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Electroswitchable Red-NIR luminescence of ionic clustomesogen 
containing nematic liquid crystalline device 

M. Prévôt,a,b M. Amela-Cortes,a S. K. Manna,c S. Cordier,a T. Roisnel,a H. Folliot,b L. Dupontc and Y. 
Molarda,* 

We describe in this work several poly ionic hybrid molecular compounds combining, by electrostatic interactions, liquid 

crystalline ammonium cations and tailor made molybdenum hexanuclear dianionic cluster units. All hybrids show nematic liquid 

crystalline behaviour below 100°C, no matter the nature of the metallic cluster apical and inner ligands. They also keep the 

shiny deep red photoluminescence properties of their parent cluster in the nematic phase. This nematic phase re mains however 

quite viscous for all compounds and mixing them with commercially available nematic LC seems mandatory to integrate them 

in electroswitchable devices. This particularity, conducted us to insert the best candidate in terms of homogeneity and s tability 

of the clustomesogen/commercial LC mixture in a LC cell and study the behaviour toward application of an electric stimulus. 

We show that application of a 30V AC voltage allows observing a reversible modulation of the photoluminescence signal by 

about 52%. This work presents the first deep red photoluminescent transition metal clusters containing device directed towards 

optoelectronic applications. 

 

Introduction 

Luminescent liquid crystals are of peculiar interest in the fields of optoelectronic applications. Achieving polarized emission or 

scattering based electro-optical switching via these compounds offers promising perspectives to control the photoluminescence 

of materials in luminescent devices.1 However, developing smart materials with stable and switchable photoluminescence still 

remains challenging. Beside the “all-organic” strategy that suffers from photobleaching, other possibilities have to be and have 

been explored to integrate, in a first attempt, luminescence properties in liquid crystal (LC). Of peculiar interest is the use of 

luminescent metallic centres. In that way, according to K. Binnemans,2, 3 metal containing liquid crystals (metallomesogens)4-6 

made of luminescent metallic ions appear as the most promising, in particular when the emissive excited states are metal centred 

like when trivalent lanthanide ions such as Eu(III), Tb(III), Sm(III)  are used.2, 3 However, even if they are interesting owing to their 

sharp emission band, their absorption coefficient are very low and the use of strongly absorbing organic ligands that act as 

‘‘antenna’’ for light absorption7 is mandatory to obtain satisfying emission. Another approach would be to insert luminescent 

inorganic nanoparticles among which quantum dots such as CdSe/ZnS8, 9 or the more environmentally friendly ZnO nanoparticles10-

14 appear as promising candidates. Some studies have shown that mixture of those QD with commercially available LC was possible, 

however phase segregation phenomena occur even at low concentration when inorganic moieties are not appropriately coated.15 

We recently described a new approach to design luminescent liquid crystal by introducing a new family of hybrid compounds 

named “Clustomesogen”.16-21 The term Clustomesogen refers to liquid crystalline hybrid materials containing transition metal 

atom clusters. These materials combine the tremendous self-assembling abilities in the solid state or in solution of liquid crystals 

(LC) with the metallic clusters intrinsic properties related to the number of metallic electrons available for metal-metal bonds (VEC) 

such as luminescence, redox states and/or magnetism.22, 23 

The term “metal atom cluster” was introduced by F.A. Cotton in 1964 to design aggregates of metal atoms linked together by 

metal-metal bonds.24 Nano-sized octahedral metallic clusters found in [M6Xi
8Xa

6]n- anionic units (M=Mo, W, or Re; 

Xi=chalcogen/halogen; Xa=halogen; i=inner, a=apical, 2n4) possess specific photoluminescence properties in the red-NIR area 

with quantum yields up to 0.80 and long excited state lifetimes in the range of several tenth of microseconds.25-28 Their alkali or 

divalent cation salts are obtained by high temperature solid state synthesis as powders or single crystals and show a ceramic-like 

behaviour that strongly limits their potential in the design of functional devices. Thus, many investigations have been directed 

toward the solubilisation, in aqueous or organic solution, of cluster-based inorganic solids, to design new molecular building block 

toys suitable for the organometallic, coordination and hybrid materials chemistries playgrounds.29-37 A fair solubility in organic 

media can be achieved  after a cationic metathesis reaction between An[M6Xi
8Xa

6] inorganic salts (A = alkali or divalent cation) 24, 

30 and organic cations.30, 38 This solubilisation allows their direct integration in hybrid materials 32-34 and/or their functionalization 

with one or several organic ligands orthogonally arranged around the cluster core.30, 31, 39-45 We recently described several 

strategies to design metal cluster containing liquid crystalline material (clustomesogen): i) a covalent approach that consists in the 

covalent grafting of six promesogenic organic ligands in the apical positions of a Mo6 cluster core.16 This first supramolecular 

material self-organizes in layers (smectic phase) on a large temperature range (22-103°C). ii) An electrostatic technique based on 

the ionic self-assembly46-48 (ISA) strategy that takes advantage of the charge and redox properties of [M6Q8CN6]n- (M = Mo, Re; Q 

= Br, Se; n=2, 3, 4) clusters units. In these cases, we could show that the hybrid materials self-assembling abilities were conditioned 
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mostly by the number and repartition of liquid crystallinec promoters around the inorganic ionic core. Despite their mesomorphic 

character, clustomesogen exhibiting a nematic LC phase are very scarce and more particularly if they are obtained by the ISA 

technique. Hybrid materials that exhibit a nematic phase are very interesting from a technological point of view. As the nematic 

phase is the most fluid of the LC phases, it allows a faster response to an external stimulus such as the application of a magnetic 

or electric field. In the present work, we report a full family of halogenated clusters containing clustomesogens obtained by ISA 

and showing only a nematic behaviour. We demonstrate for the first time that this family of hybrid materials can be used in the 

design of electro-controlled photoluminescent devices by taking advantage of the stable red NIR photoluminescence of the 

isotropic metallic nanoclusters. 

