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Abstract 

 

This paper explores the synthesis, spectroscopic and structural characterization, linear 

and nonlinear optical properties, as well as the electrochemical behavior of two series of 

robust neutral Ni(II)- and Cu(II)-centered organometallic macroacyclic salen-type Schiff base 

complexes, namely, the 5-nitrosubstituted derivatives M[Fc-C(O)CH=C(CH3)N-o-C6H4-

N=CH-(2-O,5-NO2-C6H3)] (M = Ni (2), Cu (3)), and their 3,5-difluorosubstituted analogues 

M[Fc-C(O)CH=C(CH3)N-o-C6H4-N=CH-(2-O-3,5-F2-C6H2)] (M = Ni (4), Cu (5); Fc= 

ferrocenyl = (5-C5H5)Fe(5-C5H4))). Compounds 2-5 were synthesized in good yields (75-

87%) in refluxing ethanol for 4 h, via template reaction by condensation of the tridentate half-

unit metalloligand Fc-C(O)CH=C(CH3)-N(H)-o-C6H4NH2 (1) with 5-nitrosalicylaldehyde and 

3,5-difluorosalicylaldehyde, respectively, in the presence of hydrated Nickel(II) and 

Copper(II) acetate salts, respectively. Their composition and identity were inferred from 

elemental analysis, FT-IR, UV-vis, and multinuclear NMR spectroscopy. Single crystal X-ray 

diffraction analysis of the two 3,5-difluorosubstituted compounds 4 and 5 indicates a slightly 

bowed structure of the unsymmetrical Schiff base scaffold. Both Ni2+ and Cu2+ ions are 

tetracoordinated in a distorted square planar environment, with two nitrogen atoms and two 

oxygen atoms as donors. The electrochemical behavior of the four binuclear complexes was 

investigated by cyclic voltammetry, showing greater anodic shifts of the reversible redox 

process ascribed to the FeII/FeIII couple of the ferrocenyl donor fragment of the 5-

nitrosubstituted derivatives compared to their 3,5-difluorosubstituted counterparts. Harmonic 

Light Scattering measurements showed that compounds 2-5 exhibited rather high second-

order nonlinear responses, found between 200 and 267 x 10-30 esu, establishing a good 

correlation between redox potentials and the hyperpolarizability β1.91 values.  
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1. Introduction 

Rational design and synthesis of cyclic or acyclic Schiff bases metal complexes are of 

continuing interest [1, 2], not only as synthetic intermediates but also as polytopic ligands in 

coordination chemistry [3]. Interests for these complexes is mainly due to their use in 

numerous fields of applications varying from catalysis [4] to pharmaceuticals [5], including 

new functional molecular-based materials [6, 7] with second-order nonlinear optical (NLO) 

properties [8]. In particular, tetradentate N2O2 salen-type Schiff base complexes [9] that are 

well-established for all first-row transition metals have appeared to be a promising class of 

efficient chromophores exhibiting large NLO responses [8a, 10]. Among them, various 

unsymmetrical acyclic Schiff base complexes possessing strong electron donor (D) and 

electron acceptor (A) groups bound to a planar metal-containing -conjugated Schiff base 

M(ONNO) framework have been extensively investigated [11-16]. Such D--A systems, 

obtained by the 1:1:1 stepwise condensation of -diketone, salicylaldehyde and a primary 

alkyl- or aryldiamine in the presence of a metal salt, have gained considerable attention for 

nonlinear optics due to their facile syntheses, thermal stability, and versatility in ligand design 

providing for the straightforward modulation of the sterics, electronics, and chirality at the 

central metal ion. In addition, coordination compounds that can be either neutral or ionic, 

exhibit low energy electronic charge transfer excitations tunable by virtue of the nature, 

oxidation state, and coordination sphere of the metal center and thus should be promising 

candidates as second-order NLO materials [8, 17]. 

Over the last decade, we designed and constructed novel neutral binuclear and ionic 

trinuclear three-dimensional Schiff base architectures featuring a planar metallo-salen 

framework that connects through its -electron system a ferrocene donor unit and the cationic 

12-electron [(5-C5Me5)Ru+] acceptor moiety, 6-coordinated to the salicylidene ring [18, 

19]. Those organometallic donor-acceptor substituted unsymmetrical Ni(II)- and Cu(II)-

centered Schiff base complexes exhibited large second-order NLO responses that increased 

with the nuclearity of the compounds [15, 16]. As an extension of this work and in order to 

further enhance the second-order NLO responses, we were interested in reacting the 

metalloligand Fc-C(=O)CH=C(CH3)N(H)-o-C6H4-NH2 (1, Fc = (5-C5H5)Fe(5-C5H4)) [20] 



with strong electron-withdrawing salicylaldehydes bearing fluorine and nitro groups to 

generate, via template synthesis, new D--A organometallic-inorganic hybrids and to study 

their electronic and NLO properties. Herein, we wish to report on the thorough investigation, 

including synthesis, analytical and spectroscopic characterization, and electrochemical 

behavior of a family of four neutral metal(II)-centered organometallic macroacyclic salen-

type Schiff base complexes, namely, the binuclear 5-nitro derivatives M[Fc-

C(O)CH=C(CH3)N-o-C6H4-N=CH-(2-O,5-NO2-C6H3)] (2: M = Ni, 3: M = Cu), and their 3,5-

difluoro analogues M[Fc-C(O)CH=C(CH3)N-o-C6H4-N=CH-(2-O-3,5-F2-C6H2)] (4: M = Ni, 

5: M = Cu) (see formulas on Scheme 1). The X-ray crystal structures of these two latter 

difluorinated compounds 4 and 5 are also described. In addition, we disclose the first 

hyperpolarizability (β) values of the neutral binuclear unsymmetrical Schiff base complexes 

2-5 obtained in this work from Harmonic Light Scattering (HLS) experiments. 

