotic stresses will co-activate different stress-response 

pathways. The results of stress combination have a synergistic or antagonistic effect. This suggests that a cross-

talk between co-activated pathways is likely to be mediated at different levels. These could involve a variety of 

transcription factor networks, mitogen-activated protein kinases (MAPK) (Cardinale et al. 2002; Xiong and 

Yang 2003), a multitude of stress hormones (ethylene, jasmonic acid, and abscisic acid) (Anderson et al. 2004), 
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calcium and/or ROS signaling (Mittler et al. 2004; Bowler and Fluhr, 2000) as well as numerous receptors and 

signaling complexes (Casal 2002). 

The stress tolerance by increasing antioxidant activity is attractive to explain a high tolerance in halophytes 

to organic pollutants that generated an oxidative stress (Liu et al. 2009). Therefore, the higher levels of 

enzymatic antioxidants in halophytes, in particular that of SOD, suggest that the crucial role to rapid conversion 

of O2
.- to H2O2 may be essential for early defense signaling. Halophyte species induced rapidly H2O2 levels, then 

they have higher SOD level ‘in stock’ (Bose et al. 2011). Secondly, high levels of APX and CAT may interfere 

with H2O2 signaling and decrease its positive role. However, only OH. is highly reactive and causes significant 

damage to cell structures and is the major compound resulting from hydroxylation of PAHs, it is also known to 

activate directly a range of Na+, K+, and Ca2+-permeable cation channels (Demidchik et al. 2010; Zepeda-Jazo et 

al. 2011) disturbing K+/Na+ ratio within cytoplasm and inducing programmed cell death (PCD) (Shabala et al. 

2007; Shabala, 2009; Demidchik et al. 2010). 

3.3. The understanding of salinity and organic pollutant tolerance may help improve phytoremediation 

Phytoremediation is known as a green technology using plants to remediate contaminated-environments. It is 

cheap, non-instructive, and effective means of pollutant cleanup. In literature, little is known about halophyte use 

in phytoremediation of organic pollutants. The majority of the examples of phytoremediation by halophytes was 

reported in salt marshes, their natural habitats (Howes Keiffer and Ungar 2002; Al-Mailem et al. 2010; 

Masciandaro et al. 2014; Ribeiro et al. 2014). Salt marshes constitute important ecosystems severely exposed to 

risks due to the oil spills resulting from accidental discharges, leakage from boats, industrial wastewater 

discharges, and urban runoff (Ribeiro et al. 2014). Phytoremediation of organic pollutants is based on the 

observation that planted contaminated soil versus unplanted soil showed on acceleration of organic pollutant 

degradation in the presence of plants (Burken and Schonoor 1996; Masciandaro et al. 2014).  There are two 

different strategies of phytoremediation: direct and explanta phytoremediation (Salt et al. 1998). The first one 

consists of pollutant uptake by analogy to phytoextraction of heavy metals. However, the availability of organic 

pollutants depends on their physicochemical properties and their concentration in soil (Wenzel et al. 1999). The 

second one is based on exudates synthesized by roots like enzymes involved in the degradation of organic 

pollutants and other compounds stimulating fungi and bacteria growth that use pollutants as carbon source.  

In this context, phytoremediation of organic pollutants remains unexplored enough. The majority of 

investigations in this field focused on the interaction between microorganisms and roots to improve the 
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degradation of organic pollutants in soil. Some studies reported that PAHs can be taken up by plant leaves from 

air or by their roots from soil (Simonich and Hites 1994; Kipopoulou et al. 1999; Fismes et al. 2002). Indeed, 

because of their high lipophily, they are adsorbed either on leaf cuticle and passed through it by solubilization in 

waxes or on root suberine cortical zones and absorbed by root cells (Simonich and Hites 1994; Kipopoulou et al. 

1999; Fismes et al. 2002). The halophyte Halocnemum strobilaceum naturally inhabiting hypersaline soils was 

shown to remediate soil contaminated by aromatic hydrocarbon in the Arabian Gulf (Al-Mailem et al. 2010). A 

‘phytoremediation’ culture of Cakile maritima on sterilized sand (without microorganisms) contaminated with 

phenanthrene significantly decreased its phytotoxicity in a subsequent culture of Thellungiella salsuginea (Shiri 

et al. 2015). Meudec et al. (2005) investigated also the uptake of fuel oil PAHs by the halophytic plant 

Salicornia fragilis and the bioaccumulation of these compounds into shoot tissues in the upper aerial part of the 

plant. This finding proves that plants are able to take up and to accumulate PAHs in their biomass. This 

bioaccumulation depends on the time and dose of exposure to fuel oil in the sediment. In this example of 

halophytic plant, the uptake by roots of PAHs seems to be the main pathway. The particular morphology of 

Salicornia plants (no real leaf) and the absence of PAHs in control also suggest that PAHs detected are not 

originated from atmospheric contamination. The different PAH distribution suggests that low molecular weight 

PAHs, like phenanthrene and pyrene due to their higher solubility, are transported more easily in the phloem 

than high molecular weight PAHs like benzo(a)pyrene. Fismes et al. (2002) reported that the transport of low 

molecular weight PAHs from root to aerial parts could be passive and driven by transpiration flux. 

4. Concluding remarks 

Halophytes are of significant interest since they naturally occur in environments with excess toxic ions and 

research findings suggest that they also tolerate other abiotic stresses through cross-tolerance mechanisms that 

allow them tolerance to several stresses in addition to salt stress tolerance. In this review, we focused on cross-

tolerance mechanisms in halophytes at the physiological, genomic, transcriptomic, proteomic, and metabolomic 

levels with an emphasis on their cross-tolerance to salinity and organic pollutants. Their powerful subcellular 

sequestration of toxic ions and compounds and their high activities of antioxidant enzymes constitute key traits 

in their high tolerance to both salinity and organic pollutant stresses. However, data about halophyte use in the 

phytoremediation of organic pollutant-contaminated soils are scarce. Comparative studies between halophyte 

and glycophyte responses to these pollutants are encouraged. In addition, the effects of optimal salinity levels on 

halophyte phytoremediation potential of organic pollutants are particularly required. 
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