 

Results and discussion 

Synthesis 

Mesomorphic hybrid compounds are made of [Mo6Xi
8Xa

6]2- cluster units associated with trialkylmethylammonium counter-cations 

bearing cyanobiphenyloxy terminated alkyl chains (Scheme 1). Tailor made [Mo6Xi
8Xa

6]2- cluster units were prepared to study the 

influence of halogen ligands on the interactions between the cluster units and the organic  cations on the one hand and the 

influence of the cluster size on the LC properties on the other hand. Cs2Mo6Xi
8Xa

6 with Xi = Xa = Cl, Br, I were prepared by solid state 

synthesis49-54 while Cs2Mo6Xi
8Xa

6 with Xi = Br and Xa = Cl, I were prepared from Cs2Mo6Bri
8Bra

6 by apical ligand exchange reactions 

in solution. The trisubstituted ammonium cation was chosen for several reasons: i) the cyanobiphenyl (CB) unit is a very well-

known mesomorphic promoter, ii) a similar cation that was previously used to design langmuir blodget films showed homeotropic 

LC properties,55 iii) by comparing the cross-section area of molybdenum clusters with the transverse cross section area of one CB 

unit (20-24 Å2), it appears  that between 5 and 7 CB units are mandatory to counterpart the clusters cross section area. This 

assumption is well illustrated by the geometric data gathered in Table 1 for [Mo6Xi
8Xa

6]2- with Xi = Cl, Br, I and Xa = Cl, Br, I.52, 53 

 It turns out that, depending on the inner and apical ligands, the cluster unit cross section area varies significantly from 116 Å2 to 

151 Å2 for Xi=Xa=Cl and Xi=Xa=I respectively; iv) hybrid materials made of [Mo6Cli8Cla6]2- (smallest cluster unit) whose charge is 

counterbalanced by a bisubstituted ammonium organic cation as the one used in one of our previous studies18 (Katb, scheme 1) 

does not show any liquid crystalline properties but gave instead single crystals. The latter were suitable for single crystal X-ray 

diffraction measurements. The structure analysis revealed that the compound crystallizes with two molecules of CH2Cl2 in a P-1 

triclinic crystal system (V = 2775 Å3, Z = 1, d= 1.596 g.cm-3). Within the crystal, the hybrid self-arranges in a succession of inorganic 

and organic layers with an interlayer spacing of 21.9 Å. In this case, CB units are fully interdigitated and tilted as compared to the 

normal of the inorganic planes by an angle of around 45° (Figure 1, details about the structure analysis are provided in ESI. Our 

attempts to crystallize other cluster units with this cation did not lead to the formation of crystals suitable for X-ray diffraction 

measurements, neither to mesomorphic material). 
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Scheme 1. General representation of octahedral Molybdenum cluster units and of the organic promesomorphic cations used in this study. 

Table 1. Geometric parameters of studied Mo6 clusters units (c.u.). 

 dMo-Mo 

/ Å 

d(Mo-Xa) 

/ Å 

Rc.u. 

 / Å 

Ac.u. 

/ Å2 

NbCB 

[Mo6Cli
8Cla

6]
2- 2.612 2.420 6.08 116 4.8-5.8 

[Mo6Bri
8Cla

6]
2- 2.636a) 2.451 a) 6.12 118 4.9-5.9 

[Mo6Bri
8Bra

6]
2- 2.640 a) 2.491 a) 6.32 125 5.2-6.3 

[Mo6Bri
8I

a
6]

2- 2.644 a) 2.815 a) 6.88 149 6.2-7.5 

[Mo6I
i
8I

a
6]

2- 2.675b) 2.850 b) 6.94 151 6.3-7.6 

a)values taken from[16d]; b)values taken from[16e]; Rc.u. is calculated as the average distance between opposite apical ligands including their effective ionic radius 

(R(X-) = 1.81 (Cl), 1.96 (Br), 2.20 (I)); [16e] Rc.u. = d(Mo-Mo)/√2+d(Mo-Xa)+R(X-); NbCB values are calculated taking 20 and 24 Å2 extreme values for the 

transverse cross section of one CB. 

 
Figure 1. Representation according to single crystal x-ray diffraction data of the layered structure in (Katb)2[Mo6Cl14], 2CH2Cl2. 
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Kat+ (Scheme 1) was obtained as its bromide salt form according to reported procedure.56 In all cases, a stoichiometric amount of 

Kat-Br was used to exchange the alkali counter cations associated with the cluster unit. Different solvents were used to realize the 

metathesis reaction with respect to cluster precursor solubility (see the method part for further details). Hybrid compounds were 

characterized by 1H NMR, energy dispersive spectroscopy (EDS) and elemental analysis. 1H NMR spectra of  hybrids are very similar 

to the parent organic salt KatBr, a slight shift to higher field of signals corresponding to protons in α position of N atoms of the 

ammonium can be observed. The most important shift being of 0.3 ppm.  