 

2. Experimental 

2.1. Materials and general procedures 

Reactions were performed under dry nitrogen atmosphere using standard Schlenk 

techniques. Solvents were dried and distilled according to standard procedures [21]. 5-

nitrosalicylaldehyde, 3,5-difluorosalicylaldehyde, nickel(II) acetate tetrahydrate, and 

copper(II) acetate monohydrate were purchased from Aldrich and used without further 

purification. The organometallic tridentate “half unit” Fc-C(O)CH=C(CH3)N(H)-o-C6H4NH2 

(1),  was synthesized according to published procedure [20]. 

 

2.2. Characterization 

Solid-state FT-IR spectra were recorded on a Perkin-Elmer Model 1600 FT-IR 

spectrophotometer with KBr disks in the 4000 to 450 cm-1 range. Electronic spectra were 

obtained with a SHIMADZU UV-1800 spectrophotometer. NMR spectra were recorded with 

a Bruker Avance III 400 spectrometer. All NMR spectra are reported in parts per million 

(ppm, ) relative to tetramethylsilane (Me4Si) for 1H and 13C NMR spectra,with the residual 

solvent proton and carbon resonances used as internal standards. Chemical shifts of 19F NMR 

spectra are referenced against external CFCl3. Coupling constants (J) are reported in Hertz 

(Hz), and integrations are reported as number of protons. The following abbreviations are 

used to describe peak patterns: s = singlet, d = doublet, t = triplet, m = multiplet, br = broad. 

1H and 13C NMR chemical shift assignments are supported by data obtained from 1H-1H 

COSY, 1H-13C HMQC, and 1H-13C HMBC NMR experiments, and are given according to the 

numbering scheme of Fig. 1. Elemental analyses were conducted on a Thermo-FINNIGAN 



Flash EA 1112 CHNS/O analyzer by the Microanalytical Service of the Centre Regional de 

Mesures Physiques de l’Ouest (CRMPO) at the University of Rennes 1, France. Cyclic 

voltammetry (CV) measurements were performed using a Radiometer Analytical model PGZ 

100 all-in one potentiostat, using a standard three-electrode setup with a vitreous carbon 

working electrode, platinum wire auxiliary electrode, and Ag/AgCl as the reference electrode. 

Dichloromethane solutions were 1.0 mM in the compound under study and 0.1 M in the 

supporting electrolyte n-Bu4N
+PF6

- with voltage scan rate = 100 mV s-1. The 

ferrocene/ferricenium redox couple (Cp2Fe/Cp2Fe+) was used as internal reference for the 

potential measurements. Melting points were determined in evacuated capillaries on a Kofler 

Bristoline melting point apparatus and were not corrected. 

 

 
 

Fig. 1 Labeling scheme used for NMR assignments 

 

2.3. Synthesis of Ni[CpFe(5-C5H4)-C(O)CH=C(CH3)N-o-C6H4N=CH-(2-O,5-NO2-

C6H3)] (2) 

To a Schlenk tube containing 200 mg (0.55 mmol) of a solution of CpFe(η5-

C5H4)C(O)CH=C(CH3)N(H)-o-C6H4NH2 (1) in 10 mL of ethanol,  a solution of 93 mg (0.55 

mmol) of 5-nitrosalicylaldehyde dissolved in 5 mL of ethanol, was added, under stirring. The 

resulting solution was refluxed for 15 min, cooled to room temperature and a solution of 

207.2 mg (0.833 mmol) of nickel(II) acetate tetrahydrate dissolved in 5 mL of ethanol was 

added. The resulting mixture was refluxed for 4 h affording a dark red solid. The suspension 

was cooled at -30 °C for 4 h. The dark red material was filtered off and washed with 3 x 4 mL 

portion of cold ethanol and 3 x 4 mL portion of diethyl ether. The solid was dried under 

vacuum for 2 h to give 245mg (78% yield) of 2 as a red powder. M. p. 296-298 °C (dec). 

Anal. calcd for C27H21FeN3NiO4·0.5H2O (574.03 g mol-1): C, 56.44; H, 3.86; N, 7.32. Found: 

C, 56.51; H, 3.68; N, 7.04. FT-IR (KBr pellet, cm-1): 3090 (vw), 3070 (vw) (C–H aryl), 2968 

(vw), 2925 (vw), 2855 (vw) (C–H alkyl), 1606 (s) (C…O), (C…N) and/or (C…C), 1544 



(s), 1522 (s) (C–O), 1377 (vs) asym(NO2), 1312 (vs) sym(NO2). 
1H NMR (400 MHz, 

DMSO-d6, 343 K): 2.47 (s, 3 H, CH3), 4.23 (s, 5 H, C5H5), 4.48 (t, 3JHH = 1.9 Hz, 2 H, H 

C5H4), 4.78 (t, 3JHH = 1.9 Hz, 2 H, HC5H4), 5.81 (s, 1 H, CH=C), 6.92 (d, 3JHH = 9.4 Hz, 1 H, 

H-3), 7.11 (td, 3JHH = 8.2 Hz, 4JHH = 1.0 Hz, 1 H, H-11), 7.22 (td, 3JHH = 8.3 Hz, 4JHH = 1.0 

Hz, 1 H, H-10), 7.50 (dd, 3JHH = 8.3 Hz, 4JHH = 1.0 Hz, 1 H, H-9), 8.01 (dd, 3JHH = 8.2 Hz, 

4JHH = 1.0 Hz, 1 H, H-12), 8.10 (dd, 3JHH = 9.4 Hz, 4JHH = 3.0 Hz, 1 H, H-4), 8.72 (d, 4JHH = 

3.0 Hz, 1 H, H-6), 9.98 (br s, 1 H, N=CH). 13C{1H} NMR (100 MHz, DMSO-d6, 343 K): 

26.22 (CH3), 68.52 (C C5H4), 69.83 (C5H5), 70.76 (C C5H4), 81.61 (Cipso C5H4), 103.01 

(CH=C), 116.40 (C-12), 120.04 (C-1), 122.51 (C-9), 123.38 (C-11), 123.43 (C-3), 127.77 (C-

10), 128.08 (C-4), 131.63 (C-6), 135.95 (C-5), 140.57 (C-7), 144.18 (C-8), 155.95 (N=CH), 

163.48 (CH=C), 169.10 (C-2), 179.56 (C=O). 

 

2.4. Synthesis of Cu[CpFe(5-C5H4)-C(O)CH=C(CH3)N-o-C6H4N=CH-(2-O,5-NO2-

C6H3)] (3) 

The synthesis of this complex was carried out following a procedure similar to that 

described above for complex 2, using in this case 200 mg (0.55 mmol) of the hemiligand 1 

dissolved in 10 mL of ethanol, 93 mg (0.55 mmol) of 5-nitrosalicylaldehyde dissolved in 5 

mL of ethanol and 166 mg (0.466 mmol) of copper(II) acetate monohydrate in 5 mL of 

ethanol. Yield: 238 mg (75%) of a dark orange powder. M. p. 266-269 °C (dec). Anal. calcd 

for C27H21CuFeN3O4 (570.86 g mol-1): C, 56.81; H, 3.71; N, 7.36. Found: C, 56.45; H, 3.67; 

N, 7.08. FT-IR (KBr pellet, cm-1): 3089 (vw) (C–H aryl), 2970 (vw), 2951 (vw), 2822 (vw) 

(C–H alkyl), 1609 (s)  (C…O), (C…N) and/or (C…C), 1542 (s), 1515 (s)  (C–O), 1375 

(vs) asym(NO2), 1318 (vs) sym(NO2). 

 

2.5. Synthesis of Ni[CpFe(5-C5H4)-C(O)CH=C(CH3)N-o-C6H4N=CH-(2-O,3,5-F2-C6H2)] 

(4) 

The synthesis of this complex was carried out following a procedure similar to that 

described above for complex 2, using in this case 200 mg (0.55 mmol) of the hemiligand 1 

dissolved in 10 mL of ethanol, 88 mg (0.55 mmol) of 3,5-difluorosalicylaldehyde  dissolved 

in 5 mL of ethanol and 207.2 mg (0.833 mmol) of nickel(II) acetate tetrahydrate in 5 mL of 

ethanol. Yield: 267 mg (87%) of a violet powder. Recrystallization by slow diffusion of 

pentane into a saturated dichloromethane of 4 deposited single crystals suitable for X-ray 

structure determination. M. p. 256–259 °C (dec). Anal calcd for C27H20F2FeN2NiO2·0.5H2O     



(565.03 g mol-1): C, 57.34 ; H, 3.75; N, 4.96. Found: C, 57.14; H, 3.78; N, 4.76. FT-IR (KBr 

pellet, cm-1): 3078 (vw), 3001 (vw) (C–H aryl),  2972 (vw), 2932 (vw ), 2823 (vw) (C–H 

alkyl), 1605 (s),1547 (vs), 1521 (vs) (C…O), (C…N) and/or (C…C), 1400 (s), 1377 (vs), 

1365 (vs) (C–F), 1288 (s), 1266 (s) (C–O). 1H NMR (400 MHz, DMSO-d6, 298 K): 2.47 (s, 

3H, CH3), 4.22 (s, 5 H, C5H5), 4.46 (t, 3JHH = 2.0 Hz, 2 H, H C5H4), 4.77 (t, 3JHH = 2.0 Hz, 2 

H, H C5H4), 5.86 (s, 1 H, CH=C), 7.09 (br ddd, 3JHH = 7.4 and 8.3 Hz, 4JHH = 1.0 Hz, 1 H, H-

11), 7.18 (br ddd, 3JHH = 7.4 and 8.3 Hz, 4JHH = 1.0 Hz, 1 H, H-10), 7.26 (ddd, 3JHF = 9.0 Hz, 

4JHH = 3.2 Hz, 5JHF = 1.7 Hz, 1 H, H-6), 7.347 (ddd, 3JHF = 9.0 and 11.3 Hz, 4JHH = 3.2 Hz, 1 

H, H-4), 7.51 (dd, 3JHH = 8.3 Hz, 4JHH = 1.0 Hz, 1 H, H-9), 7.98 (dd, 3JHH = 8.3 Hz, 4JHH = 1.0 

Hz, 1 H, H-12), 9.05 (br s, 1 H, N=CH).13C{1H} NMR (100 MHz, DMSO-d6, 298 K): 24.80 

(CH3), 68.33 (C C5H4), 69.81 (C5H5), 70.69 (C C5H4), 79.72 (Cipso C5H4), 102.58 (CH=C), 

108.66 (dd, 2JCF = 22 .1 and 29.2 Hz, C-4), 111.40 (dd, 2JCF = 22.1 Hz, 4JCF = 4.0 Hz, C-6), 

115.88 (C-12), 120.22 (dd , 3JCF = 5.0 and 10.0 Hz, C-1), 121.98 (C-9), 123.19 (C-11), 127.21 

(C-10), 141.32 (C-7), 144.43 (C-8), 149.68 (dd, 1JCF = 231.0 Hz, 3JCF = 11.0 Hz, C-3), 150.48 

(d, 2JCF = 13.0 Hz, C-2), 153.07 (dd, 1JCF = 247.0 Hz, 3JCF = 12.0 Hz, C-5), 154.41 (N=CH), 

163.25 (CH=C), 179.26 (C=O). 19F NMR (376.5 MHz, DMSO-d6, 298 K): -128.26 (t, 3JHF = 

9.0 Hz, F-5), -129.81 (d, 3JHF = 11.3 Hz, F-3). 

 