Self-assembling abilities  

Liquid crystalline properties of hybrid compounds were studied by polarized optical microscopy (POM), differential scanning 

calorimetry (DSC) and small angle x-ray scattering (SAXS). Results are summarized in Table 2. The organic salt Kat-Br with three CB 

terminated chains, presented a nematic phase at 113 °C which was converted into a smectic phase on cooling to 103 °C. This 

transition was clearly seen by POM although DSC thermogram showed only one transition at 113°C.20 On further cooling the 

compound passed to a glassy state. POM observations of hybrid compounds deposited between two glass slides were consistent 

in all cases with the formation of a enantiotropic nematic phase. Compounds Kat2Mo6Cl14, Kat2Mo6Bri8Cla6 and Kat2Mo6Br14, 

had to be heated up to 180°C during the first heating process to melt all crystals, while the isotropic state was reached at 130°C 

for the two compounds containing iodine ligands. On cooling from the isotropic state, some birefringent flashes could be detected 

at 90°C by applying a gentle mechanical stress on the glass slides, however, the LC texture started to be persistent at lower 

temperatures for most of the compounds except for Kat2[Mo6Br14] and Kat2[Mo6Bri8Ia6]. 

Table 2. Phase behaviour and transition temperatures of obtained compounds taken from the 2nd heating and 2nd cooling (only 1st cooling data are shown for 

KatBr)  

 LC T/ °C 

KatBra I – N 

N – SmA 

SmA - g 

113 

103b 

35 

Kat2[Mo6Cll4]  g - N  

N - I 

I – N 

N - g 

43 

97 

71 

44 

Kat2[Mo6Bri
8Cla

6]  g - N  

N - I 

I – N 

N - g 

47 

99 

71 

46 

Kat2[Mo6Br14]  g - N  

N - I 

I – N 

N - g 

52 

97b 

87b 

48 

Kat2[Mo6Bri
8I

a
6] 

 

g - N  

N - I 

I – N 

N - g 

44 

97b 

90b 

40 

Kat2[Mo6I14] g - N  

N - I 

I – N 

N - g 

31 

95b 

78b 

27 

afrom ref 20; btemperature determined by microscopy; I:isotropic, N: nematic, SmA: smectic A, g: glass.  

Thus, nematic schlieren textures with two and/or four-brush disclinations were obtained for the majority of hybrids as depicted in 

Figure 2 and were maintained upon cooling until room temperature showing that the mesophases were freezing into a glass state. 

All compounds showed qualitatively equivalent DSC thermograms that were in good accordance with POM observations. Although 

the curves corresponding to the first heating reflect the usual complicated thermal behaviour of supermolecular systems with 

several endo or exothermic signals,57-60 on further heating-cooling cycles the DSC traces appear typically silent with a large glass 

transition around 50°C corresponding to the freezing of the mesophase. For Kat2Mo6Cl14 and Kat2Mo6Bri
8Cla6 however, very weak 

signals at 71°C corresponding to the transition between the mesomorphic and isotropic states could be observed either on cooling 

or heating cycle. The weakness of such signals precludes any quantitative data to be extracted (ESI). 

Temperature dependent small angle X-ray scattering experiments are in good accordance with the assignment of the nematic 

phase. Indeed, after cooling samples from the isotropic state, intense and broad scattering at small angles indicate that there is 

only a short range periodicity that is typical for nematic phases. They were attributed to the intermolecular short-range 

interactions that are parallel (32.4 Å) and perpendicular (14.5 Å) to the molecular long axis, respectively. Note that these data are 

in good accordance with the length of the molecular hybrid (Kat2Mo6Xi
8Xa

6) and the cluster cross section, respectively. 
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Figure 2. Polarized optical micrographs recorded at 60°C under white light (top) and irradiation at 400 nm of a) Kat2Mo6Cl14, b) Kat2Mo6Bri

8Cla6, c) Kat2Mo6Br14, d) 

Kat2Mo6Bri
8Ia

6, e) Kat2Mo6I14.

The pure nematogenic character of hybrids is somehow quite surprising taking into account all the literature dealing with ionically 

self-assembled hybrid systems. Indeed, our molecular material can be seen as a supermolecular system with terminally attached 

mesogenic units. In this case, most of the literature reports describe smectic or columnar behaviour,61 and indeed, by using an 

electrostatic approach, L. Wu et al. had to laterally attached mesogen units onto their organic counter-cation to observe nematic 

phases with polyoxometallate.62 Terminally appended mesogenic units leaded in their case only to layered phases.63, 64 We 

previously observed the formation of a nematic phase by combining Kat+ with [Mo6Bri
8(CN)a

6]2-.20 However, this phase was 

observed only on a very short temperature range (7°C) and immediately followed on cooling by a layered SmA phase. Layered 

phases were also obtained by replacing the molybdenum cluster with rhenium ones of higher charge ([Re6Sei
8(CN)a

6]n- (with n= 3 

or 4)). In this last case, the supramolecular organization was mainly driven by the organic moieties. This point is also in good 

accordance with previously reported results.60, 61, 65 Therefore, observing only the formation of one enantiotropic nematic phase, 

not only for one compound but for an all family is of particular interest taking into account i) the ionic character of the 

polymolecular building blocks and ii) that the mesogenic units are terminally attached to the supermolecular assembly. 

The specific behaviour observed here may be attributed to the balance between the transverse cross section of the organic and 

the inorganic parts of the material. Indeed, as depicted in Figure 1 which illustrates the molecular arrangement of (Katb)2[Mo6Cl14] 

in its crystalline phase, the decrease of organic fraction compared to the situation in Kat2[Mo6Cll4] is compensated by a tilt of the 

organic arms as compared to the normal of the inorganic planes. It results in a lowering of the interlayer distance. In the 

nematogenic compounds, the intermolecular short range interactions distance parallel to the molecular axis is around 32 Å which 

is one nanometre longer than the interlayer spacing in (Katb)2[Mo6Cl14]. This could be interpreted as a different orientation of the 

ammonium cations organic arms that should be directed more perpendicularly to the “pseudo inorganic plane” (taking in 

consideration that CB units from one hybrid to another are fully interdigitated in order to compensate the transverse cross sections 

of its organic and inorganic parts within the material). This is in good accordance with the organic volume fraction that increases 

in this last case as the ammonium cation (Kat+) bears an additional CB terminated decyloxy chain. Therefore, we may consider that 

clusters are laying closer one from each other. Anion-anion coulombic repulsion should occur more strongly in this case, especially 

with halogen atoms in apical position compared to cyano apical ligands, and prevent clusters alignment within one pseudo-layer 

thus fostering the nematogenic character of hybrids.  

Photophysical properties 

As depicted in Figures 2 and Figure 3a, irradiation of hybrids with a UV light gives rise to the deep red emission of Mo6 clusters. It 

is well known that hexanuclear molybdenum clusters are very interesting emissive inorganic species because of the brightness of 

their emission and their large Stoke shifts that drastically minimizes reabsorption phenomena usually seen with organic entities. 

Therefore, in principle, a high weight fraction of inorganic content in the hybrid matrix should not affect significantly their ability 

to emit light. The phosphorescence absolute quantum yield (AQY) of each compound was measured on samples deposited on a 

quartz cuvette by means of an integrating sphere and compared to the values calculated for their respective precursor (Table 4). 

Their excitation wavelength dependence was measured for each hybrid between 360 nm and 500 nm and are reported in Figure 

3b. We noticed only little variation of AQY; highest values were measured for Kat2Mo6Bri
8Cla6 while the lowest one were obtained 

for Kat2Mo6Bri
8Ia

6. If only few differences were observed between the experimental values of fully brominated or chlorinated 

clusters and their respective cesium salt, the situation differs significantly for iodinated clusters. Indeed the cationic metathesis in 
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these last cases induces a drastic increase of the AQY. This phenomenon is however not yet really understood as many factors can 

have significant effect on the cluster ability to emit light. For instance, Sokolov et al. investigated the photophysical properties of 

the (nBu4N)2Mo6Xi
8(OCOC3F7)a

6 (Xi = Cl, Br, I) series and showed that the nature of the inner ligands has a strong effect on the 

quantum yield value.26 On the other hand, K. Kirakci et al. recently highlighted the tremendous influence of the apical ligand nature 

on the QY values in solution for the (nBu4N)2Mo6Ii
8Xa

6 (Xa = I, OCOCF3, OCOC3F7) series.66 They also reported some antennae effect 

by grafting UV absorbing and blue emitting organic moieties like pyrene or anthracene on the apical position of the cluster core.67 

 
Figure 3. a) Normalized emission spectra of Kat2Mo6Cl14 (dashed-dotted blue line), Kat2Mo6Bri

8Cla6 (dashed-dotted khaki green line), Kat2Mo6Br14 (dotted green line), 

Kat2Mo6Bri
8Ia

6 (dashed purple line) and Kat2Mo6I14 (black line) obtained at 60°C (exc = 360 nm) in the solid state; b) Absolute Quantum yield at 25°C according to 

excitation wavelength of Kat2Mo6Cl14 (square), Kat2Mo6Bri
8Cla6 (dot), Kat2Mo6Br14 (diamond), Kat2Mo6Bri

8Ia
6 (triangle) and Kat2Mo6I14 (star). 

 

Here, we show that the nature of the counter cation has also a great influence on the Mo6 cluster scaffold ability to emit light. 

Indeed, the CB unit absorbs strongly in the UV area (vide infra) and emits weakly in the blue region. Therefore, an antennae effect 

from the CB units to the metallic scaffold could be responsible for the enhancement of the cluster luminescence properties.  
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Table 4. Kinetic parameters obtained for Kat2Mo6X
i
8X

a
6 at 60°C under 355 nm irradiation and absolute quantum yields calculated for Kat2Mo6X

i
8X

a
6 and 

Cs2Mo6X
i
8X

a
6 (values in parenthesis) in the solid state. 

 A1 1 / 

µs 

A2 2 / 

µs 

R² em 

Kat2[Mo6Cl14] 0.36 5,8  0.64 48 0.9994 0.24 

(0.24) 

Kat2[Mo6Bri
8Cla

6] 0.43 5.3  0.57 49 0.9986 0.32 

(0.21) 

Kat2[Mo6Br14] 0.51 5.3 0.49 44 0.9897 0.18 

(0.14) 

Kat2[Mo6Bri
8I

a
6] 0.49 3.4 0.51 21 0.9963 0.11 

(0.03) 

Kat2[Mo6I14] 0.45 2.8 0.55 29 0.9963 0.15 

(0.01) 

 

Nonetheless, these measurements also show that using a commercial blue light emitting diode (which emission wavelength lies 

around 405 nm-430 nm) to excite our materials will not affect its ability to emit light which is of peculiar interest in terms of 

application prospects. One should however take also into account the molar absorption coefficients of such species as a delicate 

balance must be found between photon absorption and quantum yield value to visualize properly the red emission.  