2.6. Synthesis of Cu[CpFe(5-C5H4)-C(O)CH=C(CH3)N-o-C6H4N=CH-(2-O,3,5-F2-

C6H2)] (5) 

The synthesis of this complex was carried out following a procedure similar to that 

described above for complex 4, using in this case a solution of 88 mg (0,55 mmol) of 3,5-

difluorosalicylaldehyde in 5 mL of ethanol and 166 mg (0.466 mmol) of copper(II) acetate 

monohydrate in 5 mL of ethanol. Yield: 253 mg (81.2%) of a brown powder. Single crystals 

of 5 suitable for X-ray structure determination were grown by slow diffusion of pentane into a 

saturated dichloromethane solution of the compound. m. p.: 254–257 °C (dec). Anal. calcd for 

C27H21CuF2FeN2O2 (561.85 g mol-1): C, 57.72; H, 3.59; N, 4.99. Found: C, 57.27; H, 3.58; 

N, 4.72. FT-IR (KBr pellet, cm-1):  3080 (vw), 3008 (vw) (C–H aryl),  2969 (vw), 2923 

(vw), 2853 (vw) (C–H alkyl), 1608 (s),1545 (vs), 1510 (vs)  (C…O) (C…N) and/or 

(C…C), 1397 (s), 1374 (vs)(C–F), 1284 (s), 1256 (s) (C–O). 

 

2.7. X-ray Crystal Structure Determinations  



Well-shaped black single crystals of complexes 4 and 5 of suitable dimensions were 

coated in Paratone-N oil, mounted on a Kaptan loop and transferred to the cold gas stream of 

the cooling device. Intensity data were collected at T = 150(2) K on a APEXII, Bruker-AXS 

diffractometer, Mo-Kα radiation (λ = 0.71073 Å), equipped with a bidimensional CCD 

detector and were corrected for absorption effects using multiscanned reflections. The two 

structures were solved by direct methods using the SIR97 program [22], and then refined with 

full-matrix least-square methods based on F2 (SHELXL-97) [23], with the aid of WINGX 

program [24]. All non-hydrogen atoms were refined with anisotropic atomic displacement 

parameters. All the hydrogen atoms were placed in their geometrically idealized positions and 

constrained to ride on their parent atoms. A summary of the details about crystal data, 

collection parameters and refinement are documented in Table 1, and additional 

crystallographic details are in the CIF files. ORTEP views were drawn using Olex2 software 

[25]. 

 

Table 1 Crystal data, data collection, structure refinement parameters for 4 and 5 

 4 5 

Empirical formula C27H20F2FeN2NiO2 C27H20CuF2FeN2O2 

Molecular weight (gmol-1) 557,01 561,84 

Collection T (K) 150(2) 150(2) 

Crystal system Monoclinic Monoclinic 

Space group P21/a P21/a 

a (Å) 9.4978(3) 9.6180(4) 

b (Å) 19.5254(5) 19.2339(9) 

c (Å) 11.6027(5) 11.6989(6) 

β (deg) 93.893(2) 95.096(2) 

V (Å3) 2146.74(14) 2155.64(17) 

Z 4 4 

Dcalcd (g cm-3) 1.723 1.731 

Crystal size (mm) 0.6 x 0.15 x 0.05 0.6 x 0.19 x 0.03 

F(000) 1136 1140 

Absorption coefficient 

(mm-1) 

1.601 1.707 

θ range (°) 3.00 to 27.47 3.00 to 27.48 

Range h, k, l, -8/12, -24/25, -15/15 -12/9, -23/24, -14/15 

No. total refl. 18522 18397 

No. unique refl. 4910 4904 

Comp. to max (%) 99.8 99.3 

Max/min transmission 0.923/0.779 0.950/0.788 

Data/restrains/parameters 4910/0/317 4904/0/317 



Final R indices [I>2(I)] R1 = 0.0362 

wR2 = 0.0763 

R1 = 0.0361 

wR2 = 0.0762 

R indexes (all data) R1 = 0.0523 

wR2 = 0.0822 

R1 = 0.0554 

wR2 = 0.0825 

GoF/F2 1.038 1.052 

Largest diff. peak and hole 

(e A-3) 

0.449 and -0.412 0.348 and -0.518 

 

 

 

2.8. Harmonic Light Scattering (HLS) measurements 

The HLS technique [26] at 1.91 μm was employed to measure the first order 

hyperpolarizabilities β1.91 of compounds 2-5. The 1.91 μm fundamental beam was emitted by 

a high-pressure (30 bar), 50 cm long Raman cell pumped by a Nd3+:YAG laser operating at 

1.06 μm and providing pulses of 15 ns duration at a 10 Hz repetition rate. The backscattered 

1.91 μm Raman emission was collected at a 45° incidence angle by mean of a dichroic mirror, 

to eliminate most of the residual 1.06 μm pump photons. Choosing the 1.91 μm wavelength, 

whose harmonics at 955 nm is far from any resonance of the molecules to be investigated, 

prevents the contribution of possible two-photon fluorescence emission to the HLS signal. We 

have evidenced the absence of any wide-band two-photon fluorescence by checking that no 

HLS signal can be detected for wavelengths different from 955 nm. Our reference sample was 

a concentrated (10−2 M) solution of ethyl violet, its octupolar β value being 170 x 10-30 esu at 

1.91 µm [27]. Dimethylformamide (DMF) was used as solvent to solubilize the species. DMF 

appears to be transparent at 1.91 μm. The HLS photons at 955 nm were focused onto a 

Hamamatsu R632−01 photomultiplier tube using two collecting lenses. The detected signal 

was then sampled and averaged using a boxcar, and processed by a computer. The reference 

beam was collected at a 45° incidence angle by a glass plate, and focused onto a highly 

nonlinear N-4-nitrophenyl-prolinol (NPP) powder [28], which was used as the frequency 

doubler. The variation of the scattered second harmonic intensity from the solution was 

recorded on the computer as a function of the reference second harmonic signal provided by 

the NPP powder, both signals scaling as the square of the incoming fundamental intensity. 