Absorption measurements were thus realized on all samples in solution and are reported in ESI (Fig S13). Absorption spectra are 

mainly composed by the Kat+ absorption bands that contains the highly UV-absorbing CB units. A careful look in the 400-500 nm 

area shows few differences due to the nature of the clusters inner and apical ligands. These differences are in good accordance 

with the already reported clusters absorption spectra especially in the case of Kat2Mo6X14 with X = Cl, Br, I.32, 66 

Although photophysical properties of transition metal clusters are well documented, usual studies are performed at 25°C or -196°C 

to minimize or nearly suppress non radiative decay. Therefore, nothing is known about their behaviour at higher temperature than 

25°C. Indeed, if one envisions the use of such material in real devices, their working temperature (between 50°C and 85°C) must 

be taken into account and luminescence characterization should be realized, when possible, within this temperature range to get 

a realistic view of the material potential. Therefore, emission lifetime measurements were realized at 60°C i.e. within the nematic 

LC phase for all hybrids on samples deposited on a quartz slide. The spectroscopic (em) and photophysical parameters (emission 

lifetime (amplitude = An) = n (n = 2)) calculated at 60°C are summarized in Table 4. The data were fitted to a two exponential decay 

and the goodness of fit judged by the R2 values. All samples show a biexponential behaviour with lifetimes in the range of few 

microseconds. This could be explained by the fact that measurements being realized at higher temperature than the ones 

previously used for such studies, new desexcitation pathways are likely to proceed and may end up on new emissive states. 

This point is corroborated by the calculated lifetime values that are significantly shorter than the one usually calculated for 

[Mo6X14]2- derivatives.25, 28 Indeed, Maverick et al. reported a monoexponential behaviour at 27°C in CH3CN solution for 

(nBu4N)2Mo6Cl14 and (nBu4N)2Mo6Br14 with lifetime values of 180 µs and 130 µs respectively,25 while a lifetime value of 65 µs was 

obtained in CH3CN solution for (nBu4N)2Mo6I14.68 However, we should emphasize at this point that if [Mo6X14]2- (X = Cl, Br, I) cluster 

core photophysical properties have been well studied, nothing is known experimentally about the one of [Mo6Bri
8Xa

6]2- with Xa = 

Cl, I. It appears that, as predicted from quantum calculations by R. Ramirez-Tagle and R. Arratia-Pérez,69 these clusters behave in 

the same way as their monohalogenated analogues with emission maxima at the same wavelength, AQY and lifetimes value in the 

same range. 

Miscibility studies 

Despite the nematic nature of the observed LC phases which, in principle should show high fluidity, hybrids remain very viscous. 

Therefore, their introduction in pure form in electro-controlled LC devices does not lead to operational systems in which the 

molecular orientation is driven by application of an electric field. To increase their fluidity, they may be combined with 

commercially available highly fluidic liquid crystals with the prerequisite that resulting mixtures remain fully homogeneous. 

Therefore, we first investigated the miscibility of Kat2Mo6X14 (X = Cl, Br, I) with commercially available nematic LC E44 and the 

influence of the hybrid concentration on the nematic to isotropic transition temperature (Table 5). Homogeneous mixtures were 

obtained by dissolving both components in a small amount of CH2Cl2 followed by sonication for 30 min, solvent evaporation and 

drying. All mixtures thermal behaviour were investigated by POM and DSC and compared to the one of pure compounds. DSC 

thermogram of E44 contains only one very broad transition both on heating and cooling cycles, extending on cooling from 107.5 

°C to 88.8°C. The onset of this isotropic to LC transition shows only little variation as a function of increasing clustomesogens 

concentration, indicating that they are essentially miscible with the commercial matrix (see ESI Figures S10-S12 for 
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thermograms).70 Indeed, no cluster aggregation was detected by microscopy under UV irradiation as depicted in Figure 4 which 

presents polarized optical micrographs (integration time: 1s) of different 10 wt% mixtures taken at 80°C. The differences in red 

intensity are due to the different cluster core absorption coefficients at the irradiation wavelength and illustrate that iodide 

clusters present the best compromise between their absorption abilities and their AQY value in terms of colour rendering. 

Surprisingly, while all mixtures have a similar thermal behaviour, introducing 10 wt% of Kat2Mo6Br14 in E44 induces on the DSC 

thermogram a narrowing of the isotropic to nematic transition that still remains unexplained and that disappears at 20 wt% of 

clustomesogen content (the phenomenon is already perceptible for the 5 wt % mixture but a weak transition signal can still be 

detected around 105°C). We also observed for all mixtures on cooling the appearance of a weak first order transition around 70°C 

that may correspond to the isotropic to nematic transition of functionalized clusters.  

Table 5. Isotropic to nematic transition temperature in °C of mixtures of E44 and hybrids at various concentration determined by DSC. 

Concentration 

(wt%) 

Kat2Mo6Cl14 Kat2Mo6Br14 Kat2Mo6I14 

0 (pure E44) 107.5 107.5 107.5 

1 106.7 107.9 107.1 

5 106.3 105.5 107.5 

10 107.8 94.4 106.8 

20 99.9 107.0 102.1 

100 71 87 78 

 
Figure 4. Polarized optical micrographs under white light (top) and irradiation at 350 nm (bottom) of clustomesogen : E44 mixtures (10 wt%) recorded at 78°C where 

clustomesogen corresponds to Kat2Mo6Cl14 (left), Kat2Mo6Br14 (middle), Kat2Mo6I14 (right). 

Actually, despite the homogeneity of mixtures freshly placed between glass slides, POM observations of Kat2Mo6Cl14 and 

Kat2Mo6Br14 containing samples stored for several hours at room temperature revealed phase segregation phenomena. Only 

mixtures containing Kat2[Mo6I14] showed sufficient stability (over several days) to be incorporated in a LC cell (heating the mixture 

above its clearing temperature allows recovering a full homogeneity). Temperature dependent SAXS experiments were performed 

with the Kat2Mo6I14:E44 10 wt% mixture at several temperatures on cooling from the isotropic state (Figure S20) but did not lead 

to clear conclusions regarding an eventual cluster aggregation as diffractograms were all similar and in good agreement with the 

nematic nature of the mixture. 

Integration into electroswitchable device 

Although clusters present strong emission in the red-NIR, we observed that a 10 wt% amount of clustomesogen in the commercial 

LC was a minimum value to properly visualize a red-NIR luminescence signal at 80°C (which roughly corresponds to the temperature 

generated by the backlights within LCD devices). Thus, Kat2Mo6I14:E44 10 wt% mixture was inserted by capillarity in a 5 µm thick 

LC planarily-aligned cell. The integrated photoluminescence signal upon continuous irradiation at 400 nm was monitored at 80°C 

upon application (on state) or not (off state) of a 30V AC current on the LC cell. Figure 5 shows that application of a voltage on this 

cell induces a drastic change in the photoluminescence intensity of about 52% at 80°C.  
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Figure 5. a) Representation of a planarily-aligned LC cell. The molecular orientation within the cell corresponds to the OFF state; b) Evolution of the integrated 

photoluminescence signal of Kat2[Mo6I14]:E44 (1/9) mixture filled up in a planarily aligned LC cell upon irradiation at 400 nm and application (ON state) or not (OFF 

state) of a 30 V AC voltage at 78°C.  

The same experiment performed at 25°C gave only rise to a modulation of around 20% of the photoluminescence signal, ESI Figure 

S20. This difference could eventually be explained by the microsegregation of Kat2Mo6I14 in the host matrix. This phenomenon 

would increase locally the viscosity of the mixture preventing Kat2Mo6I14 microagregates to properly react to the electric field. This 

should induce in principle a decrease of the photoluminescence contrast. The exact origin of this reversible switch in the 

luminescence intensity may be imparted to many cooperating (birefringence of the LC host, birefringence of the hybrid, emission 

anisotropy…) and is not yet fully understood. However, several observations can be made at this stage: i) E44 was chosen for its 

high birefringence (Δn=0.26 at λ=589 nm) but can only be partially responsible for the intensity modulation that is about 52%; ii) 

as the switch is fully reversible, clustomesogens appear to be stable under voltage application despite their ionic character (no 

apparent charge separation); iii) this stability implies also that the applied electric field is not high enough to oxidize or reduce the 

metal clusters from a luminescent to a non-luminescent form; iv) luminescence properties are only due to anionic cluster moieties. 

As these entities are isotropic, the use of an electric field to align the molecules should not modify their ability to emit light. 

Therefore, according to our observations, it seems that the all hybrid supramolecular compounds has to be taken into account 

when one consider the emission properties of such system in the LC phase. In this context, one might also consider the ability of 

the CB units to act as antenna with the metallic cluster. Indeed, their orientation in the LC cell influences not only their ability to 

absorb incident photons71 but also their ability to emit. Therefore, their ability to sensitize the cluster emission should be enhanced 

in a particular direction inducing such high difference in the cluster luminescence band intensity. 

 

Conclusions 

Five hybrid compounds containing the same mesomorphic organic cation and different octahedral molybdenum metallic scaffold 

have been synthesized by using electrostatic interactions and show an unusual nematic liquid crystal behaviour. It appears that 

the volumic fraction of the organic phase is just sufficient to compensate the one of its inorganic counterpart. As a result, the 

phase segregation usually observed in this type of material is not observed promoting the nematogenic behaviour of the material. 

Luminescence studies performed in the LC phase show that the intrinsic properties of the parent nanocluster are preserved or 

enhanced after hybridization with the LC organic counter-cations. This phenomenon is also observed when the supermolecules 

are mixed with a commercially available LC mixture that is used to increase their fluidity. In that way, a stable and homogeneous 

mixture containing Kat2[Mo6I14] at 10 wt% in E44 could be inserted in a planarily aligned LC cell. Application of a voltage on the cell 

under continuous irradiation at 400 nm gives a perceptible modulation of the photoluminescence intensity of around 52% that is 

much higher than the birefringence of the LC host. A possible explanation of this phenomenon arises from the ability of CB units 

to act as anisotropic sensitizer of the isotropic metallic cluster luminescence. Finally, this work present the first device containing 
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nematic clustomesogens whose luminescence is strongly and reversibly modulated upon application of an electric field. Such 

demonstrator opens fascinating perspectives in the design of optoelectronic devices built up from stable red or red-NIR emitters. 

 

Experimental 

NMR spectra were recorded on a Brucker 400P. All signals were referenced to the methyl signals of TMS at = 0 ppm. UV–Vis 

absorption measurements were performed on a Varian Cary 5000 UV-Vis-NIR spectrophotometer. Luminescence spectra were 

recorded with an ocean optic QE6500 photodetector mounted on the polarized optical microscope described below. Elemental 

Analysis were performed at the CRMPO with a Microanalyser Flash EA1112 CHNS/O Thermo Electron. Energy dispersive 

spectroscopy (EDS) was performed at CMEBA on a JEOL 6400 scanning electron microscope equipped with a XEDS Oxford field 

spectrometer. Polarized optical Microscopy and temperature dependent relative irradiance measurements were realized with a 

Nikon 80i polarized microscope equipped with a Linkam LTS420 hot stage, a Nikon Intensilight irradiation source, a Nikon DS-FI2 

digital camera and an ocean optics QE6500 photodetector connected by optical fibre. In order to take into account the nonlinear 

sensitivity of the set up, it was calibrated with an Ocean Optics HL-2000-CAL Calibrated Tungsten Halogen Light Source. Two optical 

filters were used to select the excitation wavelength: either with a bandwidth: 330-380 nm or with a bandwidth 380-420 nm. DSC 

measurements were realized at 10 K.min-1 with a DSC 200 F3 Maia NETSCH apparatus. X-Ray spectra are given as the scattering 

intensity versus the wavevector transfer q = 4 sin()-1 (Å-1). X-ray scattering experiments were performed using a FR591 Bruker 