Values for β1.91 were then inferred from the slopes of the resulting lines [29]. 

 

3. Results and discussion 

3.1. Synthesis and characterization 

The neutral binuclear unsymmetrical Schiff base complexes 2-5 were synthesized 

following a one-pot template reaction, by refluxing for 4 h in ethanol, the hemi-ligand Fc-



C(O)CH=C(CH3)N(H)-o-C6H4NH2 (1) with equimolar amounts of the desired 5-nitro or 3,5-

difluoro substituted salicylaldehyde, and an slight excess (1.5 equiv) of the appropriate 

metal(II) acetate, as outlined in Scheme 1). Compounds 2 and 3 were isolated in similar yields 

(78 and 75%) as red wine and dark orange powders, respectively, while 4 and 5 were obtained 

as violet and dark brown microcrystalline solids in 87 and 81% yields, respectively. The four 

new complexes show a great thermal stability and are moisture insensitive both in solution 

and in the solid phase. They are slightly soluble in dichloromethane, exhibit good solubility in 

common organic solvents, and are all insoluble in diethyl ether, hydrocarbons and water. 

Composition and identity of the four new compounds were deduced from satisfactory 

elemental analysis, FT-IR, multinuclear and multidimensional NMR, and UV-vis 

spectroscopy. Additionally, the crystal and molecular structures of 4 and 5 were determined 

by single crystal X-ray diffraction analysis (see section 3.4). 

 
 

Scheme 1 Templated synthesis of complexes 2–5 
 

3.2. FT-IR spectroscopy 

The solid-state FT-IR spectra of compounds 2-5 are similar to those we have 

previously described [15, 18, 19], and present the characteristic set of medium to strong 

intensity bands about 1600 cm-1 attributed to the (C···C), (C···N) and (C···O) stretching 

vibrations of the organic Schiff base skeleton (see Experimental for details). In addition, 

compounds 2 and 3 exhibit two bands around 1560 cm-1 and 1400 cm-1, respectively, which 

have been attributed to the asym and sym (NO2) modes, respectively [30]. The strong band 

observed near 1380 cm-1 in the spectra of 4 and 5 was assigned to the (C–F) stretching 



vibration of the doubly substituted salicylaldehyde fragment. Finally, a medium intensity band 

attributable to the (C…O) stretching mode was also observed about 1260 cm-1 

 

 

 

 

 

3.3. NMR spectroscopy 

The 1H NMR spectra of the two diamagnetic compounds recorded in DMSO-d6, at 343 

K for 2 and at 298 K for 4, exhibit the expected resonance patterns consistent with the 

proposed structures, with the presence of the N=CH azomethine proton resonating as the most 

downfield shifted signals of the spectra at 9.98 and 9.05 ppm, respectively, indicating the 

assembly of the quadridentate Schiff base ligands. The ferrocenyl enaminoketonate entity is 

clearly identified by its three sharp singlet resonances at 2.47/2.47, 4.23/4.22 and 5.81/5.86 

ppm (integral ratio 3:5:1), respectively, due to the methyl, the free cyclopentadienyl ring and 

the pseudo-aromatic methine protons. The asymmetry of the compounds is clearly reflected 

by the four distincts resonances of the o-phenylene bridge, in agreement with four 

magnetically non-equivalent protons. They appear as double doublet (H-9 and H-12) and as 

triple doublet or broad double doublet (H-10 and H-11) signal pattern in the ranges 7.09-8.01 

ppm.  

In compound 2, the H-3, H-4 and H-6 protons of the 5-nitrosalicylidene ring (see Fig. 

1 for labelling scheme) resonate with the characteristic doublet-double doublet-doublet 

multiplicity pattern observed for 5-substituted salicylidene ring [15, 18b], at 6.92, 8.10 and 

8.72 ppm (integral ratio 1:1:1), respectively. In compound 4, the H-4 and H-6 protons of the 

3,5-difluorosalicylidene ring give rise to more complex resonances at 7.34 and 7.26 ppm, 

respectively. Both protons show up as double doublet of doublets due to coupling with two 

magnetically non-equivalent fluorine nuclei (3JH-F = 9.0 and 11.3 Hz, 5JH-F = 1.7 Hz). Only the 

3JH-F coupling constants are observable in the 19F NMR spectrum that presents a triplet at -

128.26 ppm attributed to F-5 and a doublet at -129.81 ppm assigned to F-3.  

It is worth noting that the strong electron withdrawing ability of the nitro group, and to 

a lesser extent that of the two fluorines, is nicely illustrated by dramatic downfield shifts, > 

2.5 ppm in some instance, of the azomethine, salicylidene ring and even the pseudo-aromatic 

methyne protons compared to related chemical shifts measured in R-substituted 



unsymmetrical binuclear Schiff base complexes (R = H [18a], Br [18b], OH [15, 19b], OC3H5 

[19a], CO2H [16]. This clearly shows the electronic influence of a powerful accepting group 

through the conjugated Ni(ONNO) bridge [31, 32]. Here, this strong acceptor ability of the 5-

nitro group compared to that of the 3,5-difluoro substituents manifests itself also with a 

downfield shift  of +0.93 ppm of the azomethine NH proton signal. 

The proton decoupled 13C NMR spectra of 2 and 4 fully supports the interpretation 

outlined above, the unsymmetrical nature of both compounds being confirmed by the 25 

resonances observed in their respective spectrum (see Experimental for complete 

assignments). Specifically, in 2 the signal of the C-5 carbon bearing the nitro group appeared 

at 135.95 ppm, whereas in 4, the C-3 and C-5 carbons attached to the fluorine substituents 

showed up as double doublets at 149.68  and 153.07  ppm with 1JC-F  and 3JC-F  coupling 

constants of 231/247 and 11/12 Hz, respectively.  