AXS rotating anode X-ray generator operated at 50 kV and 50 mA with monochromatic Cu Kα radiation (λ = 1.541 Å) and point 

collimation. X-ray patterns were collected with a Mar345 Image-Plate detector (Marresearch, Norderstedt, Germany). The 

monochromatic Cu Kα radiation (λ = 1.541 Å) was directed with a 350 μm × 350 μm focal spot at 320 mm by a double reflection 

on an elliptic cross multilayer Montel mirror (Incoatec, Geesthacht, Germany). The beam was defined under vacuum by four 

motorized carbon−tungsten slits (JJ-Xray, Roskilde, Denmark) positioned in front of the mirror (500 μm × 500 μm). Four additional 

guard slits (600 μm × 600 μm) were placed at the focal point with a 220 mm slit separation distance. The flux after the output mica 

windows was 3 × 108 photons/s. A 2 mm diameter square lead beam stop was placed under a vacuum at 270 mm; afterward, the 

sample and the detector were positioned at 420 mm. The X-ray patterns were therefore recorded for a range of reciprocal spacing 

q = 4π sin θ/λ from 0.03 to 1.56 Å−1, where θ is the diffraction angle. The repetition distances d = 2π/q should be between 200 and 

4.0 Å. The samples were placed into 1.5 mm glass capillaries (Glas W.Müller, Germany) and introduced into a homemade capillary 

holder, which can maintain up to 20 capillaries at a controlled temperature. We use the programs Fit 2D and IgorPro to treat the 

data.72 The liquid crystal cells are made up by two glass plates covered by a 100 Ω / square Indium Tin Oxide transparent electrode. 

A thin layer of polyimide wass deposited by spin-coating on each substrate and cured at 180°C. Both plates were rubbed in order 

to give a homogeneous alignment direction to the liquid crystal. A gasket of glue was deposited on the edge of one plate by a liquid 

dispenser and then, they were assembled and pressed. Spacers of 5µm were dispersed in the glue to force a gap of 5 µm between 

the two plates. After UV curing of the gasket, the cells were filled by capillarity with liquid crystal mixture. Lifetime measurements 

were performed using APD110A Thorlabs Si avalanche photodiode and MPL-F-355 CNI 355 Q-switched laser with ~7ns - 1µJ pulses 

and 6kHz repetition rate.Traces were recorded using Lecroy 12 bit HDO4022 200MHz oscilloscope with 1000 averaging. 

Electroswitchable device integrated luminescence was measured using PDA36A-EC Thorlabs Si avalanche photodiode and 405nm 

50mW Oxxius laser diode circularly polarized impinging at ~15° incidence. For latter both measurements, luminescence was 

collected at normal incidence with numerical aperture of ~0.16 using parabolic mirrors, spectrally filtered with a high pass 500nm 

filter and focused on the detector using another parabolic mirror. The device temperature was controlled using a MR-hei-Tec-

Heidolph hotplate. Temperature was controlled with a 2°C uncertainty. The luminescence quantum yields in the solid state were 

measured with a C9920-03 Hamamatsu system equipped with a 150 W xenon lamp, a monochromator, a Spectralon integrating 

sphere and a PMA-12 photomultiplier. 

 

Synthesis 

 Cs2Mo6Cl14,51 Cs2Mo6Br14,54 Cs2Mo6I14,54 bis (w-[4-(4’-cyanobiphenylyl)oxy]decyl]dimethylammonium bromide (KATb-Br)56 and tris 

(w-[4-(4’-cyanobiphenylyl)oxy]decyl] methylammonium bromide (KAT-Br)55 were obtained by reported procedure with conform 

analytical data. Starting materials were purchased from Acros, Alfa Aesar and Aldrich, and used without further purification unless 

otherwise stated. 

KATb2[Mo6Cl14]: To a pale yellow water solution of Cs2Mo6Cl14 (0.089g, 0.067 mmol of cluster in 5 ml H2O) was added a solution of 

bisKAT-Br in hot ethanol (0.103 g, 0.13 mmol in 5 ml). A light yellow precipitate formed immediately. The mixture was refluxed for 

one hour under stirring to complete the reaction. The desired compound was obtained by filtration, washed with water and hot 

ethanol 3 times. Single crystals were obtained by slow evaporation of compound dissolved in a minimum of dichloromethane. 1H 

NMR (300 MHz, CD2Cl2): 1.2.-1.9 (32 H, m), 3.28-3.31 (10 H wide band), 3.99-4.04 (4 H, t), 6.99-7.02 (4 H, d), 7.45-7.55 (4 H, d), 

7.66-7.73 (8 H, m). EDS: Mo : Cl 6 : 14.08, no bromine, no cesium. (CCDC 1045821). 

Kat2Mo6Cl14: A solution of Cs2Mo6Cl14 (0.089 g, 0.067 mmol) in acetone was added dropwise to a solution of Kat-Br (0.150 g, 0.13 

mmol) in dichloromethane. A white precipitate formed instantaneously. The mixture was stirred at reflux for 1 h and the white 
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precipitate filtered through Celite®. The solvent was evaporated to afford yellow solid. 1H-NMR (300 MHz, CDCl3):  1.34-1.39 (72H, 

m), 1.71-1.83 (24H, m), 2.94 (6H, s), 3.10 (12H, m), 4.00 (12H, t, J = 6.6 Hz), 6.99 (12HAr, d, J = 8.7 Hz), 7.53 (12HAr, d, J = 8.7 Hz), 

7.66 (24HAr, q, J= 8.4 Hz). EA: Found: C, 53.07; H, 5.69; N, 3.36 % C140H174N8O6Cl14Mo6.H2O requires C, 53.28; H, 5.62; N, 3.55. EDS: 

Mo: 29.48; Cl: 68.06; no bromine, no cesium. 