 

3.4. X-ray crystallographic studies 

Perspective views of the two binuclear Schiff base complexes 4 and 5 are shown in 

Fig. 2, with selected bond distances and angles listed in Tables 2 and 3, respectively. Both 4 

and 5 crystallize in the monoclinic centrosymmetric space groups P21/a  with one binuclear 

entity per asymmetric unit. The two compounds consist of a ferrocenyl fragment linked to a 

M(II)-centered unsymmetrical macroacyclic Schiff base complex (M = Ni: 4, Cu: 5) forming 

monomeric entities that are separated by normal van der Waals distances. In each compound, 

the ferrocenyl unit features a typical linear 5-Fe-5 sandwich structure, with  

cyclopentadienyl rings slightly staggered with twist angles of 15.50° for 4 and 13.13° for 5. 

The ring centroid-iron-ring centroid angle is of 177.02° in 4 and 177.74° in 5. The ring 

centroid-iron distances of 1.652, 1.651 Å and 1.652, 1.650 Å for the ring with and without the 

side chain, respectively, indicate that there is a Fe(II) oxidation state in the metallocenyl units 

[33]. 

 



 

Fig. 2 Molecular structures of 4 (top), and 5 (bottom) with partial atom numbering schemes. 

Hydrogen atoms have been omitted for clarity. Thermal ellipsoids are drawn at 60% 

probability. 

Table 2 Selected bond distances (Å) and angles (°) for compound 4 

Bond distances 

Ni(1)-O(1) 1.8471(15) Ni(1)-O(2) 1.8528(16) 

Ni(1)-N(1) 1.8779(19) Ni(1)-N(2) 1.8495(19) 

O(1)-C(11) 1.284(3) O(2)-C(27) 1.304(3) 

N(1)-C(13) 1.343(3) N(1)-C(15) 1.416(3) 

N(2)-C(20) 1.428(3) N(2)-C(21) 1.306(3) 

C(10)-C(11) 1.478(3) C(11)-C(12) 1.388(3) 

C(12)-C(13) 1.403(3) C(15)-C(20) 1.402(3) 

C(24)-F(1) 1.373(3) C(26)-F(2) 1.359(3) 

Fe(1)-C(Cp) avg 2.044(3) Fe(1)-C(Cp’) avg 2.048(2) 

Bond angles 

O(1)-Ni(1)-O(2) 84.20(7) O(1)-Ni(1)-N(1) 96.17(8) 

O(2)-Ni(1)-N(2) 94.91(8) N(1)-Ni(1)-N(2) 86.69(8) 

O(1)-Ni(1)-N(2) 169.21(8) O(2)-Ni(1)-N(1) 169.40(8) 

Ni(1)-O(1)-C(11) 125.20(15) Ni(1)-O(2)-C(27) 126.65(15) 

Ni(1)-N(1)-C(13) 122.52(16) Ni(1)-N(1)-C(15) 112.11(15) 

Ni(1)-N(2)-C(20) 112.68(15) Ni(1)-N(2)-C(21) 125.85(16) 

C(11)-C(12)-C(13) 125.8(2) C(21)-C(22)-C(27) 120.8(2) 

Abbreviations: Cp = C5H5, Cp’ = C5H4 

 

 



Table 3 Selected bond distances (Å) and angles (°) for compound 5 

Bond distances 

Cu(1)-O(1) 1.9068(16) Cu(1)-O(2) 1.9085(17) 

Cu(1)-N(1) 1.946(2) Cu(1)-N(2) 1.9319(19) 

O(1)-C(11) 1.284(3) O(2)-C(27) 1.301(3) 

N(1)-C(13) 1.329(3) N(1)-C(15) 1.419(3) 

N(2)-C(20) 1.423(3) N(2)-C(21) 1.294(3) 

C(10)-C(11) 1.481(3) C(11)-C(12) 1.396(3) 

C(12)-C(13) 1.412(3) C(15)-C(20) 1.403(3) 

C(24)-F(1) 1.368(3) C(26)-F(2) 1.360(3) 

Fe(1)-C(Cp) avg 2.043(3) Fe(1)-C(Cp’) avg 2.046(3) 

Bond angles 

O(1)-Cu(1)-O(2) 89.36(7) O(1)-Cu(1)-N(1) 95.29(8) 

O(2)-Cu(1)-N(2) 93.70(8) N(1)-Cu(1)-N(2) 85.38(8) 

O(1)-Cu(1)-N(2) 167.18(8) O(2)-Cu(1)-N(1) 162.97(8) 

Cu(1)-O(1)-C(11) 123.15(16) Cu(1)-O(2)-C(27) 125.27(16) 

Cu(1)-N(1)-C(13) 121.75(17) Cu(1)-N(1)-C(15) 111.23(16) 

Cu(1)-N(2)-C(20) 111.41(15) Cu(1)-N(2)-C(21) 125.15(18) 

C(11)-C(12)-C(13) 127.4(2) C(21)-C(22)-C(27) 122.1(2) 

Abbreviations: Cp = C5H5, Cp’ = C5H4 

 

The crystal structures of 4 and 5 reveal that the unsymmetrical Schiff base ligand 

coordinates to the metal(II) center as a doubly deprotonated form in a tetradentate fashion 

with a N2O2 cis-configuration, as previously observed for such binuclear species [15, 16, 18, 

19a]. This leads to the formation of a six-, five-, six-membered chelate ring arrangement 

around the central metal ion. In each compound, the Ni(II)- and Cu(II)-centered ions adopt a 

distorted square planar geometry as reflected by the deviations from the idealized values of 

360 and 180° expected for the sum of the bond angles involving  the metal, two O and two N 

atoms, and the two diagonal O-M-N angles. Those values are of 361.97°, 169.21(8) and 

169.40(8)° for the Ni(II)-containing compound 4, and of 363.72°, 162.97(8) and 167.18(8)° 

for the Cu(II) derivative 5. This distortion towards a tetrahedral environment should 

presumably arise from an electronic effect of the 3,5-difluorosalicylidene ring, as in all the 

other structurally characterized unsymmetrical Schiff base complexes substituted with Br, 

OH, CO2H, or the cationic organometallic moiety [(5-C5Me5)Ru+], such a tetrahedral 

distortion has never been observed [15, 16, 18, 19a]. However, in solution the binuclear 

compounds must adopt a square planar geometry because the NMR spectra of both 2 and 4 

were free from line broadening (see section 3.3). 