Kat2Mo6Bri
8Cla

6: Cs2Mo6Bri
8Bra

6 (440 mg, 0.224 mmol) and AgBF4 (403 mg, 1.45 mmol) were introduced into a schlenck tube 

together with 20 mL of an acetone/ethanol (1/1) solution. This solution was stirred 15 hours in the dark. After filtration of the AgBr 

precipitate, an ethanol solution of CsCl (2.24 mmol, 376mg in 5 ml) was added to the filtrate. The mixture was stirred for 24 h in 

the dark at 25°C. After evaporation of solvent to dryness, the solid residue was extracted with 30 ml of dry acetone. After filtration, 

this acetone solution was further dried to give Cs2Mo6Bri
8Cla6 as a polycrystalline solid. Then, the same method as previously 

described was used with Cs2Mo6Bri
8Cla6 (0.034 g, 0.02 mmol) and Kat-Br (0.05 g, 0.045 mmol). The product was obtained as an 

orange solid. 1H-NMR (300 MHz, CDCl3):  1.34-1.39 (72H, m), 1.71-1.83 (24H, m), 3.08 (6H, s), 3.23 (12H, m), 4.00 (12H, t, J = 6.6 

Hz), 6.99 (12HAr, d, J = 8.7 Hz), 7.53 (12HAr, d, J = 8.7 Hz), 7.66 (24HAr, q, J= 8.4 Hz). EA: Found: C, 48.65; H, 5.18; N, 3.59 % 

C140H174N8O6Cl6Br8Mo6 requires C, 48.15; H, 5.02; N, 3.21). EDS: Mo: 30.51; Cl: 32.68; Br: 36.59 %; no cesium. 

Kat2Mo6Br14: The same method as previously described was used with Cs2Mo6Br14 (0.12 g, 0.067 mmol) and Kat-Br (0.150 g, 0.13 

mmol). The product was obtained as an orange oil.  
1H-NMR (300 MHz, CDCl3):  1.34-1.39 (72H, m), 1.71-1.83 (24H, m), 3.10 (6H, s), 3.23 (12H, m), 4.00 (12H, t, J = 6.6 Hz), 6.99 (12HAr, 

d, J = 8.7 Hz), 7.53 (12HAr, d, J = 8.7 Hz), 7.66 (24HAr, q, J= 8.4 Hz). EA: Found: C, 45.19; H, 4.77; N, 3.00 % C140H174N8O6Br14Mo6 

requires C, 44.73; H, 4.67; N, 2.98. EDS: Mo: 37.72; Br: 62.2 %; no cesium. 

Kat2Mo6I14: The same method as previously described was used with Cs2Mo6I14 (0.052 g, 0.02 mmol) and Kat-Br (0.05 g, 0.045 

mmol). The product was obtained as a red solid.  
1H-NMR (300 MHz, CDCl3):  1.34-1.39 (72H, m), 1.71-1.83 (24H, m), 3.16 (6H, s), 3.30 (12H, m), 4.00 (12H, t, J = 6.6 Hz), 6.99 (12HAr, 

d, J = 8.7 Hz), 7.53 (12HAr, d, J = 8.7 Hz), 7.66 (24HAr, q, J= 8.4 Hz). EA: Found: C, 38.05; H, 4.22; N, 2.71 % C140H174N8O6I14Mo6 

requires C, 38.07; H, 3.97; N, 2.54). EDS: Mo: 29.78; I: 67.36 %; no bromine, no cesium. 

Kat2Mo6Bri
8Ia

6: Cs2Mo6Bri
8Bra

6 (440 mg, 0.224 mmol) and AgBF4 (403 mg, 1.45 mmol) were introduced into a schlenck tube 

together with 20 mL of an acetone/ethanol (1/1) solution. This solution was stirred 15 hours in the dark. After filtration of the AgBr 

precipitate, an ethanol solution of CsI (2.24 mmol, 438 mg in 5 ml) was added to the filtrate. The mixture was stirred for 24 h in 

the dark at 25°C. After evaporation of solvent to dryness, the solid residue was extracted with 30 ml of dry acetone. After filtration, 

this acetone solution was further dried to give Cs2Mo6Bri
8Ia

6 as a polycrystalline solid. Kat-Br (0.05 g, 0.045 mmol) was dissolved in 

hot ethanol and added to a solution of Cs2Mo6Bri
8Ia

6 (0.045 g, 0.02 mmol) in water and the mixture was heated up for 1 h at 80 °C. 

The hybrid precipitated form the reaction solution. The product was washed 3 times with water and 3 times with hot ethanol. The 

product was obtained as an orange oil. 
1H-NMR (300 MHz, CDCl3): 1.34-1.39 (72H, m), 1.71-1.83 (24H, m), 3.10 (6H, s), 3.22 (12H, m), 4.00 (12H, t, J = 6.6 Hz), 6.99 (12HAr, 

d, J = 8.7 Hz), 7.53 (12HAr, d, J = 8.7 Hz), 7.66 (24HAr, q, J= 8.4 Hz). EA: Found: C, 42.02; H, 4.11; N, 2.87 % C140H174N8O6Br8I6Mo6 

requires C, 41.60; H, 4.34; N, 2.77. EDS: Mo: 34.17; I: 20.99; Br: 44.84 %; no cesium. 
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