Moreover, as a consequence of this tetrahedral distortion, the plane of 

[O(1)C(11)C(12)C(13)N(1)] subunit makes a dihedral angle of 21.56° in 4 and of 18.08° in 5, 



with the substituted cyclopentadienyl ring, and are greater than those measured previously (~ 

5-10°) for analogous binuclear Schiff base complexes [15, 16, 18, 19a]. The six-membered 

metallacycles are held together by the five-membered diazametallacycle in which the N-C-C-

N torsion angles are negligible (-0.5(3) and 1.5(3)°, respectively). A peculiar feature of such 

unsymmetrical Schiff base derivatives [18], is that in 4 and 5 the Werner-type coordination 

M(N2O2) core is also part of a bowed chelate Schiff base scaffold with angles of 174.4(5) and 

173.2(5)°, respectively, formed by the two central carbons of the 6-membered chelate rings, 

C(12) and C(22), and the metal center.  

The metal-heteroatom bond lengths range from 1.8471(15) and 1.8779(19) Å in 4 

(Table 2) and from 1.9068(16) and 1.947(2) Å in 5 (Table 3). They are unexceptional and  are 

in agreement with those reported in the literature [15, 16, 18, 19a, 34, 35]. The O-C, C-C and 

C-N bond lengths range between measured values for single and double bonds (Tables 2 and 

3) [36], being indicative of a substantial delocalization of the electron density throughout the 

entire -conjugated system. 

3.5. Electronic absorption spectra 

The electronic absorption spectra in the UV-visible region of the binuclear Schiff base 

complexes 2-5 were measured in CH2Cl2 and in DMSO (see Fig. 3), and the spectral data are 

collected in Table 4. In the 350-430 nm region, the spectra exhibit a broad strong absorption 

band, while in the 450-650 nm range, these absorption spectra give rise to a set of two and 

three absorption bands for the closed-shell Ni(II) derivatives 2 and 4, respectively, and one 

absorption band for the open-shell Cu(II) analogues 3 and 5. Based on our previous 

computational TDDFT-assisted assignments [15,37], the high energy band is attributed to -

* intraligand charge transfer transitions (ILCT), and the low energy bands are assumed to 

involve metal-to-ligand and ligand-to-metal charge transfer transitions. In addition, on passing 

from CH2Cl2 ( = 8.90) to the more polar DMSO solvent ( = 47.6), the low-energy 

absorption bands exhibit significant blue shifts (Table 4), indicative of a negative change in 

the dipole moment between the excited and the ground states [15,16]. Such a hypsochromic 

behavior in solvents of higher polarity has already been observed and appears to be a general 

trend for NLO active push-pull salicylaldiminato Schiff base complexes [10], as well as  for 

dipolar organometallic donor-acceptor substituted unsymmetrical Schiff base chromophores 

[15,16].  

 



 
Fig. 3 Electronic absorption spectra of complexes 2-5 recorded in CH2Cl2 (solid line) and 

in DMSO (dashed line). 

 

Table 4 UV-vis absorption data for the binuclear Schiff base complexes 2-5 

Compd. λ/nm (log )/m–1cm–1 Solvent 

shift/cm-1 (CH2Cl2) (DMSO) 

 

386(4.86) 387(4.82) +66 

2 485(4.26) 504(3.93) +778 

 

596(3.61) 567(3.78) -858 

3 380(4.94) 383(4.56) +206 

478(4.25) 434(4.10) -2120 

 

4 
391(4.89) 390(4.53) -66 

454(4.17) 448(4.10) -295 

491(4.42) 497(3.80) +246 

563(4.08) 506(3.97) -2001 

5 390(4.78) 391(4.59) +66 
 501(4.03) 467(4.04) -1453 

 

 

 

 

 

 

 



3.6. Cyclic voltammetry 

In order to get a deeper insight into the mutual donor-acceptor electronic influence and 

to determine the electronic effects of the 5-NO2 and 3,5-F2 substituents on the electrochemical 

behavior of the bimetallic Schiff base complexes 2-5, cyclic voltammetry (CV) experiments 

were performed in methylene chloride solution containing 0.1 M nBu4N
+PF6

- as supporting 

electrolyte, at room temperature. The cyclovoltammoggrams of the ferrocenyl unit of the four 

compounds are depicted on Fig. 4 and their respective formal electrode potentials E1/2 (vs. 

ferrocene/ferricenium redox couple) are listed in Table 5. These redox processes arising from 

the monoelectronic oxidation of the ferrocenyl moiety [38], are chemically reversible with 

current ratio ipa/ipc equals to unity. The anodic to cathodic peak-to-peak separations Ep (see 

Table 5), albeit slightly larger, remain close to the 103 mV value measured for the internal 

ferrocene standard under the same electrochemical conditions. They are, however, 

significantly greater than the ideal value of 60 mV  for a fully reversible one-electron process. 

This may be ascribed to a combination of uncompensated solution resistance and slightly slow 

electron-transfer kinetics [39]. The increased difficulty to oxidize the Fe(II) center with 

respect to free ferrocene features the electron withdrawing ability of the substituted neutral 

Schiff base side chain. The CV data obtained here are in accordance with our previous 

observations within this family of binuclear macroacyclic unsymmetrical Schiff base 

complexes [15,16,18,19b].  

 
Fig. 4 Cyclic voltammograms of the ferrocenyl unit of the nitro derivatives 2 and 3 (dotted 

line), and of the difluoro derivatives 4 and 5 (dashed line), recorded in CH2Cl2/0.1 M n-

Bu4N
+PF6

- at 293 K v = 100 mV s-1, reference electrode Ag/Ag+, internal reference Cp2Fe0/+ 

(solid line). 

 



Table 5 Electrochemical dataa for compounds 2-5 

Compd E1/2 (V)b  Ep (mV)) 

2 48 130 

3 168 110 

4 33 120 

5 33 120 
a Recorded at 293 K in CH2Cl2 containing 0.1 M n-Bu4N

+PF6
- as supporting electrolyte, at a 

vitreous carbon working electrode, with scan rate of 100 mV s-1. b all potentials are vs. 

Cp2Fe0/+ redox couple.   

 

From data of Table 5, it can be concluded that the nitro substituent (p=0.778) [32] is a 

better electron-withdrawing group than the two fluorine substituents (o = 0.24, p 0.062), as 

for both nickel and copper Schiff base complexes the anodic shifts are greater for the nitro 

derivatives 2 and 3 than for their difluoro analogues 4 and 5, with E1/2  values of +15 and 

+135 mV, respectively. Moreover, it is worth nothing that the copper-containing complex 3 is 

much more anodically shifted than its nickel-containing counterpart 2 (E1/2 = +120 mV), 

indicating that the electron-accepting ability of the 5-NO2 substituent through the -

conjugated open-shell d9 Cu(II) N2O2-bridge is somewhat stronger than that with the closed-

shell d8 Ni(II) N2O2-bridge. This clearly suggests that there is a stronger interaction between 

the donor ferrocenyl moiety and the acceptor NO2 substituent group, resulting from a better 

electron delocalization in the Schiff base framework mediated by the open-shell configuration 

of the central copper(II) ion [18b]. Such a difference between Ni and Cu complexes is not 

observed for the difluorinated species 4 and 5 (Table 5). Interestingly, the electrochemical 

behavior can be correlated with the NLO properties, the greater anodic shift the greater first 

hyperpolarizability β (see Section 3.7).  

 

3.7. Quadratic NLO Studies  

The quadratic nonlinear response of the new push-pull N2O2 Schiff base complexes 2-

5 have been determined at a 1.91 μm incident wavelength using the HLS technique (see 

section 2.7). For solubility reasons and in order to allow comparison with previously 

determined second-order NLO responses, the HLS measurements were carried out in DMF ( 

= 36.7), and the experimental values of the multipolar first hyperpolarizability β values are 

presented in Table 6. The rather high β1.91 values ranging between 200 and 267 x 10-30 esu are 

quite similar and in agreement with the β1.91 values determined previously under the same 

experimental conditions for unsymmetrical binuclear Schiff base chromophores [15, 16]. 



Interestingly, the nature of the electronic distribution of the metal centers (closed-shell vs. 

open-shell) in the square-planar geometry of complexes 2 and 3 manifests itself by a higher 

β1.91 value for the copper derivative 3 than for its nickel counterpart 2 (see Table 6), following 

the same trend as that observed by cyclic voltammetry, thus confirming the improved 

electronic delocalization in the Schiff-base open-shell complex with respect to a closed-shell 

one. In contrast, the almost identical β1.91 values reported for 4 and 5 confirm the CV behavior 

in the case of fluorine derivatives (see section 3.6), where the open-shell structure does not 

seem to play any role when using fluorine atoms as electron acceptors. 

 

Table 6 HLS β values determined at λinc 1.91 µm for compounds 2-5 

Compda β (10-30 esu)b 

2 214 

3 267 

4 213 

5 200 
a as 10-2 M DMF solutions 

 

4. Conclusions 

In this contribution, we have synthesized and fully characterized two series of robust 

neutral binuclear unsymmetrical salen-type complexes, and their electrochemical, linear and 

second order nonlinear optical properties have been thoroughly investigated. All the 

organometallic-inorganic D--A conjugated hybrids investigated in this work contain the 

ferrocenyl donor group  and the M(ONNO) unit (M = Ni(II), Cu(II)), the salicylidene ring of 

the acyclic tetradentate Schiff base chelate being substituted by 5-nitro or 3,5-difluoro 

electron withdrawing groups. Single crystal X-ray diffraction analyses of the two 

difluorosubstituted compounds 4 and 5 show a strongly distorted square pyramidal geometry 

of both the Ni- and Cu(ONNO) cores inserted into a bowed unsymmetrical Schiff base 

scaffold, and reveal the partial delocalization of bonding electron density throughout the metal 

Schiff base framework. This is further supported by UV-vis and electrochemical data that 

clearly indicate a mutual donor-acceptor electronic influence between the electron releasing 

organometallic unit and the M(ONNO) coordination core. HLS measurements show that the 

four -conjugated push-pull chromophores exhibit rather high second-order nonlinear 

responses, and emphasize the better electron withdrawing ability of the 5-nitro with respect to 



the 3,5-difluoro substitution, in agreement with CV data. They also confirm the interest of 

using open-shell complexes to improve their nonlinear optical properties, as already reported 

in earlier studies [40], the nature of the electron withdrawing group playing a significant role. 

Further investigations, including structural and computational studies, have to be performed in 

order to understand the peculiar electrochemical and NLO behavior of the 5-nitrosubstituted 

copper complex 3. 
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CCDC-1035237 (for 4) and 1035238 (for 5) contain the supplementary 

crystallographic data for this paper. These data can be obtained free of charge from the 

Cambridge Crystallographic Data Centre via www.ccdc.cam.as.uk/data_request/cif. 
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